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Abstract

Prediction of vibration transmission in ship structures is important, to design maritime vessels with greater power and
reduced weight, without increasing noise levels. As the frequency increases, and hence the number of modes increases, it is
more practical to consider average responses and their distribution over the structure, using a technique such as Statistical
Energy Analysis (SEA). Numerical results from an exact, analytical waveguide model are compared with those of
conventional SEA models. These results include both response predictions and the SEA parameters. The theoretical
estimation of the SEA parameters, namely the coupling loss factors, form the basis for the hybrid approach between the
waveguide method and SEA technique. Results are presented for plate structures in an L, T and X-shaped configuration, and
a complex built-up structure.

transmission approach [4,5] and finite element analysis

Nomenclature e .
o In this paper, a simple well-known structure
D F lexura.l rigidity of the plate corresponding to an L-shaped plate is initially
h Plate thickness investigated. Energy levels of the coupled plates
k Wav§ number predicted from an exact analytical waveguide model are
P Density compared with those obtained from conventional SEA
@ Radian frequency equations. A hybrid approach between the two
techniques is presented. The hybrid method uses the
Introduction analytical waveguide method to estimate the input power

and coupling loss factors. The energy levels in a
subsystem using the exact analytical method, SEA, and
the hybrid technique are compared.

A ship hull and bottom structure can act as an effective
transmission path for structure-borne noise to locations at
large distances from the source. In the low frequency
range, where fewer modes excite the structure,

deterministic methods such as analytical methods and Analytical WaveglJide Method

finite element analysis are used to assess the vibrational Consider a structure made up of two finite plates joined
response in connected plates [1]. As the frequency

. . . together at right angles along a common edge at x. =0
increases, and hence the number of vibrational modes & & & & & !

increases, it is more practical to consider average f(?r i =1to 2, to form an L—shaped plate as shown in
responses and their distribution over the structure. Figure 1. Both plates are simply supported along the
Statistical energy analysis (SEA) is an energy balance edges y=0 and y= L,, and free at the other ends

method and considers the flow of energy into the system,

the energy flow between subsystems, and the average corresponding to x; =L, and x, =L, . A point force

energy contained within each subsystem [2,3]. The input is applied on plate 1 to generate flexural vibration, and is
powers and energies are time, space and frequency modelled by a Dirac delta function of force magnitude
averaged, and a greater accuracy is achieved with a F. atalocation (x,,y ).

o [ o

greater population of modes. SEA can provide no detail
of the spatial distribution of the structural response, and
there are a lot of effects of uncertainty and variability
associated with SEA models. The successful use of SEA ©
strongly depends on the accurate estimation of the three w,(x;,y) = Z¢m (x)sin ky y (1)
sets of SEA parameters corresponding to the modal m=1

densities, damping loss factors and coupling loss factors.
Determination of these parameters, and in particular the
coupling loss factors, is a central and difficult problem
for SEA models [3]. The most common methods to
determine the coupling loss factors are the wave

The plate flexural displacement in the various
sections can be described by:

Jkyx. —k,x; k,x

—Jkx; xYi nXi nXi
@, (x)=Ade + Be + Cie + De 2)
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Figure 1. L-shaped plate under point force excitation.

where 4, and B; are coefficients of the propagating

waves, and C; and D, are coefficients of the near-field
decay waves. k, = ,/k; —ki is the propagating wave

number in the x—direction, and &, = ,H’clz7 + k; is the
wave number in the x—direction for the decay waves.

kp = \/;(ph/ D)l/4 is the plate bending wave number.

ky =mr/ Ly is the wave number in the y —direction

due to the simply supported boundary conditions, where
m=1, 2, 3... is the mode number. For plates of the
same material properties, lengths and thicknesses, the
various structural wave numbers are the same for each
plate.

There are 12 unknown wave coefficients to be
evaluated for the L-shaped plate. These can be found
using boundary equations at the free edges, and the
continuity equations at the driving force location and
junction of the plates [7].

Statistical Energy Analysis

In an SEA model of an L-shaped plate as shown in Fig.
1, the plate can be separated into two physical systems
corresponding to plate 1 and plate 2. The input power is
injected into plate 1 only. The coupling of the SEA
subsystems for bending vibration only is shown in Fig. 2.
The power balance equations for the system are given in
matrix form in Eq. (3).
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Figure 2. SEA power flow for the L-shaped plate.
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For coupling between multiple subsystems as in the case
of T and X-shaped plates, the SEA power flow equation
becomes [2-4]:

B = onE; + Xo(nE, —n,E ) ®)
J

In conventional SEA models, the parameters of interest

are the input power P, , subsystem energies £, modal

in?
density n, internal loss factor 7;, and coupling loss

factors ;-

Modal Density
The modal density n(w) is defined as the number of

vibrational modes per unit frequency, and is an important
parameter in SEA. The modal density of a two-
dimensional structure can be written as [2,8]:

oS
n, p= (6)

2
e C

where @ is the radian frequency, S is the area of the
two-dimensional component, ¢, is the group velocity,

and ¢ is the phase velocity (¢ = w/k). For bending
vibration in thin plates, the phase velocity is:

-+

ph

()

P

The group velocity is twice the phase velocity ¢ < =2c b

For a thin plate in bending vibration, Eq. (6) can be
written as [8]:

3 LxLy ph
n=—2 |
4z \' D

It can be seen in Eq. (8) that the modal density for

bending vibration of thin plates becomes independent of
the frequency.

®)
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Input Power

The input power is an important parameter in SEA
calculations. If a point force F drives a system, then the
total power supplied to the system is given by [4,8]:

F* 1
BI‘I :_Re -
2 z

where Z represents the impedance of an infinite plate.
When the power transmission into a plate (in bending
vibration) is frequency averaged, it becomes independent
of size, shape and boundary conditions, and proportional
to the real part of the mobility of an infinite plate [8]. The
mobility is equal to the inverse of the impedance. For a
thin isotropic plate, the impedance Z is given by:

z=8Dp .

Internal and Coupling Loss Factors
When materials are deformed, energy is absorbed and
dissipated by the material. This is accounted for by using

)

(10)

a structural (internal) loss factor 7,. The internal loss

factor is dependent on frequency, but can be assumed
constant when examining frequency ranges between 1
kHz and 10 kHz [3]. Internal loss factors for some
common materials are given in Table 6.1 of reference 3.
The coupling loss factors are related to the
transmission of vibrational energy between coupled
subsystems in a built-up system. The coupling loss

factor, M » is the parameter used to determine the amount

of “coupling” between two subsystems i and ;j.In SEA

applications, it is desirable that the subsystems be weakly
coupled, which occurs when the material loss factor is

greater than the coupling loss factor, that is, 1, <1; or

1n; <n,; . For weakly coupled subsystems, energy is lost

due to dissipation, and the structural loss factor
dominates. For strongly coupled subsystems, energy is
lost due to transmission, and hence the coupling loss
factor dominates. Analytical expressions are available for
coupling between structural elements such as line
junctions between coupled plates and plate-cantilever
beam junctions, as well as between structural and
acoustic volumes [2-4,8]. The most widely used method
to evaluate the coupling loss factors for systems
connected along a line is to use the wave transmission
approach [8]. Using the wave approach, the coupling loss

factor 7, is derived directly from the power transmission

coefficient Ty which is defined as the ratio of the

transmitted to incident power at the boundary:
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_ Transmitted power B, o

Incident power Bcident

(11

Tij

When calculating the power transmission coefficient
using the wave transmission method, the subsystems are
assumed to be semi-infinite [2]. Therefore, waves
impinging on the junction of two coupled subsystems i
and j are reflected (in subsystem #) and transmitted (to
subsystem j), but no reflection at the other boundaries of
the subsystems away from the junction is taken into
account. Equations (12) to (14) are the power
transmission coefficients from plates 1 to 2 for the L, T
and X-shaped plates respectively, in bending vibration
only [8]. In deriving these expressions, it has been
assumed that the group velocities in each plate are the
same. All plates are the same material and o is the plate
thickness ratio. For plates of the same thickness (o =1),
the power transmission coefficients for the L, T and X-
shaped plates are given by the number on the right hand
side in Egs. (12) to (14) respectively.

r,=2c M+ P =05 (12)
5/4 \~ 2
ro=[ V2o v | = 0222 (13)
2
7,=05( "+ 1= 0.125 (14)

The general expression used to determine the coupling
loss factor for two structures joined along a line in terms
of the power transmission coefficient is given by [4,8]:

~ 2ch<Tij>
- YO\

1

1y (15)

where L is the length of the junction line, @ is the

centre frequency of the band of interest, and S; is the

surface area of the subsystem i. The brackets < >

represent averaged over position, as the power
transmission coefficient is averaged at all positions over
the length of the junction.

The coupling loss factors satisfy the reciprocity

relation of ni; =n i, where #; is the modal density of
subsystem i. It was shown in Eq. (8) that the modal
density for a thin plate in bending vibration is
independent of the frequency, and is proportional to the
surface area S of the plate. Hence, for two coupled plates
of the same material parameters, the reciprocity relation

can be written as S;7,, =S 77, where S; and §; are the
surface areas of plates i and j respectively. Using the
reciprocity relation, Eq. (5) can be written as:
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E
F, ;= onE + XonsS,| ——-— (16)
, A )

Hybrid Approach

The hybrid approach involves using the analytical
waveguide model to estimate the input power and
coupling loss factors used in the SEA equations. The
hybrid method was initially developed for the L-shaped
plate, and then extended to T and X-shaped plates, and
finally the 7-plate structure shown in Fig. 3.

F(x,,¥,)
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Figure 3. A built up 7-plate structure.

The input bending power for the SEA model was
calculated by averaging the response over all possible
excitation locations in the x— and y —directions. The
time-averaged flexural input power at a given x-—
location is given by [9]:

5

<Pm>=—§Re (jww)*Fx—(ja)a—Wj Mx—(jwa—wj Mxy

Ox oy

#

17)
where the asterisk * denotes the complex conjugate, and
the brackets represents average over position. F., M,

and M, are the bending shear force, bending moment

and twisting moment respectively. The simply supported
boundary conditions allowed the bending power to be
averaged in the y —direction by integrating the power

equation over the width of the plate from 0 to Ly . This
results in a factor of 1/2 and removes the dependency of
the input power on the y —location of the applied force.

The input power was then averaged across the plate in
the x —direction by driving the structure at a range of
x —locations and then averaging the response. The
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coupling loss factor 7, was determined directly from the

power transmission coefficient 7, and using the

assumption of infinite plates. The assumption of the
infinite boundary conditions was implemented by
assuming no reflection from the free plate edges at

x; =L, . For the L-shaped plate, the incident bending
power was then found using the following expression for
the propagating flexural displacement (in the negative x,

direction) impinging at the coupling junction (x; = 0):

w(x,5) = ZlBl sinkyy (18)
Similarly, the transmitted bending power in plate 2 was
found using the following expression for the transmitted
propagating flexural waves at the coupling junction:

w,y(x,,y) = Z—:1Az sink,y (19)

B, and A, are coefficients of propagating waves in

plates 1 and 2 respectively. The power transmission
coefficient was calculated by the ratio of the transmitted
bending power to the incident bending power at the
junction of the two plates found using Egs. (17) and (11).
The coupling loss factors were then calculated using Eq.
(15). Once the input power and coupling loss factors
were found using the analytical waveguide model, the
energy levels of each plate were determined.

Results and Discussion

The plates were given material properties of aluminium
with Young’s modulus E = 7.1 x 10'° N/m?, density p =
2700 kg/m’, Poisson’s ratio of 0.3, and a structural loss

factor of 7= 0.001. The plate dimensions are L =L ,=

0.6 m, L,=0.5 m, and thickness & = 2 mm. The energy

levels of each plate found using the hybrid approach are
compared with those obtained from the analytical
waveguide method as well as using the conventional
SEA equations. The hybrid results are averaged over
every 100Hz frequency band, and the value presented at
the centre frequency of each 100Hz band. Two frequency
ranges were examined corresponding to up to 1 kHz (low
to mid frequency range), and 5 to 6 kHz (mid to high
frequency range). A sufficient number of modes were
used in the computational modelling to accurately
describe the response in the two frequency ranges of
interest. This was achieved by ensuring that a sufficient
number of modes were chosen in each frequency range
such that all the results converged. The power
transmission coefficients calculated from the hybrid
method are also presented and compared with those
given in Egs. (12) to (14) from reference 8. The results
presented are for bending motion only in the coupled
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plates, although it could be expected that as the
frequency increases, in-plane vibration will begin to have
a significant role [9].

Figures 4 and 5 display the energy levels of plate 1
and plate 2 of the L-shaped structure respectively. The
energy levels were found using the hybrid approach, the
waveguide analytical method and SEA techniques for a
frequency up to 1 kHz. The results indicate that the
conventional SEA equations give a poor indication of the
mean energy levels at low frequencies, and tends to over
predict the energy levels by around 5 to 10 dB. It can be
seen that the hybrid approach gives more accurate results
over the entire frequency range. Comparing Figs. 4 and
5, there is a slight reduction of energy levels from plates
1 to 2 due to the energy lost through transmission at the
structural joint.

=30

Energy levels in plate 1 d8 (ref: 1.J)
n Bof

Figure 4. Energy levels in plate 1 of the L-shaped plate
using the analytical waveguide method (solid line), SEA
(dashed line), and the hybrid approach (dotted line).
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Figure 5. Energy levels in plate 2 of the L-shaped plate
using the analytical waveguide method (solid line), SEA
(dashed line), and the hybrid approach (dotted line).

The energy levels of plate 1 of the L-shaped plate
calculated for a frequency range from 5 to 6 kHz is
presented in Fig. 6. The results again show that in this
frequency band, SEA over estimates the mean energy
levels. In addition, using the conventional SEA
equations, the mean energy levels become nearly a
straight line due to a greater population of modes in this
frequency range. It can also be observed that there is a
dramatic decrease in the variance of the energy levels
obtained using the analytical waveguide method as the
frequency increases.

Figures 7 and 8 show a comparison of the power

transmission coefficients 7,, calculated using the hybrid
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approach with those predicted using Eq. (12), for the two
frequency ranges. For a L-shaped structure, where the
group velocities in each plate are the same, both plates
are the same material, and the plate thickness ratio is
unity, the transmission coefficient predicted by Eq. (12)
is 0.5 and is a constant. In each case, it can be seen that
the power transmission coefficient predicted using the
hybrid method is slightly higher than the value presented

in Eq. (12), although both values for 7,, are in very

good agreement for all frequencies over the two
frequency ranges.
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Figure 6. Energy levels in plate 1 of the L-shaped plate
using the analytical waveguide method (solid line), SEA
(dashed line), and the hybrid approach (dotted line).
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Figure 7. The power transmission coefficients z,, for
the L-shaped plate using the hybrid approach (dotted
line), and predicted from Eq. (12) (7, =0.5) (solid
line), for a frequency range from 1 Hz to 1 kHz.
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Figure 8. The power transmission coefficients z,, for
the L-shaped plate using the hybrid approach (dotted
line), and predicted from Eq. (12) resulting in 7, = 0.5
(solid line), for a frequency range from 5 kHz to 6 kHz.
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Very similar trends to the L-shaped plate were observed
for the T and X-shaped plates, when comparing the
energy levels obtained from the three methods. Figures 9
and 10 compare 7, calculated from the hybrid approach
and predicted from Egs. (13) and (14) for the T and X-
shaped plates respectively.

€00 700 8O0 900 1000

Figure 9. The power transmission coefficients r,, for
the T-shaped plate using the hybrid approach (dotted),
and predicted from Eq. (13) (7;, = 0.222) (solid line).

Figure 10. The power transmission coefficients 7, for
the X-shaped plate using the hybrid approach (dotted),
and predicted from Eq. (14) (7;, = 0.125) (solid line).

Figures 11 and 12 present the energy levels of plate 2 of
the 7-plate structure, for a frequency range up to 1 kHz,
and from 5 to 6 kHz respectively. The SEA prediction
gives a good approximation of the mean energy levels.
The hybrid approach clearly follows the trend of the
response from the analytical waveguide method, but
appears to under predict the mean energy levels.

B fref. 1 )

wvels in plate 2

Ereigy

600 700 BO0 900 1000

0 W0 200 300 400 500
Frequancy [Hz)

Figure 11. Energy levels in plate 2 of the 7-plate
structure using the analytical waveguide method (solid),
SEA (dashed line), and hybrid approach (dotted line).
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Figure 12. Energy levels in plate 2 of the 7-plate
structure using the analytical waveguide method (solid),
SEA (dashed line), and the hybrid approach (dotted line).

Conclusions

This paper presents preliminary results obtained from a
hybrid approach in which the SEA parameters
corresponding to the input power and coupling loss
factors were obtained from an exact analytical waveguide
method. Further work to validate the mean energy levels
using conventional SEA equations can be performed in
the higher frequency range with the inclusion of in-plane
vibration.
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