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ABSTRACT 

Present road traffic noise prediction models, such as TNOISE, use semi-empirical adjustments to account for factors 
that influence the noise level impacting a receiver. Most adjustments are based on actual sound level measurements, 
for example of noise attenuation by different ground types, and hence present models perform satisfactorily for the 
simple situations in which the measurements were made. However, accurate noise prediction in more complex 
situations is beyond the ability of such models, because determination of a comprehensive set of adjustments is 
defeated by the numerous possible variations in terrain characteristics, building geometries, and so forth. This paper 
describes how this problem can be overcome using a neural network approach to road traffic noise prediction. We 
demonstrate how a simple neural network easily mimics one of the present road traffic noise models, and how neural 
networks trained on grid-based data can learn to predict road traffic noise in complex situations. 

INTRODUCTION 

There is clear motivation for seeking to develop better road 
traffic noise prediction models, and an historical comparison 
with air emission dispersion models helps to make this point. 

In the 1980s, Gaussian spreading disk models emerged to 
replace hand calculations of air emission dispersion.  These 
included Australia’s Ausplume, (Lorimer 1986); the U.S. 
Industrial Source Complex models; and Canada’s Regulation 
308 models. Their descendents are work horses of the 
industry and, because they can be driven by meteorological 
data spanning a year or more, ambient air quality standards 
are now written in anticipation of such models being used. 

At the same time, simple road traffic noise prediction models 
were developed, such as Tnoise, a West Australian model 
based on the 1988 U.K. Calculation of Road Traffic Noise 
(the Welsh method); and Canada’s Stamson. These models 
are based on reference sound power level values to which 
semi-empirical adjustments were logarithmically added to 
account for terrain type and other factors that influence the 
noise level impacting a receiver.  Some countries, such as 
Canada, require use of these models as part of mandatory 
noise impact studies to support development applications in 
areas subject to road traffic noise nuisance. 

In the 1990s, more advanced air emission models were 
developed for application to complex situations.  These 
models still solve the advection-diffusion-decay equation, but 
are driven by time-varying 3-D wind fields, with dispersion 
modelled by puff or particle tracking strategies. Diagnostic 
models such as Ausmet produce wind fields from field data, 
while prognostic models such as CSIRO’s TAPM produce 
the wind fields from algorithms similar to those used in 
numerical weather prediction.  These more advanced models 
are best used by specialist practitioners, but the models are 
recognised and valued by environmental authorities. 

No comparable advances have been made in road traffic 
noise prediction modelling, although there have been 
attempts to develop more sophisticated models.  Some of the 
better known examples are the Environmental Noise Model 
developed by RTS Technology, and the European 
SoundPLAN model, which has a road traffic noise module. 

Attempts to extend the strategy used by the 1980s models 
have failed, because determination of empirical adjustments 
to a reference sound power level for complex situations is 
defeated by the number of possible variations in terrain 
characteristics, building geometries, and so forth. For 
example, no general adjustment table is possible for the 
variation of noise levels around a cluster of buildings. 

Similarly, no-one has yet developed a generally applicable 
model for complex situations, that can predict road traffic 
noise impact using fundamental sound propagation physics. 

At present, an acoustician must rely heavily on experience in 
situations such as predicting the sound level impacting on an 
upper level window of a proposed development, due to future 
traffic levels on intersecting roads that are about to be 
upgraded. The need to solve this problem is obvious.  Many 
Australian State of the Environment Reports have noted the 
growing problem of road traffic noise, and SoE (2001) 
estimated that 70% of environmental noise is due to road 
traffic. 

This paper shows that neural network modelling may offer a 
way forward. Learning about artificial intelligence methods is 
a standard part of many engineering degree courses, and there 
are several good texts on neural networks and other A.I. 
tools, such as Negnevitsky (2003). However, a literature 
review failed to find any reports of work to apply neural 
network methods to the problem of road traffic noise 
prediction. 

The nature of neural networks is described in the next 
section, and a neural network model able to mimic classical 
models such as Tnoise is then presented.  Finally, a model 
extension able to handle complex situations is demonstrated. 

THE NATURE OF NEURAL NETWORKS 

(Artificial) neural networks are well understood pattern 
recognition tools, and have been successfully applied to many 
engineering problems, facilitated by technical computing 
software packages such as Matlab.  
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A neural network approach is indicated when there is a 
relationship between a set of variables, but the nature of the 
relationship is poorly understood, and perhaps non-linear. 

A neural network mimics the operation of a human brain. As 
shown in Figure 1, a network consists of layers of data 
processing units called neurons. 

 
Figure 1 An Artificial Neural Network. 

Figure 2 shows the operation of a single neuron. The neuron 
receives weighted output signals (wi xi) from all the inputs, or 
from all the neurons in the previous layer.  It sums the 
weighted signals, adds a bias (b) to the result, and produces 
its own output signal (y) according to a “transfer function”, f, 
which is typically either some form of sigmoidal function, or 
a simple linear function. 

∑ += bxI iiω
     )(Ify =  

 
Figure 2  Operation of a neuron. 

A neural network is trained on an appropriate set of input 
data, using a training strategy to adjust the weights and biases 
of the neurons until the required outputs are achieved. 

A properly trained neural network can generalise to predict 
the output associated with input data that were not part of the 
training set. This is similar to regression analysis, except that 
the far greater degree of connectivity enables much more 
complex patterns to be considered. 

A feed-forward backpropagation neural network was selected 
as appropriate for this modelling exercise. “Feed-forward” 
refers to the one-way propagation of information from the 
first (input) layer of neurons to the last (output) layer. 
“Backpropagation” refers to the network training method. 

SIMPLE NOISE LEVEL PREDICTIONS 

This section presents a neural network trained to predict the 
equivalent sound level (Leq) due to road traffic, at distances 
of 20 to 200 m from the road, and for posted speed limits of 
50 to 100 km/h. For this exercise, all other parameters, such 
as traffic composition, are held constant, and the receiver is 
assumed to have an uninterrupted view of the road. 

Figure 3 shows the equivalent sound level surface mapped 
out by this range of distance and speed parameters.  Sound 
levels have a logarithmic dependence on both vehicle speed 

and distance from the road, and Figure 4 shows this by 
replotting the sound level surface on a log-log scale. 

 
Figure 3  Noise level variation with speed and distance. 

 
Figure 4  Log-log plot of above noise level variation. 

It is tempting to linearise the problem by using logarithmic 
input variables, since a pattern represented by a plane needs 
only three points to be defined.  However, to demonstrate a 
neural network’s ability to recognise non-linear patterns in 
data, conventional values are retained. 

Neural network architecture 

A neural network’s architecture refers to the number of 
neuron layers, the number of neurons in each layer, and the 
types of transfer functions used by the neurons. 

A simple 2-layer neural network is adequate for this task.  A 
multi-layer backpropagation network may handle complex or 
noisy data better than a simpler network, but this problem is 
straightforward, and hidden layers of neurons are not needed. 

Another rule of thumb is not to specify too many neurons, 
since networks with a relatively large number of neurons 
compared to the complexity of the pattern to be discerned are 
prone to overfitting problems, discussed below.  In this case, 
an input layer with 30 neurons was found to be sufficient. 

A tangent sigmoidal transfer function was specified for the 
input layer neurons.  The input variables were normalised by 
roughly half their maximum values (e.g. speeds were divided 
by a normalisation factor of 50 km/h) to match the response 
range of this kind of transfer function. 

The number of neurons in the output layer must be equal to 
the number of output variables, in this case just one, the 
equivalent sound level. A linear transfer function was 
prescribed for the single output neuron. 

Training and validation data 

The Canadian model Stamson was used to produce the neural 
network model training data. Stamson predicts Leq values for 
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a specified time period, and Figure 5 shows its command 
window. 

 
Figure 5  Stamson. A typical road noise model. 

Since the problem is in non-linear form, a key question is 
how much data are needed to train a neural network. It is not 
sufficient that a network be able to correctly produce the 
outputs corresponding to the training data; it must be able to 
generalise to new data. 

In this case, 39 points were provided, sufficient to define the 
surface in Figure 3. Table 1 shows data for three speeds, with 
additional data relating to speeds of 50, 70 and 90 km/h, at 
receiver set backs from the road of 30, 50, 70, 90, 120, 150, 
and 200 m. 
 

 60 km/h 80 km/h 100 km/h 

20 m 60.16 62.60 64.56 

40 m 55.18 57.62 59.58 

60 m 52.26 54.70 56.67 

100 m 48.59 51.03 53.00 

140 m 46.17 48.61 50.58 

200 m 43.61 46.05 48.01 

Table 1.  Training sound level data.  Leq (1h) in dB(A) 

The neural network training algorithm, traingdx, was used, 
and operated in “batch mode”, whereby the model’s noise 
level predictions for all 39 combinations of posted speed limit 
and receiver distance from the road are compared to the 
actual (i.e. Stamson) values. Based on this comparison, the 
algorithm adjusts the neuron signal weights and biases across 
the network, working backward from the output layer 
(“backpropagation”) and using an error gradient descent 
technique with momentum and an adaptive learning rate 
(Demuth & Beale 2001).  The model then makes a new set of 
predictions, and the process is repeated. 

Each such iteration, known as a training epoch, results in a 
better set of predictions. Ideally, a neural network training 
session results in a model that has the ability to generalise its 
predictions to sets of input values that were not part of the 
training data set group. To achieve this, it is necessary to stop 
model training before the phenomenon of overfitting 
becomes a problem.  The neural network overfitting problem 
is analogous to a high order polynomial fit to a set of training 
data points producing the required values at those points, but 
varying wildly and incorrectly between the training points. 

A good way to avoid overfitting is to examine the neural 
network model predictions for a second set of input data. 
Initially, as the training proceeds, the sum-squared error 
between predictions and actual values decreases for both the 
training data set and the second data set.  Training is stopped 
when the sum-squared error for the second data set starts to 
rise, indicating that overfitting is starting to be a problem. 

Neural network performance 

Figure 6 shows the equivalent sound level surface mapped 
out by the neural network over the speed and distance ranges 
of Table 1. The wrinkles in the prediction surface are minor. 

 
Figure 6  Neural net Leq predictions (compare to Fig 3) 

Figure 7 shows a typical slice through the surface in Figure 6, 
for a speed of 70 km/h.  The solid line shows the Stamson 
sound level curve, and the dashed line shows the neural 
network predictions. 

 
Figure 7 Stamson vs neural net predictions 70 km/h. 

Figures 6 and 7 show that a neural network is easily able to 
mimic a conventional road noise prediction model. The 
exercise only examined predictions within the range of 
training data values, but the neural network can also 
extrapolate patterns in data.  We now examine the 
architecture of neural networks able to discern patterns in 
grid-based data. 

GRID BASED NOISE PREDICTIONS 

Neural networks have a proven ability to find patterns in 
grid-based data, such as images, and this is the key to using a 
neural network approach to predicting road traffic noise 
levels in complex situations. 

Artificial intelligence tools are based on biomimicry 
principles, and biomimicry can also guide strategies to apply 
these tools.  In this case, it is common wisdom that people 
often solve a complex problem by breaking it into 
components to the extent possible.  This suggests that a good 
modelling strategy is to develop one neural network to 
predict the dependence of Leq values on speed across a grid, 
and then modify these baseline values by adjustments 
predicted by other neural networks. This baseline-plus-
adjustments approach is used by conventional models such as 
Tnoise, and it appears to work just as well for grid-based 
neural networks. 



9-11 November 2005, Busselton, Western Australia Proceedings of ACOUSTICS 2005 

110 Australian Acoustical Society 

0m 10m 20m 30m 40m 50m 60m 70m 80m 90m 100m 110m 120m 130m 140m 150m

20m 62.6 62.6 62.6 62.6 62.6 62.6 62.6 62.6 62.6 62.6 62.6 62.6 62.6 62.6 62.6 62.6

30m 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7

40m 57.6 57.6 57.6 57.6 57.6 57.6 57.6 57.6 57.6 57.6 57.6 57.6 57.6 57.6 57.6 57.6

50m 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0

60m 54.7 54.7 54.7 54.7 54.7 54.7 54.7 54.7 54.7 54.7 54.7 54.7 54.7 54.7 54.7 54.7

70m 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6

80m 52.6 52.6 52.6 52.6 52.6 52.6 52.6 52.6 52.6 52.6 52.6 52.6 52.6 52.6 52.6 52.6

90m 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8

100m 51.0 51.0 51.0 51.0 51.0 51.0 51.0 51.0 51.0 51.0 51.0 51.0 51.0 51.0 51.0 51.0

ROAD

 
Figure 8.  Grid for two-dimensional road traffic noise predictions.  Leq values are for a speed of 80 km/h. 

Baseline grid 

The baseline neural network that predicts Leq values at 
different speeds and distances from the road has only speed 
as its input, while the output is an entire grid of Leq values. 

Figure 8 shows the simple grid used to establish this 
modelling approach.  The road is assumed to be straight and 
long, and the grid extends 150 m along the road, and from 20 
m to 100 m from the road: road traffic noise predictions are 
not generally made closer than 15-20 m from a road.  The Leq 
values in dB(A) are given over a 10 m x 10 m square grid, 
and Figure 8 shows the values for a speed of 80 km/h (with 
only one decimal place, for clarity). 

A 2-layer feed-forward neural network performed quite well 
for this problem.  The best performance was achieved by 
networks containing 20-25 neurons in the input layer, with 
tangent-sigmoidal transfer functions.  The network output 
layer contains 144 neurons, with linear transfer functions, 
corresponding to the 9 row x 16 column prediction grid. 

A neural network trained on only four speeds (40, 60, 80, and 
100 km/h) was able to generalise satisfactorily.  Figure 9 
compares the model Leq predictions for a speed of 70 km/h, to 
the actual Leq values.  Since the grid is flat, the Leq contours 
lie parallel to the road. 

 
Figure 9 Actual vs predicted Leq grid for 70 km/h. 

The predictions shown in Figure 9 are accurate to about 0.5 
dB(A), which is a reasonably good performance given that 
the neural network was trained on only four input speeds. 

Adjustment for barrier 

A neural network modelling approach has the potential to 
handle more complex situations than a classical model, such 
as Tnoise, because a neural network can be trained to discern 
patterns in two-dimensional data. 

To demonstrate this, consider the adjustment to the grid of 
baseline Leq values due to a 70 m long noise barrier situated 
parallel to the road.  Figure 10 shows a barrier 40 m from the 
road, with a prescribed Leq adjustment pattern. 

0m 10m 20m 30m 40m 50m 60m 70m 80m

20m 0 0 0 0 0 0 0 0 0

30m 0 0 1.0 1.0 1.0 1.0 1.0 0 0

40m 0 2.0 2.5 2.5 2.5 2.5 2.5 2.0 0

50m 0 -7.0 -9.0 -11.0 -11.0 -11.0 -9.0 -7.0 0

60m
0 0 -7.0 -9.0 -11.0 -9.0 -7.0 0 0

70m
0 0 0 -7.0 -9.0 -7.0 0 0 0

80m
0 0 0 0 -7.0 0 0 0 0

90m 0 0 0 0 0 0 0 0 0

 
Figure 10 Leq adjustments due to a 70 m noise barrier. 

In Figure 10, the barrier is denoted by the heavy black line. 
The Leq adjustments of 2.0 and 2.5 dB in front of the barrier 
are realistic, since a perfectly reflective barrier will produce a 
3 dB increase (i.e. a doubling) in sound levels.  The 1.0 dB 
adjustments are 10 m in front of the barrier. 

Behind the barrier, a triangular pattern of Leq adjustments is 
specified.  For example, 10 m behind the barrier, the 
adjustments vary from –7 to –11 dB.  The triangular pattern 
does not correspond well to the actual adjustments, but 
simplifies the evaluation of a neural network’s performance 
in this demonstration exercise. 

A neural network with the same architecture as that described 
in the previous section, but with 120-150 neurons in its input 
layer, was found to be adequate. 
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The neural network inputs for a given training data set consist 
of 9 x 16 = 144 values of either one or zero.  Seven input 
values are set to one, denoting the location of the barrier, and 
the remaining 137 values are set to zero. 

The neural network is trained by requiring it to produce the 
correct pattern of Leq adjustments for a given barrier location.  
As usual, a key question is how much training data is needed 
– i.e. how many barrier locations and associated patterns of 
Leq adjustments are needed – to properly train the neural 
network.  The test is whether the network can generalise to 
predict the Leq adjustment patterns for barrier locations that 
were not part of the training data. 

There are ten possible locations for a 70 m long barrier on 
each of the nine rows in the grid, giving a total of 90 possible 
barrier locations.  The set of barrier locations used to train the 
neural network must contain at least three barriers on each 
row (i.e. 3 x 9 = 27 training data sets), or some inputs will 
always be zero.  A neural network quickly learns to ignore 
inputs that are constant, or which are not related to the 
required output. 

However, the training data really needs to contain four 
barriers on each row, or else many inputs are set to one only 
once. This is not sufficient for the neural network to 
accurately recognise how the pattern of ones and zeros in the 
input values are related to the required pattern of Leq 
adjustments. 

Experimentation confirmed that a neural network could 
generalise reasonably well if it was trained on a minimum of 
35-40 barriers.  Figure 11 shows the predictions of the neural 
network for three barrier locations that were not part of the 
training data.  The contour values are –10, -9, -8, -6, -5, +1, 
and +2 dB. 

 
Figure 11  Predicted Leq adjustments due to a barrier. 

CONCLUSIONS 

This paper has presented an (artificial) neural network 
approach to predicting road traffic noise, and a simple 2-layer 
neural network is shown to have the ability to mimic present 
models, such as Tnoise and Stamson. 

Neural networks are not a universal remedy for all modelling 
situations.  However, it is appropriate to consider applying 
them to the problem of predicting road traffic noise in 
complex situations.  The present models are underpinned by 
field measurements to establish how sound levels vary with 
speed, distance, ground reflectivity, and so forth.  These are 
essentially one-dimensional patterns. 

Neural networks can discern patterns in two dimensional (i.e. 
grid based) field measurements, and this means that they 
have the potential to handle situations beyond the capability 
of present road traffic noise prediction models, situations 
such as the variation of noise levels around buildings in 
uneven terrain. 

We have examined the case for using neural networks to 
predict road traffic noise in complex situations.  The two keys 
to solving this problem are, first, to move to grid-based input 
data and predictions; and, second, to continue the strategy of 
making a set of baseline predictions that are then refined by a 
set of separate adjustments. 

Training a neural network to make baseline Leq predictions as 
a function of traffic speed, over a (fairly coarse) grid is 
shown to be a straightforward task.  We then show how a 
neural network can be trained to produce Leq adjustments due 
to the presence of a noise barrier. 

Similar neural networks can be trained to determine 
adjustments to the baseline Leq for a variety of other factors 
that influence road traffic noise. Examples include terrain 
variation, barriers of different lengths and heights, buildings, 
multiple roads with non-trivial geometries, and so forth.  This 
is the principal advantage of the neural network approach. A 
neural network’s powerful ability to find patterns in data 
provides a way to extend the empirical baseline-plus-
adjustment approach of models such as Tnoise, to complex 
situations. 

A key issue in an attempt to develop an effective complex 
situation modelling capability is how much field data are 
needed to adequately train the various neural networks.  In 
the barrier adjustment example, the necessary 35 or so 
training barriers is a large percent of the 90 possible barriers.  
However, for this adjustment, all the training data can quickly 
be generated from only one set of field measurements. 

For other adjustments, such as the effect of terrain variations, 
multiple sets of field measurements are needed to train a 
neural network. However, the required effort is probably 
comparable to that necessary to underpin the development of 
models such as Tnoise. 
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