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ABSTRACT 

This paper presents possibilities offered by a computer program for analysing features of sound recordings, 

PsySound3. A wide variety of spectral and sound level analysis methods are implemented, together with models of 

loudness, roughness, pitch and binaural spatial analysis. In addition to providing access to these analysis methods, 

this analysis environment provides a context for easy comparison between analysis methods, which is very useful 

both for teaching and for the testing and development of models for research applications. The paper shows some of 

the potential for this by way of example. The software is structured so as to be easily extensible (using the Matlab 

programming environment), and many extensions are envisaged.  Written by the authors and colleagues, PsySound3 

is freely available via www.psysound.org. 

INTRODUCTION 

In the Australian Acoustical Society conference of 1999, the 

first author presented a paper on a computer program known 

as PsySound, which he wrote to provide analysis capability 

using several psychoacoustical and acoustical methods 

(Cabrera 1999).The present paper describes a newly written 

software environment for the analysis of sound recordings, 

providing similar but much more extensive capabilities. 

PsySound3 was written by the authors and colleagues to pro-

vide free and flexible access to a wide range of sound analy-

sis methods with an emphasis on psychoacoustical algo-

rithms, such as loudness related parameters, pitch parameters, 

auditory spatial parameters, parameters related to music per-

ception, and other aspects of sound quality. In addition to 

implementations of psychoacoustical analysis methods, 

PsySound3 provides a range of conventional analysis meth-

ods, such as spectrum and cepstrum analysis, autocorrelation, 

Hilbert transform, and a sound level meter emulator. Integrat-

ing many analysis methods into a single software environ-

ment facilitates comparison between analysis methods for 

research or education purposes. This paper provides some 

examples of comparative analysis performed by the program. 

The software environment is extensible, and we envisage that 

more analysis methods will be contributed to the environment 

as the project develops. 

PROGRAM STRUCTURE 

PsySound3 is implemented using Matlab (with the Signal 

Processing toolbox). We envisage releasing compiled ver-

sions once the program reaches a more mature state, but in its 

present form using PsySound3 requires very little knowledge 

of Matlab because a user interface is provided by PsySound3. 

Easy extensibility of the program comes from its implemen-

tation in this commonly used programming environment 

(with code arranged in a modular hierarchical file structure), 

and extensions can be shared through participation in the 

development group, which uses a central code repository 

accessible via the internet. 

The program is designed to analyse sound files in common 

formats such as Microsoft wav. Files may be calibrated or 

gain adjusted in several ways, and the program includes the 

facility for using recordings of microphone calibration sig-

nals. Large groups of files may be analysed (although the 

analysis may take quite some time, and so is best done on a 

dedicated computer). The program includes a set of audio 

analysers, which are written as independent modules, each 

taking advantage the program infrastructure (graphical user 

interface, calibration, data format, etc.). Since these analysers 

are probably the major point of interest to acousticians, this 

paper focuses on them. 

In some cases existing analysers are based around pre-

existing code, which has been ‘wrapped’ with some addi-

tional features and inserted into the program directory struc-

ture. Having many analysis methods driven by the one pro-

gram has the advantage of being able to coordinate and, to an 

extent, automate analyses in which the outputs of multiple 

analysis methods are compared. The analysers mentioned in 

this section are examples of what can be done, but there is the 

potential for many other analysers to be added in the future.  

Many analysers work by dividing the soundfile into succes-

sive (or overlapping) frames, from which spectral patterns or 

single-number parameters are derived. Having stepped 

through the entire sound file, the main analyser output for-
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mats are time-series objects (showing how a single parameter 

varies over time), spectrum objects (showing how a parame-

ter is distributed across a non-time dimension such as fre-

quency) and time-spectrum objects (such as a spectrogram). 

Some analysers can yield an output rate equal to the audio 

sampling rate of the file being analysed, potentially leading to 

a substantial increase in the size of the analysis compared to 

the file size of the input wave. However, the program allows 

the output of multiple analysers to be ‘synchronised’, mean-

ing that high output rate data are downsampled, low output 

rate data are upsampled (although in practice that is rare), and 

the step size of discrete analysis frames is set to a given 

value. Synchronised output data allow for easy comparison 

between time series and may avoid excessive data density for 

a given application. 

Presentation of results and post processing 

The next section of this paper includes several illustrations 

that are edited versions of graphical output from PsySound3.  

Matlab’s graphing functions are used by the program, allow-

ing charts to be edited, exported, and edited further. The pro-

gram also provides full numeric representation of analysis 

outputs, along with statistical reduction of the output data. 

The concept of using listening for analysis purposes has been 

an interest of the authors for some time, and several possibili-

ties are presented by Cabrera et al. (2006). Hence, a distinc-

tive innovation introduced by PsySound3 is a set of tools for 

sonification of analysis results. The program implements a 

range of techniques collectively known as ‘exploratory sound 

analysis’ (Ferguson and Cabrera 2008). The concept of ex-

ploratory sound analysis is to represent the analysis parame-

ter(s) using a reorganised version of the original sound re-

cording. This is in contrast to the more conventional and 

abstract form of sonification called ‘auditory graphing’ 

where, for example, the frequency of a tone might be mapped 

to parameter values. 

EXAMPLES OF ANALYSIS 

This section of the paper presents a set of simple analysis 

examples that illustrate some of the potential value and asso-

ciated issues in using analysis methods that are currently 

implemented in PsySound3. 

Effect of bandwidth on loudness 

The modelling of loudness is considerably more complex 

than calculating sound pressure level, and several methods 

can be used. In its present form, PsySound3 implements the 

ISO532B steady state loudness model, Chalupper and Fastl’s 

dynamic loudness model (2002), and Moore, Glasberg and 

Baer’s (1997) steady state loudness model. Loudness models 

model sensitivity as a function of frequency, bandwidth, and 

time (in the case of dynamic models) and they yield natural 

loudness units (sones) rather than decibels. The fact that these 

relationships are neither independent nor linear provides what 

is both an advantage and disadvantage of loudness modelling: 

while the result should be a more accurate representation of 

loudness than a sound pressure level measurement, a calcula-

tion done for a particular listening level cannot be simply 

reinterpreted for other listening levels (as a sound pressure 

level measurement could be). While weighted sound pressure 

level does model the variation of sensitivity across the fre-

quency range, it does not model the loudness effect of band-

width – i.e., that broad bandwidth stimuli tend to be louder 

than narrow bandwidth stimuli of the same sound pressure 

level.  

This effect, which is easily experienced in controlled listen-

ing, is illustrated in Figure 1 by a comparison between pink 

noise and 1 kHz pure tone stimuli (both having  a sound pres-

sure level of 60 dB) as analysed by three loudness models. 

The charts show the specific loudness pattern, which is the 

loudness attributable to auditory filters (represented by Bark 

or Erb units), which when integrated yields the overall loud-

ness. This is a particularly striking example because the result 

is contrary to a comparison between the stimuli using A-

weighting: the 1 kHz tone is still 60 dB(A) after the applica-

tion of A-weighting, but the pink noise has an A-weighted 

sound pressure level of 54.7 dB(A) due to the attenuation of 

low frequency power by the A-weighting filter. The example 

also serves to illustrate one of the problems with psycho-

acoustical modelling, that is, since loudness is a subjective 

phenomenon observed statistically, various theories may be 

proposed to model it, each with its own assumptions and 

limitations. In the low frequency range, the Bark units span a 

substantially broader frequency range than Erb units, which 

is one reason why the specific loudness pattern of the pink 

noise differs between the models. 

 
Figure 1. Loudness modelling of a 1 kHz pure tone (solid 

line) and steady state pink noise (dashed line) both with an 

unweighted sound pressure level of 60 dB. The three charts 

show the specific loudness patterns using three loudness 

models that are implemented in PsySound3. 

Temporal integration 

Another comparison of interest is the time response of meas-

urements. Figure 2 shows three ways of measuring sound 

strength as a function of time, applied to a short speech 

phrase. The Hilbert transform can be used to derive instanta-

neous sound pressure level, which is arguably the shortest 

integration time possible, and much shorter the integration 

time of audition. The result of the Hilbert transform possesses 

a widely fluctuating fine structure with a quite well defined 

overall envelope revealing fluctuations in the voice level, as 
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well as the exponential reverberation decay in the case of 

reverberant speech. The widely used sound pressure level 

using ‘fast’ integration (125 ms time constant in an exponen-

tial integrator) is also shown, which exhibits comparatively 

little variation during the speech phrase (especially in the 

case of reverberant speech), and a smooth exponential rever-

beration decay of about the same slope as the Hilbert-derived 

sound pressure level. Finally, the dynamic loudness model of 

Chalupper and Fastl (2002) yields a fairly widely varying 

result for time-varying loudness, but without the fine struc-

ture of the Hilbert-derived sound pressure level. The com-

parison between sound pressure level and loudness also high-

lights the difference between the units used (with loudness 

units a ratio scale of perceived loudness, while sound pres-

sure level is a logarithmic scale of squared sound pressure 

which tends to compress the data). The reverberant decay 

does not form a straight line when loudness units are used 

(and the decay function will depend on the calibration level 

of the analysis). 

 
Figure 2. Comparative measures of sound strength as a func-

tion of time of an anechoic speech phrase “I’m speaking from 

over here” and the same recording convolved with the im-

pulse response of a room (the traces that extend to 3 s). From 

top to bottom: the instantaneous sound pressure level derived 

from the Hilbert transform; A-weighted sound pressure level 

with fast temporal integration; and dynamic loudness based 

on the model of Chalupper and Fastl. 

Although it may appear from Figure 2 that longer integration 

times are not likely to be useful for loudness modelling, in 

fact this depends on the context. Soulodre and Lavoie (2006) 

find that an integration time constant of the order of 3 s per-

forms best when tracking subjective time-varying loudness 

responses, and our preliminary analysis using different data 

(music recordings) supports this conclusion. The reason for 

the effectiveness of the longer integration time is that the 

response parameter is confounds loudness perception and the 

processes involved in human response. By contrast, the much 

finer temporal resolution of a dynamic loudness model is not 

based on direct observation of time-varying loudness re-

sponses to continuous music or speech, but instead on low 

level testing of temporal masking and the relationship be-

tween duration and loudness. 

Time-spectra 

Spectrograms are a very common method for visualising how 

power spectrum changes as a function of time. PsySound3 

uses the term ‘time-spectrum’ in a more general sense, refer-

ring to any spectrum-like data that vary with time. This in-

cludes, for example, frequency spectra derived from short 

term fast Fourier transforms or other filtering techniques, 

cepstra, short term auto-correlation functions, specific loud-

ness patterns, specific roughness patterns and quantized pitch 

patterns. 

 
Figure 3. Time-spectrum representations of a speech phrase, 

“I’m speaking from over here”. From top to bottom: normal-

ised autocorrelogram; spectrogram; specific loudness pattern 

based on Moore et al.; and specific loudness pattern based on 

Chalupper and Fastl. 
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Figure 3 gives examples of time-spectrum outputs for the 

analysis of the same anechoic speech phrase as used in the 

previous example. 

The second of the charts in Figure 3 is the familiar spectro-

gram, which clearly shows both the formant and harmonic 

structure of the speech, as well as features associated with 

consonants (for example high frequency content of the ‘s’ at 

0.2 s). The time-frequency resolution of spectrograms is a 

user-controlled parameter in the PsySound3 analyser, as 

would be usual in software of this type. The top chart (auto-

correlogram) reveals periodicity in another way, with peaks 

due to low frequencies represented by large lag times. Hence 

the falling pitch at the end of the speech phrase is associated 

with an increasing lag time for the white peak. The lower two 

charts show time-varying specific loudness pattern, for re-

peated iterations of Moore, Glasberg and Baer’s static model 

(second from bottom), and Chalupper and Fastl’s dynamic 

model (bottom). The first of these models is implemented 

with a higher auditory filter resolution, with peaks formed by 

the individual lower harmonics and formants, while the 

coarser resolution of the second model does not show effects 

of individual harmonics (this is also partly due to the broader 

filter bandwidths of the Bark scale compared to the Erb 

scale). Note that Glasberg and Moore (2002) published a 

dynamic loudness model, but implementations for this in 

PsySound3 are yet to be optimised for practical use (due to 

the much greater computational load of the model). 

Pitch height and sharpness 

In this section we consider some parameters available to 

represent concepts related to frequency, pitch and sharpness. 

One aspect of pitch analysis is that, particularly in the context 

of music, we may be interested in extracting multiple simul-

taneous pitches, rather than only single time-series pitch pa-

rameters. The pitch model of Terhardt et al. (1982) provides 

a means of identifying a spectrum of pitch percepts, and re-

spective saliences for the identified pitches. This model is 

based on a short term Fourier transform, followed by peak 

extraction and masking analysis. Two types of pitches are 

identified: spectral pitches – which are audible tones present 

in the spectrum (after the modelling of auditory masking); 

and virtual pitches – which are pitches inferred by the pres-

ence of harmonic series in the masked spectrum. Parncutt 

(1989) developed ways of further analysing the output of 

Terhardt’s model for harmony analysis. Although Parncutt 

was concerned with analysis of a quantized frequency scale 

(twelve-tone equal temperament), PsySound2 implemented 

these models so that they could be applied to the analysis of 

arbitrary sound recordings, and this capability is retained in 

PsySound3. Nevertheless, since the envisaged application of 

this is analysis of twelve-tone equal temperament recordings 

of music, quantization is applied to the output (rather than 

input) of the models.  

The top chart of Figure 4 illustrates one of the output data 

types from this implementation – a time-spectrum showing 

the pitch saliences of the twelve chroma (or pitch classes, 

with 1 denoting the musical note ‘A’) as a function of time, 

for a recording of a 3-note motif played on a shakuhachi. 

While chroma corresponding to the three notes are each 

clearly visible, it can also be seen that other chroma have 

significantly non-zero values, and indeed a vestige of the 

second note is sustained through the third note. Note that a 

chroma difference interval of 5 or 7  (for example, from 2-7 

or 2-9 on the chart) corresponds to a perfect fourth or fifth 

respectively (relating to the harmonic ratios of 3:4 and 2:3). 

 

 
Figure 4. Representations of pitch, analysed from a 3-note 

phrase played on a shakuhachi. The upper chart shows the 

chroma pattern derived from a combination of Terhardt et al. 

and Parncutt’s pitch models. The lower chart shows the esti-

mate of a single time-varying pitch, based on the short-term 

auto-correlation function peak lag (grey) and SWIPE' 

(black). 

Reducing a rich spectrum to a single ‘frequency’ or pitch 

height value can be done in many ways, some prioritising 

physical signal analysis, while others aim to represent per-

ception. A simple way of tracking pitch is to find the lag of 

the highest non-zero peak in the short-term auto-correlation 

function of the signal, and read frequency as the inverse of 

the lag time. This approach is prone to several errors, and 

many researchers have developed more robust methods of 

pitch tracking. One of these methods, implemented in 

PsySound3, is SWIPE' (i.e. SWIPE with a prime symbol) 

(Camacho 2007). The lower chart of Figure 4 compares the 

frequency derived from short-term auto-correlation and the 

calculation from SWIPE'. Most obviously, the latter exhibits 

a substantially more stable pitch tracking, and there are also 

fine differences between the results of the two methods in 

terms of the exact pitch identified, and the tracking of vi-

brato. 

The sharpness or brightness of sound is a characteristic of 

timbre rather than pitch, but is also a feature that can be de-

rived from the frequency content of a spectrum, and some-

times is represented as a single frequency. A simple way of 

estimating brightness is to take the first moment of the power 

spectrum (known as spectral centroid) (Lichte 1941). In the 

case of a pure tone, centroid and pitch will be the same, but 

for complex sounds the centroid represents the balance of 

power across the frequency range. This simple approach can 

be compared to the concept of sharpness, which is modelled 

using a weighted centroid of the specific loudness pattern 

(Zwicker and Fastl 1999). Results for spectral centroid and 

sharpness analysis of the shakuhachi motif are shown in Fig-

ure 5. It can be seen that these share many features, but di-

verge at the end (the reverberant decay) because of the sensi-

tivity of sharpness to the overall loudness (which is due to the 

sensitivity of masking curves to absolute level in the loudness 

model). Where there are common features, it can be seen that 

there are differences in scale between the two methods of 

modelling.  
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Figure 5. Time-varying representations of brightness or 

sharpness. The upper chart is the spectral centroid derived 

from the short-term Fourier transform, and the lower chart is 

sharpness, calculated from the output of Chalupper and 

Fastl’s dynamic loudness model. 

Other models of brightness of sharpness exist – in musical 

timbre analysis it is common to include the pitch value  in the 

denominator, and so to provide an enumeration of brightness 

relative to the fundamental frequency. However Schubert and 

Wolfe (2006) found that that approach reduces the predictive 

power of the model in relation to subjective brightness judg-

ments. 

Pitch strength 

Pitch strength can be understood and calculated in many 

different ways, and in its present form PsySound3 does not 

implement all available options. Perhaps the simplest repre-

sentation of pitch strength is the height of the highest non-

zero peak in the short-term auto-correlation function of the 

signal – a number between 0 and 1, where 0 indicates no 

pitch and 1 indicates a strong pitch. A similar but more re-

fined pitch strength estimate is provided by SWIPE' 

(Camacho 2007), and these two estimates are shown for the 

shakuhachi sample in Figure 6. This reveals considerably 

greater sensitivity to degradations of pitch strength in the 

SWIPE' calculation than the simple auto-correlation calcu-

lation (which for the most part is close to its maximum value 

of 1). 

The pitch modelling of Terhardt et al. (1982) and Parncutt 

(1989) also provides ways of representing various aspects of 

pitch strength, including the strength of spectral pitch com-

ponents (‘pure tonalness’), the strength of virtual pitches 

(‘complex tonalness’) and an estimate of the number of si-

multaneously audible pitches (‘multiplicity’). Figure 6 shows 

the time-varying pure tonalness of the shakuhachi sample. 

While some features of the SWIPE' analysis are shared 

with the pure tonalness calculation, it is notable that pure 

tonalness falls to zero at the end of the note, rather than con-

tinuing through the reverberant decay. It can also be observed 

that vibrato reduces the pure tonalness (e.g., at the end of the 

first and last notes) showing that this type of pitch modelling 

is sensitive to the blurring of spectral peaks over the analysis 

window length. 

 
Figure 6. Time-varying pitch strength of a shakuhachi 

phrase, represented by the short-term autocorrelation function 

peak height (fine black), SWIPE' (heavy black), and pure 

tonalness (grey). 

Binaural analysis 

Most of the currently implemented analysers are for single 

channel input. For these, the program will analyse either one 

of the channels, or a sum or average of the two channels. 

However, the program infrastructure allows analysis of mul-

tichannel files, and in the field of psychoacoustics, binaural 

files are of particular interest. Currently the suite of analysers 

includes an interaural cross correlation analyser, based on the 

approach taken by Ando (1998). This estimates aspects of 

spatial hearing, including the lateralisation and width of audi-

tory images, based on the time-varying short term interaural 

cross correlation function. 

Figure 7 illustrates this type of analysis, for a recording of a 

speech phrase “I’m speaking from over here.” with one repe-

tition, played from a loudspeaker to a dummy head micro-

phone in a room. Two examples are given – one with curtains 

covering two of the room walls, and the other without (in all 

other respects, the source signal and recording conditions are 

identical). These recordings correspond to stimuli described 

by Pop and Cabrera (2005), namely “room 2” with a 1.6 m 

source-receiver distance. 

The analysis shows that although the auditory image tends to 

be centred (tau values close to 0 ms), the width of the audi-

tory image (which is inversely related to IACC) increases 

once the room reverberation is contributing to the sound. 

Greater image width (lower IACC) occurs in the more rever-

berant room condition. Note that while this is an application 

of running interaural cross-correlation, a similar analysis is 

often applied to binaural room impulse responses to estimate 

auditory spatial parameters.  

Binaural loudness modelling has advanced recently, with 

models proposed by Moore and Glasberg (2007) and Sivonen 

and Ellemeir (2008), and a recent study at the University of 

Sydney on binaural loudness in soundfields of various diffu-

sivities (Miranda and Cabrera 2008) has seen further evalua-

tion of these models and their implementation in the 

PsySound3 platform. We hope to add more binaural and mul-

tichannel analysers to PsySound3 as the project develops 

further. 
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Figure 7. Binaural analysis of a once-repeated speech phrase 

(“I’m speaking from over here”) in a room with and without 

curtains over two of the four walls. The speech starts at 0.5 s 

and the repetition of it at 2.5 s, and the sound after 4 s is es-

sentially reverberant decay. The top two charts show the 

time-varying interaural cross correlation function (with black 

corresponding to -1 and white corresponding to 1). The lower 

two charts show the interaural lag time (an indicator of later-

alisation) and the interaural cross correlation coefficient (an 

indicator of image width). The thin line is for the room with 

curtains. 

CONCLUSION 

PsySound3 is a developing project, driven by the research 

priorities and teaching needs of the authors and others in the 

development group. PsySound3 has found applications in 

research on music perception, auditorium acoustics (Lee and 

Cabrera 2008), developing psychoacoustical models 

(Miranda and Cabrera 2008) and auditory display (Ferguson 

and Cabrera 2008). Like its predecessor, PsySound3 is also 

likely to find applications in scientific studies of music per-

ception (c.f. Schubert 2004). The development group is open, 

so the future direction of the project depends on the interests 

of active participants. 

This paper has illustrated how the application of multiple 

analysis techniques can reveal diverse information both about 

the object of the analysis (the sound recording) and the analy-

sis algorithm. In a sense, the ‘correct’ answer in psycho-

acoustical modelling is found by subjective testing, and mod-

els, which are constructed to emulate a limited set of subjec-

tive responses, are then applied to diverse sound recordings. 

When multiple models of the one percept are developed, they 

will yield somewhat different results for a given input, al-

though we cannot quantify the error without, at the very least, 

knowledge of the model limitations, and preferably further 

subjective testing. Hence, it is hoped that providing a diver-

sity of analysis methods will foster a healthy scepticism of 

psychoacoustical models, while also providing substantial 

analysis power for diverse research projects. 

Computing capacity is one of the important limitations of 

PsySound3. Some analysis algorithms are quite slow, and 

have high memory demands. While the program runs on most 

modern computers, it runs better on high capacity computers. 

It should benefit from ongoing improvements in computer 

capacity, as well as efforts towards code optimisation. 
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