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ABSTRACT 

The transfer matrix method has been extensively explored by many researchers for analysing acoustic duct systems. 
However, there does not exist a comprehensive source that elaborates the use of transfer matrix method for evaluating 
the performance of acoustic filters. The current approach describes a detailed step-by-step method for evaluating in-
duct net acoustic power transmission for a harmonic plane wave travelling in a circular duct with an attached cylin-
drical Helmholtz resonator using the transfer matrix method. The net acoustic power transmission is evaluated using 
two different methods: (1) the product of acoustic pressure and acoustic volume velocity at the duct exit, and (2) es-
timates of the in-duct sound field using the two-microphone technique. 

INTRODUCTION 

The transfer matrix method (also known as transmission ma-
trix or four-pole parameter presentation) has been widely 
accepted as a tool for analysing complex systems due to its 
computational efficiency and flexibility. Many previous re-
searchers (Munjal 1987, Pierce 1989, Snowdon 1971, and To 
and Doige 1978) have used the transfer matrix method for 
analysing acoustic duct systems. Although many research 
papers, in addition to standard acoustic text books (Beranek 
and Ver 1992, Kinsler et al. 1992, and Pierce 1989), provide 
a brief overview of the transfer matrix method and its associ-
ated uses, they do not incorporate detailed analyses of a par-
ticular system.  

This paper describes in detail a step-by-step method for ap-
proximating the downstream net acoustic power transmission 
for a harmonic plane wave travelling inside a circular duct to 
which a cylindrical Helmholtz resonator (HR) is attached. It 
begins with a description of the transfer matrix of a uniform 
circular duct which includes all the steps and pertinent calcu-
lations in order to estimate the in-duct net acoustic power 
transmission. Then, the building of the transfer matrix of a 
coupled duct-HR system is described and the net acoustic 
power transmission inside the duct downstream of the HR is 
approximated. 

The net acoustic power transmission inside the duct was es-
timated by using the estimates of acoustic pressure and 
acoustic volume velocity at the terminating end of the duct. 
However, in addition to the above stated method, net acoustic 

power transmission inside the duct was also estimated using 
the two-microphone method developed by Chung and Blaser 
(Chung and Blaser 1980) and extended by Åbom (Åbom 
1989). The purpose of estimating the acoustic power trans-
mission using the latter method is to incorporate additional 
detailed calculations using the transfer matrix method. Fur-
thermore, the latter method provides a means to verify the 
estimations of the former method. 

UNIFORM CIRCULAR DUCT 

Figure 1 shows a schematic of a circular duct of (physical) 
length l, radius a, and cross-sectional area S.  
 

Figure 1. A schematic of a uniform circular duct modelled as 
being driven by a constant amplitude piston source mounted 

at one (left) end and open at the other (right). 
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Also shown at the end of the duct is the end-correction factor, 
l0, which will be discussed later. The left end of the duct, 
referred to as a source end, was modelled as being driven by 
a constant amplitude piston with a unit acoustic volume ve-
locity, and the right end of the duct, referred to as a duct exit, 
was modelled as an open end radiating into free space. 

Plane Wave Assumption 

As the transfer matrix method works on a principle of plane 
wave propagation inside the duct, it is important to estimate 
the cut-on frequency, which is defined as the frequency be-
low which only plane waves propagate inside the duct. The 
cut-on frequency is given by: 

a

c
fc

π2

8412.1
=  (1) 

where, c is the speed of sound in air (343 m/s at 20°C), and a 
is the radius of the duct. 

For the current paper, the dimensions of the circular duct 
were taken as: diameter = 0.1555 m and length = 3 m. The 
cut-on frequency for the above dimensioned duct is 1292 Hz. 
Therefore, the plane wave mode is the only mode which 
propagates below 1292 Hz. 

Radiation Impedance 

For the purpose of modelling the end of the duct as open and 
radiating into free space, the calculation of radiation imped-
ance is required. It is approximated by assuming a circular 
piston located in an infinite baffle, and is the ratio of the 
force exerted by the piston on the acoustic field to the veloc-
ity of the piston. Radiation impedance is given by (Beranek 
and Ver 1992, Bies and Hansen 2003, Pierce 1989, Kinsler et 

al. 1982, Munjal 1987): 

jXRZr +=  (2) 

The real part of radiation impedance, R, is termed as radia-

tion reactance and represents the energy radiated away from 
the open end in the form of sound waves. The imaginary part, 
X, is termed as radiation admittance and represents the mass 
loading of the fluid (air) just outside the open end. 

It is well known that the theoretical expression for the imped-
ance of an unflanged open duct, with plane waves propagat-
ing inside it, is given by (Beranek and Ver 1992, Bies and 
Hansen 2003, Pierce 1989, Kinsler et al. 1982, Munjal 1987): 
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where, Zl is the radiation impedance, ρ is the density of the 
fluid medium, c is the speed of sound, k is the wave number, 
and a is the radius of the duct. 

End-Correction 

The term end-correction refers to an additional length to the 
actual length of a tube or an orifice that accounts for the en-
trained mass of the fluid that vibrates outside the tube’s or 
orifice’s opening. The expression for the end-correction of an 
unflanged open end of a duct radiating into free space can be 
found in standard acoustical text books (Beranek and Ver 
1992, Bies and Hansen 2003, Kinsler et al. 1992, and Munjal 
1987). It is given by: 

al 6.00 =  (4) 

where, a is the radius of the duct. 

Transfer Matrix of a Circular Duct 

The transfer matrix of a circular duct of uniform cross-
sectional area, S, and length, l, is given by (Munjal 1987): 
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The subscript r implies that the duct is defined/denoted as an 

element r. The quantity 
S

c
Yr = is the characteristic imped-

ance, and ( )ηikk += 1ˆ is the complex wave number. Com-
plex wave numbers are introduced in order to conveniently 
incorporate damping in the system, even though this formula-
tion implies hysteretic damping when in fact the system is 
better described as viscously damped. The quantity η is the 
loss factor, which is equivalent to twice the critical damping 
ratio for a viscous system. 

The quantities, pr, pr-1 and qr, qr-1 represent the acoustic pres-
sures and acoustic mass velocities at the extreme ends of the 
duct, respectively (input and output sides). These quantities 
can be r.m.s values, amplitudes or instantaneous, provided 
they are all the same type. 

Rewriting equation (5) by relating acoustic volume velocity 
and acoustic pressure instead of acoustic mass velocity and 
acoustic pressure, respectively gives: 
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where, vr and vr-1 represent acoustic volume velocities at the 
input and output sides of the duct (element r), respectively. 

The above shown transition in equation (6) affected the defi-
nition of the elements of the transfer matrix compared to 
those defined by Munjal (1987) (in equation (5)). A pivotal 
reason for implementing this transition is to enable a quick 
comparison between theoretical predictions and experimental 
results. Although no experimental results are discussed in this 
paper, in most of the relevant experimental investigations 
reported in the literature, a loudspeaker backed by a small 
air-tight cavity, as an acoustic source, is attached to one end 
of the duct. And, generally, sound pressure level measure-
ments inside the duct are normalised by the acoustic volume 
velocity of the loudspeaker. Therefore, from a practical point 
of view, a relation between acoustic volume velocity and 
acoustic pressure is much preferred over a relation between 
acoustic mass velocity and acoustic pressure. Although 
acoustic mass velocity is directly proportional to acoustic 
particle velocity which, in turn, is directly proportional to 
acoustic volume velocity, the transfer matrix equations 
shown in this paper eliminate the need to derive a relation-
ship between acoustic volume velocity and pressure. 

As indicated in figure 1, v0 and p0 are acoustic volume veloc-
ity and pressure, respectively, at the input side of the duct. 
Similarly, vl and pl have the same definition at the output 
side. Relating these state variables gives the resultant transfer 
matrix of the duct, which is described below: 
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A very important point which needs to be considered is the 
end-correction factor of the unflanged open end of the duct. 
While estimating the elements of the transfer matrix, the end-
correction factor, l0, must be added to the physical length of 
the duct. Therefore, in equation (7), leff respresents the effec-
tive length of the duct, which corresponds to the sum of 
physical duct length, l, and the end-correction factor, l0. 

In order to make the evaluation of equation (7) easier for 
relevant future calculations, the elements of the above de-
scribed transfer matrix were assigned alphabetical characters 
as shown below: 
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where, ( )( )0
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As described earlier, the in-duct net acoustic power transmis-
sion is calculated using two different methods, (1) the prod-
uct of acoustic pressure and velocity at the duct exit, and (2) 
the two-micrphone method. These methods are described in 
the following text. 

METHOD 1: PRODUCT OF ACOUSTIC 
PRESSURE AND VOLUME VELOCITY AT THE 
DUCT EXIT 

The equations shown below describe the procedure to esti-
mate the acoustic pressure and volume velocity at the duct 
exit. Estimation of these two variables will in turn facilitate 
the estimation of in-duct net acoustic power transmission. 

From equation (8), we get 

llll pBvAv +=0  (9) 

By using 
l

l
l

v

p
Z = , equation (9) can be written as: 
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Solving equation (10) for pl with respect to v0 gives 
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Equation (11) gives the estimate of the ratio of acoustic pres-
sure pl at the duct exit to the input volume velocity v0. Zl is 
the radiation impedance of an unflanged open end of the duct 
and can be calculated using equation (3). 

Similarly, solving equation (9) for vl with respect to v0, which 
incorporates the use of equation (11), gives: 
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Equation (12) gives the measure of the ratio of acoustic vol-
ume velocity vl at the duct exit to the input volume velocity 
v0. 

If v0 is set to unity (1 m3/s), then pl and vl would be 
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Equations (13) and (14) represent the estimates of acoustic 
pressure and acoustic volume velocity, respectively, at the 
duct exit; the duct being driven by a constant amplitude pis-
ton at the source end with a unit volume velocity. 

In-Duct Net Acoustic Power Transmission 

The net acoustic power flux associated with a harmonic plane 
wave, which takes into account the pertinent incident and 
reflected planes waves, travelling inside a duct is given by 
(Fahy, 1995): 






 ×= *Re

2
1

net vpW  (15) 

where, p and v represent the complex amplitudes of pressure 
and volume velocity, respectively, and the * indicates the 
complex conjugate. This expression can be written as: 

)cos(
2
1

net φPVW =  (16) 

where, P and V are the scalar amplitudes that are the moduli 
of the complex amplitudes of the pressure and volume veloc-
ity, respectively shown in equation (15), and φ  is the phase 
angle between them. Equation (16) represents the net acous-
tic power transmission inside the duct as the product of 
acoustic pressure and volume velocity amplitudes. 

Substituting the values of equations (13) and (14) in equation 
(16) provides the estimate of net acoustic power transmission 
in the duct. Assuming that the analysis in the preceding sec-
tions used amplitude quantities, equation (16) calculates the 
estimate of the net acoustic power transmission in the duct 
when the fluid present inside the duct is assumed to be driven 
by a constant amplitude harmonic piston source with a unit 
volume velocity. 

Figure 2 shows a plot of the net acoustic power transmission 
in the uniform circular duct of diameter equals 0.1555 m and 
length equals 3 m. 
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Figure 2. Net acoustic power transmission as a function of 
harmonic frequency in a uniform circular duct driven by a 

constant amplitude harmonic piston source (of unit acoustic 
volume velocity) mounted at one (left) end and open at the 

other (right). 

Although the above discussed method showed the equations 
and procedure required to estimate the in-duct net acoustic 
power transmission, the use of the transfer matrix method is 
better illustrated in the second analysis method to follow. 

METHOD 2: TWO-MICROPHONE TECHNIQUE 

The two-microphone technique was developed by Chung and 
Blaser (Chung and Blaser 1980) and requires an estimate of 
acoustic pressure at two different locations inside a duct. The 
following paragraphs detail the procedure for estimating the 
acoustic pressure at different locations inside a duct. 

Acoustic Pressure and Velocity at Arbitrary Loca-
tions Inside a Duct 

Figure 3 shows a schematic of a uniform duct of length l 

depicting the end-correction, l0, at the open end of the duct. 

 
Figure 3. A schematic of a uniform duct depicting location x 
along the duct where acoustic pressure and acoustic volume 

velocity need to be estimated. 

Suppose that acoustic pressure and acoustic volume velocity 
at location x need to be estimated, and are denoted by px and 
vx, respectively. As evident from equations (11) and (12), the 
estimation of acoustic pressure and volume velocity at a par-
ticular location requires the corresponding value of acoustic 
impedance at that particular location. Therefore, estimation 
of acoustic pressure and volume velocity at location x re-
quires estimating the acoustic impedance at location x, which 
is detailed below. 

Acoustic Impedance at Arbitrary Location Inside a Duct 

From standard acoustic text books (Beranek and Ver 1992, 
Bies and Hansen 2003, Kinsler et al. 1992, and Pierce 1989), 
the specific acoustic impedance at any location inside a duct 
can be expressed as 
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where, a+ and a- are the modal amplitudes of incident and 
reflected acoustic waves, respectively, the - and + signs rep-
resent the propagation of acoustic wave in +ve and –ve x 
directions, respectively, and x is the location along the duct. 

Using equation (17), the values of acoustic impedance at 
locations x = 0 and x = l are given by: 
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Eliminating constants a+ and a- facilitates a relationship be-
tween Z0 and Zl, which is given by: 
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If the impedance at a duct termination is known, the value of 
the acoustic impedance at any point inside the duct can be 
calculated using equation (20). In order to distinguish be-
tween the source and radiation impedance, equation (20) was 
rewritten with a slight modification in terms of nomenclature. 
Denoting the acoustic impedance at x=0 by Zs (source im-
pedance) and at x = l by Zr (radiation impedance), gives: 
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Finally, the value of acoustic impedance at location x looking 
into the duct from the source end (x = 0) can be given by 
(utilising equation (21)): 
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The alternate expression for calculating the value of Zx, by 
using the value of Zr instead of Zs, is given by: 
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Equation (23) shows the acoustic impedance at location x 
looking into the duct from the open end (x = l). 
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End-Corrections 

Before using equations (22) and (23) for calculating the value 
of Zx, the end-correction of an unflanged open end of a duct 
must be accounted. 

After incorporating the value of the end-correction in equa-
tions (22) and (23), Zx is expressed as: 
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Once the value of acoustic impedance at a particular location 
in the duct is known, the acoustic pressure and velocity can 
be calculated using equations (11) and (12), respectively. The 
acoustic pressure and volume velocity at location x with re-
spect to unit volume velocity, v0, are given by: 
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where, ( )xkAx
ˆcos=  and ( )xk

c

S
jBx
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Knowledge of the acoustic pressure at two appropriately 
spaced different locations inside a duct estimates the in-duct 
net acoustic power transmission by using the decomposition 
of sound field which is discussed below. 

Decomposition of the Sound Field 

Decomposition is a technique for determining the amplitudes 
of the acoustic waves propagating each way inside a duct. It 
facilitates the separation of modes into incident and reflected 
parts. Once the acoustic power associated with the incident 
and reflected waves is determined, the net acoustic power 
transmission is simply their difference. Åbom (Åbom 1989) 
extended the two-microphone technique developed by Chung 
and Blaser (Chung and Blaser 1980) and documented the 
scheme for in-duct modal decomposition. However, in this 
paper we are not concerned with higher order modes and we 
are only decomposing the sound field into right-travelling 
and left-travelling plane waves. 

Generally, for a uniform straight duct with rigid walls and an 
arbitrary cross-sectional shape carrying an axial mean flow, 
the sound field in the duct can be expressed as: 
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0

expˆexpˆˆ  (28) 

where, p̂  is the acoustic pressure, −+ aa ˆ,ˆ are the modal ampli-

tudes of acoustic pressure associated with the incident (+ve x 
direction) and reflected waves (-ve x direction), respec-

tively, nn kk −+
ˆ,ˆ are the axial wave numbers in the positive and 

negative directions, respectively, n is the modal number, 
and nΨ is the eigenfunction for mode n. 

For the case of a uniform circular duct with rigid-walls and 
carrying no axial flow, with only plane waves propagating 
inside it, equation (28) can be written as: 

ikxikx aap +
−

−
+ += expˆexpˆˆ  (29) 

The terms −+ aa ˆ and ˆ can be calculated by either estimating or 

experimentally measuring the acoustic pressure at two loca-
tions in a duct and using the two-microphone technique. Ex-
pressing the results of such a measurement in a matrix formu-
lation yields (Åbom 1989): 

aMp ˆˆ =  (30) 

where, p̂ is a [ ]12× column vector containing the estimates 
or measures of the acoustic pressures at two different loca-
tions, M is a [ ]22×  modal matrix containing the propagation 

terms, and â is a [ ]12×  column vector containing the un-
known modal amplitudes. 

Writing vector p̂  in terms of transfer function between the 
two pressure measuring or estimating locations yields: 

Hp rp̂ˆ =  (31) 

where, rp̂ is the acoustic pressure at one of the two pressure 

measuring or estimating locations, and H  is the [ ]12×  col-
umn vector containing the transfer function between the two 
locations. 

Using equation (31), equation (30) can be written as: 

aMH ˆˆ =rp  (32) 

Solving equation (32) for â gives: 

HMa 1ˆˆ −= rp  (33) 
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For this analysis, rp̂ was taken as the acoustic pressure esti-

mate at the location closer to the source end, H12 represents 
the pressure transfer function between two pressure esti-
mates, and s is the axial distance between the two pressure 
estimating locations. Solving equation (34), for the estimates 
of +â and −â , yields: 
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The acoustic power associated with the incident and reflected 
waves is expressed as: 
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The in-duct net acoustic power transmission in x direction is 
estimated as the difference between W+ and W-, and is ex-
pressed as: 
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In-Duct Net Acoustic Power Transmission 

Assuming that the analysis in the preceding sections used 
amplitude quantities, equation (39) calculates the estimate of 
the net acoustic power transmission in the duct when the fluid 
present in the duct is assumed to be driven by a constant am-
plitude harmonic piston source with a unit volume velocity. 

The net acoustic power estimates from the two mehods de-
scribed above exactly match with one another. 

COUPLED DUCT – HR SYSTEM 

Mounting a resonator on a duct reduces the noise transmis-
sion at a particular frequency which is a characteristic of the 
resonator’s geometry. Comparison of the acoustic power 
transmission inside the duct without and with the resonator 
can be used to evaluate its performance. 

In order to develop the complete transfer matrix of the duct-
HR system, it was discretised into three elements: (1) element 
0 - section of the duct upstream of the HR, (2) element 1 - 
section of the duct downstream of the HR, and (3) element 
HR - the Helmholtz resonator. Figure 4 shows a schematic of 
a HR mounted on to a duct of length l at location x. The fig-
ure also illustrates the three elements described above, along 
with the neck-cavity and neck-duct interfaces. 

 
Figure 4. A schematic of a coupled duct-HR system depict-
ing its division into three elements along with neck-duct and 

neck-cavity interfaces, and relevant notations. 

End-Corrections of a HR’s Neck 

A key issue related to the theoretical analysis of a duct-HR 
system is the incorporation of two end-correction factors for 
the neck of the HR; (1) the neck-cavity interface end-
correction factor, and (2) the neck-duct interface end correc-

tion factor, both of which must be added to the physical neck 
length to get the effective neck length. 

The expression for the neck-cavity interface end-correction 
factor closely approximates the geometry of a cylindrical 
piston radiating in a tube. It is given by (Selamat and Ji 
2000): 
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R

r
re 33.1182.0δ  (40) 

where, r denotes the radius of the neck of a HR, and R de-
notes the radius of the cavity of a HR. 

Another equation which has been widely used in the litera-
ture for the neck-cavity interface end-correction factor was 
presented by Ingard (Ingard 1953). His equation slightly 
differs from equation (40) and was for an orifice in an an-
echoically terminated duct. However, equation (40) is con-
sidered to be better than the equation presented by Ingard and 
has been used in this current paper. 

On the other hand, the neck-duct interface end-correction 
factor has not been modelled analytically due to the difficulty 
in interpreting the non-planar sound field in the region of the 
duct adjacent to the neck opening. However, Ji (2005) de-
rived two-curve fitting expressions for the circular neck-duct 
interface end-correction factor based on the ratio of neck and 
duct diameter using Boundary Element Analysis. The corre-
sponding expressions are given by: 
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where, r denotes the radius of the neck of a HR, and a de-
notes the radius of a duct to which a HR is attached. 

Transfer Matrix of a HR 

Figure 4 shows a uniform duct with a HR attached as a side 
branch to one its walls at location x, along with the relevant 
notations required to develop the complete transfer matrix of 
the duct-HR system. The complex amplitude of the volume 
velocity entering the duct, before the HR's location, is de-
noted by v0. Similarly, it is v1 in the section after the resona-
tor's location and vHR flowing into the HR. From the continu-
ity condition, the volume velocity and pressure are locally 
conserved at junction x. Therefore, 

( ) ( ) ( )xvxvxv 1HR0 +=  (42) 

( ) ( ) ( )xpxpxp 1HR0 ==  (43) 

Putting equations (42) and (43) in a matrix form yields: 
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From equation (43), ( ) ( )xpxp HR1 =  and also, HR
HR

HR Z
v

p
= . 

Here, ZHR is the acoustic impedance just outside the opening 
of the resonator, which can be referred to as the input point 

impedance. Therefore, equation (45) can be re-written as: 
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Finally, the matrix 
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1
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HRZ  represents the transfer matrix 

of the Helmholtz resonator. 

Input Point Impedance of a HR 

The impedance at the opening of the HR, i.e. ZHR, can be 
estimated by applying the transfer matrix equation to the 
neck and cavity of the HR. 

The neck section of the resonator is denoted by s1 having 
cross-sectional area An and length l1, and the cavity section is 
denoted by s2 having cross-sectional area Ac and length l2. 
The length l1 represents the effective length of the neck, 
which includes two end-corrections at each side of the neck, 
which were described in the previous section below figure 4 
(equations (40) and (41)). 

Relating the acoustic volume velocity and pressure at the 
opening of the neck vs1, ps1 (see figure 4) and at the end of the 
cavity vs2, ps2 (see figure 4), the transfer matrix equation for 
the Helmholtz resonator is expressed as: 
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or 
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where, ( )111
ˆcos lkDA ss == , ( )11

ˆsin lk
c

S
jBs

ρ
= , and 

( )11
ˆsin lk

S

c
jCs

ρ
= .  Similarly, ( )222

ˆcos lkDA ss == , 

( )22
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Let us denote the resultant elements of equation (48) as: 
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As the end of the resonator (cavity) is blocked (rigidly termi-
nated), there will be no flow at the end of the resonator, 
hence, 02 =sv . Substituting 02 =sv  in equation (49), the 

acoustic pressure and volume velocity at the opening of the 
neck becomes 

21 sss pBv =  (50) 

21 sss pDp =  (51) 

Dividing equation (51) by (50), gives the estimate of the 
input point impedance of the HR, as: 

s

s

s

s

B

D
Z

v

p
== HR

1

1  (52) 

Complete Transfer Matrix of a Duct-HR System 

Referring to figure 4, for the convenience of presenting the 
complete transfer matrix of the duct-HR system, let us de-
note: (1) element 0, the first section of the duct upstream of 
the HR, by subscript 0, and (2) element 1, the second section 
of the duct downstream of the HR, by subscript 1. The com-
plete transfer matrix method of the duct-HR system shown in 
figure 4 can be expressed as: 
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Let the resultant of matrix multiplication of equation (54) be 
denoted by: 
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In-Duct Net Acoustic Power Transmission Down-
stream of the HR 

The dimensions of the duct were kept same as were consid-
ered in the analysis of the uniform circular duct (diameter of 
0.1555 m and length of 3 m). The dimensions of the cylindri-
cal Helmholtz resonator were: cavity diameter = 0.131 m, 
cavity length = 0.070 m, neck diameter = 0.525 m, and 
physical neck length = 0.093 m. The HR was mounted at a 
distance of 0.5 m from the source end of the duct. 

Method 1: Product of the acoustic pressure and volume ve-

locity at the duct exit. 

The transfer matrices of three elements of the duct-HR sys-
tem shown in figure 4, element 0, element 1, and element HR, 
were written using equation (54) as per the dimensions of the 
duct-HR system described in the immediate preceding para-
graph. 

The acoustic pressure and acoustic volume velocity at the 
duct exit (open end radiating into free space), x = l, were 
estimated in the similar way as described in equations (11) 
and (12), and are given by: 
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where, pl and vl represent the acoustic pressure and volume 
velocity at the duct exit, v0 denotes the input volume velocity, 
Zl is the radiation impedance at the unflanged open end of the 
duct (also denoted by Zr), and A, B, C and D are the elements 
of the resultant complete transfer matrix (equation (55)). 

Multiplying the estimates of acoustic pressure (equation (56)) 
and acoustic volume velocity (equation (57)) at the duct exit 
as per equation (16) results in the net acoustic power trans-
mission inside the duct downstream of the HR. 

Method 2: Two-Microphone Decompostion of Sound Field 

The net acoustic power transmission inside the duct down-
stream of the HR was also estimated by using the two-
microphone in-duct decomposition method and exactly the 
same results as for Method 1 were obtained. 

Figure 5 shows a plot of the net acoustic power transmission 
in the duct downstream of the HR. For comparison purposes, 
this figure also includes the plot of the net acoustic power 
transmission in the duct without the resonator. 

 
Figure 5. Net acoustic power transmission in a uniform cir-
cular duct with a HR mounted on to it at a distance of 0.5 m 
from the soure end; the duct being driven by a constant am-

plitude harmonic piston source mounted at one (left) end and 
open at the other (right). 

DISCUSSION 

The effect of mounting the HR on to the duct, as evident 
from Figure 5, minimised the net acoustic power transmis-
sion by 20 dB at 224 Hz. Generally, a frequency at which the 
maximum reduction of in-duct net acoustic power transmis-
sion downstream of a HR occurs is considered to be the reso-
nance frequency of the HR, which is 224 Hz in the current 
analysis. However, when a HR is mounted on to a duct, a 
coupled system is created whose resonance frequency is dif-
ferent to that of the HR as a stand-alone device. Therefore, 
the frequency at which the maximum reduction of in-duct net 
acoustic power transmission downstream of a HR occurs 
does not correspond to the resonance frequency of the HR 
(Singh et al. 2006 and Singh 2006). The acoustic perform-
ance obtained using the transfer matrix method for the circu-
lar duct-cylindrical HR system should only be considered as 
approximate. This is because of the duct-HR system related 
limitations of the transfer matrix method, which are discussed 
below. 

DUCT-HR SYSTEM RELATED LIMITATIONS OF 
THE TRANSFER MATRIX METHOD 

The key issue in the development of the duct-HR system 
transfer matrix is the incorporation of the two end-correction 

factors of the neck of the HR in addition to the actual dimen-
sions of the duct-HR system. The neck-cavity interface end-
correction factor is well documented. However, there exists 
some uncertainty concerning the end-correction factor at the 
neck-duct interface, due to the difficulty in analytically mod-
elling the complex sound field in the regions of the duct adja-
cent to the neck opening. However, empirical equations have 
been formulated by Ji (2005). Even though Ji found that his 
empirical expressions agreed with his experimental results, in 
another study (Singh et al. 2006 and Singh 2006), it was 
observed that the experimental performance of a duct 
mounted HR did not match the corresponding theoretical 
estimations based on the empirical end-correction factor re-
ported by Ji. 

Singh (2006) developed and solved a three-dimensional finite 
element model of the above described duct-HR system using 
the software package ANSYS. Unlike the theoretical analysis 
of a duct-HR system in which the end-correction factors have 
to be calculated, ANSYS automatically determines and in-
corporates the end-correction factors during its solution 
phase, and therefore, ANSYS results are considered more 
reliable than the theoretical calculations which differ slightly 
from the ANSYS results. In order to further identify the va-
lidity of the ANSYS results, experiments were conducted, 
and the experimentally measured performance of the HR 
mounted on to a duct was found to agree with the ANSYS 
results. 

The difficulty in accurately estimating the neck duct interface 
end correction factor compromises the ability of the transfer 
matrix method to provide an accurate performance estimation 
of the duct mounted HR. 

Also, as of the magnitude of the damping that occurs in a 
practical duct-HR system cannot be accurately modelled, the 
transfer matrix method with damping excluded can result in 
unrealistically high estimates of acoustic power reduction. 
However, in this paper, damping has been accounted for in 
the transfer matrix method by using the value of loss factor, 
η, equal to 0.004. 

CONCLUSION  

A detailed method for evaluating the acoustic performance of 
a cylindrical Helmholtz resonator mounted on to a uniform 
circular duct using the transfer matrix method has been pre-
sented. The in-duct net acoustic power transmission was 
estimated using two different methods: (1) product of the 
acoustic pressure and acoustic volume velocity at the open-
ended duct exit, and (2) in-duct decomposition of sound field. 
The net acoustic power results from both methods exactly 
matched each other. 

The transfer matrix method for the described duct-HR system 
application only provides a rough estimate of the acoustic 
performance of the duct mounted HR in terms of the fre-
quency corresponding to the maximum net acoustic power 
reduction and the amount of net acoustic power reduction. 
The limitations corresponding to the duct-HR system are also 
described. 
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