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ABSTRACT 

Vibration modes of a submerged hull are excited by fluctuating forces generated at the propeller and transmitted to 

the hull via the propeller-shafting system. The low frequency hull vibrational modes result in significant sound 

radiation. This work investigates the reduction of the far-field radiated sound pressure by optimising the connection 

point of the shafting system to the hull. The submarine hull is modelled as a fluid loaded cylindrical hull with 

truncated conical shells at each end. The propeller-shafting system consists of the propeller, shaft, thrust bearing and 

foundation, and is modelled in a modular approach using a combination of spring-mass-damper elements and 

continuous systems (beams, plates, shells). The foundation is attached to the stern side end plate of the hull, which is 

modelled as a circular plate coupled to an annular plate. By tuning the connection radius of the foundation to the end 

plate, the maximum radiated noise in a given frequency range can be minimised.  

INTRODUCTION 
 

Rotation of the propeller in a spatially non uniform wake 

results in fluctuating forces generated at the propeller blade 

passing frequency (Lewis, 1988). This low frequency 

harmonic excitation is transmitted to the submarine hull via 

the propeller-shafting system. Many researchers have 

investigated ways of reducing the transmission of harmonic 

forces to the hull by modifying the dynamic response of the 

propeller-shafting system (Kane and McGoldrick, 1949; 

Rigby, 1948; Schwanecke, 1979 ). Rigby (1948) showed that 

reduction of the axial vibrations could be achieved by 

increasing the number of blades on the propeller. Parkins and 

Horner (1989) presented an active magnetic feedback control 

method to reduce the axial vibrations of a submarine shaft. 

Goodwin (1960) examined the reduction of axial vibration 

transmitted through the propeller-shafting system by means 

of a resonance changer, using a simplified spring-mass model 

of the propeller-shafting system with a rigid termination. A 

dynamic model of a submarine hull in axisymmetric motion 

was coupled with a dynamic model of a propeller-shafting 

system, in order to determine the optimum resonance changer 

parameters from minimisation of the hull drive point velocity 

and structure-borne radiated sound pressure (Dylejko, 2007). 

The radiated sound power with and without the use of a 

resonance changer was also investigated by Merz et al. 

(2009), using a coupled FE/BE model for axisymmetric 

motion and considering the hull under both structural and 

dipole excitation due to the propeller. Pan et al. (2008a, 

2008b) used active control strategies to attenuate the low 

frequency hull radiated noise using an axisymmetric 

submarine hull model.  

 

A semi-analytical model has been presented previously by 

the authors to predict the radiated sound pressure of a 

submerged vessel under harmonic excitation in both the axial 

and radial directions (Caresta and Kessissoglou, 2010). The 

model was shown to give reliable results in the low frequency 

range but did not include the full dynamic of a propeller-

shafting system. In this work, a dynamic model of the 

propeller-shafting system is coupled with the hull dynamic 

model presented by Caresta and Kessissoglou (2010) for 

axisymmetric motion only. The connection radius of the 

attachment between the propeller-shafting system and the 

hull is tuned in an attempt to minimise the radiated sound 

pressure. The flexibility of the end plate at the coupling 

between the propeller-shafting system and hull is taken into 

account. Results show that the location where the shafting 

system is attached to the hull is shown to have a great 

influence on the structural and acoustic responses of the 

submarine, due to the change in force transmissibility 

between the propeller-shafting system and the hull. The 

optimum radius of the propeller-shafting system connection 

to the hull is found by directly minimising the far-field 

radiated sound pressure. It is shown that the connection 

radius can be used as a tuning parameter to minimise a cost 

function in a wide frequency range or at discrete frequencies.  

 

DYNAMIC MODEL OF THE SUBMARINE 
 

The submarine hull is modelled as a cylindrical shell with 

internal bulkheads and ring stiffeners, and truncated conical 

shells at each end. The cones are closed at each end by 

circular plates, as shown in Figure 1. The entire structure is 

submerged in a heavy fluid medium. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic diagram of the submarine 

 

The propeller-shafting system is located at the stern side of 

the submarine. The propulsion forces generated by the 

fluctuating forces at the propeller are transmitted to a thrust 

bearing located along the main shaft. The thrust bearing is 

connected to the foundation, which in turn is attached to the 

stern side end plate. A schematic diagram of the propeller-

shafting system is shown in Figure 2. The end plate is 

modelled as a circular plate coupled to an annular plate, and 

the annular plate is attached to the cylindrical hull. 

 

 

 

 

 

 

 

 

 

 
 

 
 

Figure 2. Schematic diagram of the shafting system 
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Cylindrical shell 
 

The fluctuating forces generated at the propeller, arising from 

the rotation of the propeller through a non-uniform wake 

field, are transmitted through the propeller-shafting system 

and result in axial excitation of the hull. A detailed dynamic 

model of the submarine hull under axial and radial harmonic 

excitation has been previously presented by the authors 

(Caresta and Kessissoglou, 2010). This model is briefly 

reviewed here for axisymmetric motion, and then coupled to 

a dynamic model of the propeller-shafting system. Flügge 

equations of motion were used to model the cylindrical shell. 

T-shaped stiffeners were dynamically included using smeared 

theory (Hoppmann, 1958). Only axisymmetric motion is 

considered, hence the circumferential displacement for the 

zeroth circumferential mode number becomes decoupled 

from the equations of motion for the axial and radial 

displacements. Since the displacement of the surrounding 

fluid due to the hull torsional displacement does not 

significantly contribute to sound radiation, the 

circumferential displacement is not considered further. In 

Figure 3, u and w are the orthogonal components of 

displacement in the x and z directions, respectively. a is the 

mean radius of the cylindrical shell, h is the shell thickness 

and /w xφ = ∂ ∂  is the slope. 

 
 

Figure 3. Cylindrical shell in axisymmetric motion 

 

The Flügge equations of motion for axisymmetric motion of 

a ring-stiffened fluid-loaded cylindrical shell are given by 

(Rosen and Singer, 1974)  
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E, ρ  and υ  are respectively the Young’s modulus, density 

and Poisson’s ratio of the cylinder. 2 1/2[ / (1 )]
L

c E ρ υ= −  is 

the longitudinal wave speed and p  is the external pressure 

due to the surrounding seawater and can be written in term of 

an acoustic impedance Z  by 
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The fluid loading term 
L

F  in Eq. (3) is given by Fuller 

(1986). The coefficients 
1 2

, ,q qβ  and 
i

d for 6,8i =  are 

given in accordance with Caresta and Kessissoglou (2010). 

The axial and radial displacements for the cylindrical shell 

can respectively be written as (Leissa, 1993)  
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k  is the axial wavenumber, j is the imaginary unit and ω is 

the angular frequency. /
i i i

C U W=   is an amplitude ratio. 

i
U , 

i
W  are the wave amplitude coefficients of the axial and 

radial displacements, respectively. 

 

Circular plates 
 

The end plates and bulkheads were modelled as thin circular 

plates in both in-plane and bending motion. The stern side 

end plate is modelled as an internal circular plate coupled to 

an annular plate. The axial 
p

w and radial 
p

u  plate 

displacements in polar coordinates ( , )
p

r θ  are shown in 

Figure 4. /
p p

w rφ = ∂ ∂  is the slope. 

 
Figure 4. Thin circular plate in axisymmetric motion 

 

For axisymmetric motion, the equations of motion are given 

by (Tso and Hansen, 1995)  
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where 4 2 2∇ = ∇ ∇  and 
2

2

2
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∂ ∂
 for axisymmetric 

motion. 
p

h  is the plate thickness. 3 2(12 )
p p p p

D E h υ= −  is the 

flexural rigidity, where 
p

E , 
p

ρ  and 
p

υ  are the Young’s 

modulus, density and Poisson’s ratio of the circular plate. 
2 1/2[ / (1 )]

pL p p p
c E ρ υ= −  is the longitudinal wave speed. 

General solutions for the axial and radial displacements (for 

both the full or annular plates) are respectively given by  
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pB
k  and 

pL
k  are the wavenumbers for bending and in-plane 

waves in the plate. 
0

J  and 
0

I  are respectively the Bessel 

function and the modified Bessel function of the first kind, 

0
Y  is Bessel of the second kind. The coefficients 

i
A  

( 1: 4i = ) and 
i

B ( 1: 2i = ) are determined from the 

boundary conditions. For a full circular plate, 
3

A , 
4

A  and 

2
B  are zero. 
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Conical end caps 

The fluid loaded truncated conical shells were modelled by 

dividing the conical shells into narrow strips which were 

considered to be locally cylindrical. The narrow segments 

were coupled together by applying continuity equations at 

each interface. The fluid loading approximation was shown 

to be reliable at low frequencies. Details on the dynamic 

modelling of truncated conical shells under fluid loading can 

be found in Caresta and Kessissoglou (2008). 

 

Propeller-shafting system 

The propeller-shafting system consists of the propeller, shaft, 

thrust bearing and foundation, and is modelled in a modular 

approach using a combination of spring-mass-damper 

elements and beam/shell systems. 
pr

M  is the mass of the 

propeller which is modelled as a lumped mass at the end of 

the shaft, as shown in Figure 5. The shaft is modelled as a rod 

in longitudinal vibration. The connection of the thrust bearing 

on the shaft is located at 
1 1s s

x L= . Hence, the shaft dynamic 

response is obtained by separating the shaft in two sections. 

The motion is described by coordinates 
1s

u  and 
2s

u in the 

1s
x  and 

2s
x  directions, respectively. The equation of motion 

for a shaft in longitudinal vibration is given by 
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1/2( / )

sL s s
c E ρ=  is the longitudinal wave speed. The general 

solution for the longitudinal displacement for the two 

sections i of the shaft is given by 
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where /
s sL

k cω=  is the axial wavenumber of the shaft. At 

low frequencies, the thrust bearing dynamics can be modelled 

as a single degree of freedom system of mass 
b

M , stiffness 

b
K  and damping coefficient 

b
C . At low frequencies, the 

foundation can be considered rigid (Dylejko, 2007) and its 

dynamic effect is just an added mass 
f

M .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Displacements and coordinate system for the 

propeller-shafting system 

 

 

Boundary and continuity conditions for the hull 
 

The dynamic response of the entire structure can be 

calculated by assembling the boundary conditions at each end 

of the coupled cylindrical-conical shell together with the 

continuity equations at the junctions of the cones, cylindrical 

shell and bulkheads. The forces, moments, displacements and 

slope at the junctions and boundaries of the coupled shells 

and plates are given in accordance with the sign convention 

shown in Figure 6, where RC0 is the global Cartesian 

reference frame. The membrane forces (
x

N , Nθ , 
x

N θ ), 

bending moments (
x

M , Mθ , 
x

M θ ), transverse shearing 
x

Q  

and the Kelvin-Kirchhoff shear force 
x

V  for the cylindrical 

shells, conical shells and circular plates can be found in 

Leissa (1993) .  

 

u, v and w are respectively the axial, circumferential and 

radial components of displacement for the cylindrical shell. 

p
u  and 

p
w  are respectively the radial and axial 

displacements of the circular plates. 
a

u  and 
a

w are 

respectively the radial and axial displacements of the annular 

plate. 
c

u  and 
c

w  are the axial and radial components of 

displacement for the conical shell. To take into account the 

change of curvature between the cylinder and the cone, the 

following notation was introduced 
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At the cone/circular plate/cylinder junction corresponding to 

junction (2) in Figure 1, the eight continuity conditions are 

given by 
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Similar equations are used at the cone/plate/cylinder junction 

corresponding to junction 5 in Figure 1, in which the 

displacement, slope, force and moment terms associated with 

the annular plate (
a

u ,
a

w , 
a

φ , 
,x a

N , 
,x a

M , 
,r a

N ) are 

replaced with those for a full circular plate (
p

u ,
p

w , 
p

φ , 

,x p
N , 

,x p
M , 

,r p
N ). At the cylindrical shell/circular plate 

junctions corresponding to junctions (3) and (4) in Figure 1, 

similar expressions for the continuity conditions can be used 

in which the conical shell terms are omitted. Likewise, at the 

free ends of the truncated cones corresponding to junctions 

(1) and (6) in Figure 1, similar expressions for the continuity 

conditions between the conical shells and circular plates can 

be used.  
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Figure 6. Sign convention for the forces, moments, displacements and slope 

 

 

Boundary and continuity conditions between the 
hull and propeller-shafting system  
 

The boundary and continuity conditions for the shaft are 

given by 
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In Eq. (22), the mass of water 
w

M  displaced by the propeller 

is added to the propeller mass, resulting in 
pr pr w

M M M= +ɶ  

(Merz et al., 2009). For the attachment location at 
ap

r R= , 

between the foundation of the propeller-shafting system and 

the hull stern side end plate, the boundary conditions are 
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The boundary and continuity equations for the hull shells and 

plates, and between the hull and propeller-shafting system, 

can be arranged in matrix form =Bx 0 , where x  is the 

vector of unknown coefficients. The vanishing of the 

determinant of B gives the natural frequencies of the system. 

The steady state response can be calculated using a direct 

method in which the force is considered as part of the 

boundary conditions. For a unitary harmonic force from the 

propeller, the boundary condition of the shaft corresponding 

to Eq. (22) becomes 

 

21 1

1 1 0

1

( )
( )

j ts s

s s pr s s

s

u x
E A M u x F e

x

ωω −∂
+ =ɶ ,   

1
0

s
x =              (29) 

 

cw  

w  

u  

cu  
pw  

pu  

φ  

cφ  

pφ  

aw  

au  

aφ  

0z  

0x  

0θ  

0RC  

,x cQ  ,x cN  

,x cM  

xM  
xQ  

xN  

xM  

xQ  
xN  

,x aN  ,x aN  

,x aM  

,x aM  
,r aN  

,r aN  

,x pM  
,x cQ  

,x cN  
,x cM  

,r pN  

,x pN  



The boundary and continuity equations can now be arranged 

in matrix form =Bx F . F is the force vector with only one 

non-zero element corresponding to 
0

F . 

 

FAR FIELD SOUND PRESSURE 
 

A detailed acoustic model of the submarine has been 

previously presented by the authors (Caresta and 

Kessissoglou, 2010). The sound pressure at a far field 

location was solved by means of the Helmholtz integral 

formulation. The far field is located using spherical 

coordinates, as shown in Figure 7. 

 

 
 

Figure 7. Coordinate system for the far field point. 

 

 
RESULTS 
 

Results are presented for a ring stiffened steel cylinder of 

radius 3.25a = m, thickness 0.04h = m, length 45L = m and 

with two evenly spaced bulkheads of thickness 0.04
p

h = m. 

To account for the onboard equipment and ballast tanks in the 

cylindrical section of the hull, a distributed mass on the shell 

of 1500
eq

m = kgm-2 has been considered (Tso and Jenkins, 

2003). The internal stiffeners have a T cross-section and are 

evenly spaced by 0.5b = m. The truncated conical shells at 

each end of the cylindrical hull have 
1

0.50R = m, 
2

3.25R =  

m, 18α = °  and thickness 0.014
c

h = m. The thickness of the 

end plates is the same as for the bulkheads ( 0.04
p

h = m). 

The parameters for the propeller-shafting system are as 

follows: the propeller mass is 410 kg
pr

M =  and the mass of 

water displaced by the propeller is 11443 kg
w

M = . The 

thrust bearing mass, stiffness and damping coefficient are 

200 kg
b

M = , 10 12 10 Nm
b

K −= ×  and 73 10  kg/s
b

C = × , 

respectively. The two sections of the shaft are of length 

1
9.0 m

s
L =  and 

2
1.5 m

s
L = .  

 

All the structures are made of steel with density 
37800 kgmρ −= , Young’s modulus 112.1 10E = × Nm-2 and 

Poisson’s ratio 0.3υ = . Structural damping was introduced 

using a complex Young modulus )1( ηjEE −= , where 

0.02η =  is the structural loss factor.  

 

The frequency response function (FRF) of the axial 

displacement at junction 2 in Fig. 1 is shown in Fig. 8, for 

different values of the connection radius 
ap

R . The first three 

axial resonances of the hull are located at around 23, 45 and 

70 Hz. The amplitudes at resonance are affected by the 

damping effect of the fluid loading and become smoother as 

the frequency increases. The lowest frequency peak is due to 

the resonance of the end plate and corresponds to large 

deformation of the annular plate. As the connection radius 

become larger, this resonance shifts to higher frequencies, 

increasing from 2.8 Hz for 0.5
ap

R = m to 14.7 Hz for 

2.5
ap

R = m. Furthermore, for larger values of 
ap

R , the 

deformation of the inner circular plate increases. The 

dynamic behaviour of the end plate at the second resonance is 

more complex. For increasing values of 
ap

R , the resonant 

frequency increases and then decreases. The decrease in the 

second resonant frequency occurs when the connection radius 

approaches the anti-nodes of the plate deformation, resulting 

in greater structural response. Other peaks in the FRFs at 9 

and 36 Hz are due to the bulkhead resonances, and are 

unaffected by the shift of the connection radius. In general, as 

the connection radius increases and approaches the hull 

radius (
ap

R a→ ), higher responses in the FRFs are 

observed. This is due to the fact that less energy is filtered by 

the transmissibility of the annular/circular plate system.  
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Figure 8. Frequency response function of the axial 

displacement for the cylinder at x=0 for different values of 

the connection radius. 

 

The maximum sound pressure defined as 
max

0 2
max ( )

r

P p R
φ π≤ ≤

=  

at a far-field location of R=1000m is shown in Fig. 9 as a 

Sound Pressure Level (SPL) for different values of the 

connection radius 
ap

R , ranging from 0.5 m to 3.0 m. The 

sound radiation increases considerably as the connection 

radius becomes larger, especially in the medium frequency 

range, and is attributed to the increase in the structural 

response. 
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Figure 9. Maximum far field sound pressure at R = 1000m 

for different values of the connection radius  

 

 

The optimum value for the connection radius 
ap

R can be 

found minimising the overall value of the maximum sound 

pressure in the frequency range between zero and an upper 

value denoted by 
u

f . The cost function to be minimised is 

then defined as  

 

0 max

0

u

u

f

f
J P df− = ∫                 (30) 

 

The overall maximum radiated sound for two frequency 

ranges using 80
u

f = Hz and 40
u

f =  Hz are given in Figs. 

10 and 11, respectively. The cost function can also be 

minimised at one or several discrete frequencies. In Fig. 12, 

the maximum radiated sound pressure (
max

P ) is minimised at 

the fundamental propeller bpf of 25 Hz. In Fig. 13, 
max

P  is 

minimised at the fundamental bpf and its n harmonics, scaled 

by 1/n. 
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θr 
φr 

p(R,θr,φr) 

 



The optimum values for the connection radius for the various 

cost functions are highlighted in Figs. 10 to 13 with a black 

spot, and summarised in Table 1. The results for the 

maximum pressure using the optimum 
ap

R  values in Table 1 

are shown in Figs. 14 to 17, and are compared with the result 

for a rigid connection to the pressure hull (
ap

R a= ). For the 

case of minimising the cost function at a discrete frequency 

(
25

J ), the optimum value for the connection radius results in 

an anti-resonance in the frequency response, as shown in Fig. 

16. Figure 15 shows that as a result of minimising 
0 40

J − , the 

maximum sound pressure is greater for frequencies above 40 

Hz compared to the case of minimising the cost function for 

the full frequency range (
0 80

J − ) as shown in Fig. 14. 

Comparing Figs. 14 to 17, the best overall solution for both 

minimisation of the full frequency range (up to 80 Hz) and at 

the propeller bpf and its harmonics is given using a 

connection radius of around 
ap

R = 0.8 m.  

 

 

 

Table 1. Optimum connection radius 
ap

R  

Cost function ap
R  

0 80
J −  0.8 m 

0 40
J −  1.3 m 

25,50,75
J  0.9 m 

25
J  2.0 m 
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Figure 10. Variation of the cost function 
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Figure 11. Variation of the cost function 
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Figure 12. Variation of the cost function 
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Figure 13. Variation of the cost function 
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Figure 14. Maximum sound pressure for the optimum value 

of 
ap

R  as a result of minimising 
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Figure 15. Maximum sound pressure for the optimum value 

of 
ap

R  as a result of minimising 
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Figure 16. Maximum sound pressure for the optimum value 

of 
ap

R  as a result of minimising 
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Figure 17. Maximum sound pressure for the optimum value 

of 
ap

R  as a result of minimising 
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Similar results can be obtained by minimising the radiated 

sound power, which has been estimated at the hull surface. 

The sound power can be expressed as an integral over the 

surface of the structure 
0

S , and is given by 

 

0

*

0 0 0 0

1
Re

2
S

p W dSΠ = ∫ ɺ      (31) 

 

0
Wɺ  is the surface normal velocity and the asterisk * denotes 

the complex conjugate.
0

p  is the surface pressure and can be 

expressed in terms of an acoustic impedance 
0 0

/
a

Z p W= ɺ . 

Equation (31) can be rewritten as 

 

0

2

0 0 0

1
Re

2
a

S

Z W dSΠ = ∫ ɺ     (32) 

 

The cost function to be minimised is now given by 

 

,0 0

0

u

u

f

W f
J df− = Π∫  (33) 

 

The results for the variation of several cost functions with 

connection radius are shown in Fig. 18. It can be seen that the 

general trend and values of the optimum connection radii are 

similar to those obtained by minimising the far-field 

maximum sound pressure. The optimum values for the 

connection radius for the various cost functions are 

highlighted with a black spot. The optimum connection 

radius for minimising the full frequency range again occurs at 

ap
R = 0.8 m, and is very close to the optimum radius for 

minimising the cost function for several discrete frequencies. 

Minimising the radiated sound power has the advantage in 

that it does not require solving the Helmholtz integral. 
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Figure 18. Variation of the cost function 
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The frequency response function of the axial displacement at 

the connection between the cylindrical hull and the stern end 

plate is presented in Fig. 19, for the optimum connection 

radius of 
ap

R = 0.8 m and for a rigid connection 

corresponding to 
ap

R a=  when the propeller-shafting system 

is connected to the outer periphery of the hull. When 

ap
R a= , the end plate is considered rigid (Dylejko 2007; Pan 

et al. 2008a, 2008b; Merz et al. 2009). A much lower 

response is observed when the flexibility of the plate is 

considered. Figure 20 shows the force transmissibility 

between the propeller and the end plate at the hull junction, 

determined by 
, 0

/
x x a

T N F= . Minimising the force 

transmissibility or the axial velocity at the cylinder/cone 

junction does not result in an optimum connection radius for 

minimisation of the far field radiated sound. This is due to the 

fact that the optimisation does not take into account the 

radiation efficiency of the excited modes.  
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Figure 19. Frequency response function of the axial cylinder 

displacement at x=0 for optimum and extreme values of the 

connection radius. 
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Figure 20. Force transmissibility for optimum and extreme 

values of the connection radius. 

 



 

CONCLUSIONS 
 

A model of a propeller-shafting system coupled to a 

submarine hull through a flexible end plate has been 

presented. The submerged vessel was excited by an axial 

harmonic force from the propeller. Reduction of the far field 

radiated sound pressure was achieved using the connection 

radius as a tuning parameter. A cost function based on the 

maximum radiated sound pressure for both discrete 

frequencies and a specific frequency range was minimised. 

Minimisation of the radiated sound power at the hull surface 

and the radiated sound pressure gave similar results for the 

optimum value of the connection radius, since these 

quantities are directly related. The connection radius and the 

flexibility of the end plate were shown to be key parameters 

in the design of an optimum propulsion system for a 

submarine. 
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