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ABSTRACT 
The structural vibration induced by machinery often needs to be assessed during the concept design phase in order to 
determine the configuration of machinery that minimises transmitted vibration, in addition to satisfying other design 
constraints. However, detailed information about machinery and the foundation’s structure may not be available, and 
in these cases simplified analytical models can be used to assess potential designs. This paper derives the equations of 
motion for generalised two-stage and two-stage rafted vibration isolation systems using a matrix methodology. The 
supported mass and intermediate masses are assumed to be rigid and supported by isolators with arbitrary locations 
and orientations. The use of the methodology is illustrated for three common isolator configurations: single stage iso-
lation; two-stage isolation; and two-stage rafted isolation, and the characteristics of each are discussed.  

INTRODUCTION 

Isolation of machinery vibration is required in many situa-
tions including industrial applications, commercial buildings, 
and ships. Specification of vibration isolators can be as sim-
ple as selecting the static deflection of an isolator based on 
the required level of vibration isolation and the forcing fre-
quency. In this case, the parameters are derived from the 
dynamics of a uni-axial single degree-of-freedom (DOF) 
system (Beranek and Vér, 1992; Harris, 1995).  In some ap-
plications a high degree of vibration isolation is required and 
in these cases more detailed modelling is required. One ap-
proach may be to apply finite element modelling techniques 
to assess the dynamics of machinery coupled to a supporting 
structure. Another method is to develop an approximate ana-
lytical model of the system. This approach may be more ap-
propriate than finite element modelling in cases where de-
tailed information on the machinery and supporting founda-
tion is not known, for example at the concept design stage. 
Analytical modelling can provide greater insight into cou-
pling of degrees-of-freedom (DOFs), the relationship be-
tween different parameters, as well as their effect on the per-
formance of a vibration isolation system. 

This paper has been approved for public release by the Chief of Maritime Platforms Division, DSTO. 

Equations describing the rigid-body dynamics of a supported 
mass are available in a number of sources (Beranek and Vér, 
1992; Harris, 1995; Mead, 2000; Smollen, 1966). Manipulat-
ing the equations describing the motions of a supported mass 
in six degrees of freedom, including coupled rotation and 
translational stiffness is cumbersome, and becomes more 
tedious when modelling two-stage vibration isolations sys-
tems. Smollen (1966) presented a general matrix method for 
the design and analysis of single-stage vibration-isolation 
systems that overcomes some of the difficulties encountered 
when dealing with equations in terms of scalar variables. In 
this paper the generalised matrix method of Smollen is ex-
tended to general two-stage and two-stage rafted vibration 
isolation systems. The equations of motion are used to calcu-
late the performance of representative single-stage, two-
stage, and two-stage rafted vibration isolation systems and 
the characteristics of each type of system are briefly dis-
cussed.  

MATRIX EQUATIONS FOR A SINGLE-STAGE 
VIBRATION ISOLATION SYSTEM 

A general single stage vibration isolation system is shown in 
Figure 1. It is parameterised by the mass and inertial proper-
ties of a supported mass; the translation and rotational stiff-
ness of one or more vibration isolators; and the location and 
orientation of the vibration isolator(s) with respect to a set of 
coordinate axes located at the centre of gravity (CoG) of the 
supported mass. The damping of the vibration isolators can 
also be included as either viscous damping in parallel with 
the stiffness associated with each isolator, or as a structural 
damping factor implemented as a complex stiffness. Damp-
ing terms will not be included in the derivations that follow 
for the sake of brevity. 

  

x0 

y0 
z0 

 

 

  

 

 

 
Figure 1. Single stage isolation system: a rigid mass is sup-
ported on one or more vibration isolators with arbitrary loca-

tion and orientation. 

The matrix method developed by Smollen involves trans-
forming the stiffness (and damping) associated with each 
vibration isolator from its own local coordinate system to a 
coordinate system located at the CoG of the supported mass.  

Figure 2 shows a rigid body of mass m0 supported by a vibra-
tion isolator with arbitrary location and orientation. A set of 
Cartesian coordinate axes (x0, y0, z0) is located at the CoG of 
the supported mass (see Figure 2, 3a). 
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Each isolator has an associated set of principal elastic axes pi, 
qi, ri (see Figure 3b). The principal elastic axes are defined 
such that a force along an axis results in deformation along 
that axis only, and no rotation. Similarly, a couple about any 
principal elastic axis results in no rotation about any other 
axis and no translation (Harris, 1995). Each isolator has 
translational stiffness Kpi and rotational stiffness Kλi defined 
along the principal elastic axes; i.e. the matrices are diagonal. 
The origin of the principal elastic axes is located at the point 
of action of the isolator on the supported mass. A vector r0i = 
{r0x, r0y, r0z}i

T locates the point of action of isolator i with 
respect to the CoG of the supported mass (Figure 2). Another 
set of axes (xi, yi, zi) is located at the point of action of each 
isolator and is parallel with the axes centred on the supported 
mass CoG (see Figure 3c).     

 

 

 

 

 

 

 
 

Figure 2. Mass supported by an arbitrarily located single-
stage vibration isolator. 
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Figure 3. (a) Coordinate axes located at the CoG of the sup-
ported mass; (b) principal elastic axes associated with isolator 
i located at the point of action of the isolator on the supported 

mass; (c) principal elastic axes and local coordinate axes 
associated with isolator i (rotations are not shown for clarity).  

Displacements xi = {xi, yi, zi}T at isolator i are related to dis-
placements pi = {pi, qi, ri}T by xi = Ai pi, where the transfor-
mation matrix Ai is given by 

izrzqzp

yryqyp

xrxqxp

i

aaa
aaa
aaa

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=A .               (1) 

The elements of Ai are the direction cosines between the 
positive axes listed in the subscripts; e.g. axp is the direction 
cosine between the positive xi and pi axes. Note that Ai is an 
orthogonal transformation matrix and therefore satisfies the 
relation Ai

-1 = Ai
T (Kreyszig, 1993). In addition, for an arbi-

trary rotation, Ai can be obtained from the product of trans-
formation matrices corresponding to rotations around indi-
vidual axes. 

The transformation matrix Ai also relates forces, rotations, 
and moments between the two sets of coordinates. That is, fxi 
=  Ai fpi; αxi =  Ai λpi; hxi =  Ai hpi, where fxi = {fxi, fyi, fzi}T are 
forces; αxi = {αi, βi, γi}T are rotations; and hxi = {hxi, hyi, hzi}T 
are moments in xi, yi, zi coordinates. Similarly  fpi, λpi, hpi, are 
forces, rotations and moments in the pi, qi, ri coordinates. 

The equations of motion for a supported mass can be written 
in terms of mass and stiffness matrices, where the stiffness 
matrices are initially defined for the action of a single isola-
tor. The effect of multiple isolators is handled by summing 
the stiffness sub-matrices for each isolator. Results given by 
Smollen (1966) are repeated here without derivation and with 
changes in notation where appropriate. The reader is directed 
to the original reference for further details on the derivation. 
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Equations of motion for a supported mass are  
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or in terms of partitioned matrices 
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and n is the number of vibration isolators. 

The matrix equations allow the coupling between the DOFs 
to be examined, as the level of coupling is given by off-
diagonal terms of the mass and stiffness matrices. The off-
diagonal terms of the mass matrix are due to non-symmetry 
of the supported mass and little can be done to change this in 
a real situation. The off-diagonal terms in the stiffness matrix 
are due to orientation of the isolators which give rise to off-
diagonal terms in Kxi and Kαi  (see equations (7) and (8)), and 
also due to the location of each isolator with respect to the 
CoG of the supported mass (equations (5) and (6)). 
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Full decoupling of the DOFs in equation (2) is only possible 
if the whole set of isolators is symmetrical about the CoG of 
the supported mass (this eliminates Kxα and Kαx terms), and if 
principal elastic axes that result from the combined action of 
all isolators are aligned with the principal inertial axes of the 
supported mass. This is unlikely in real situations; however, 
partial decoupling of DOFs is possible and can be optimised 
for different applications. Mead (2000) gives an example of 
de-coupling rotational and translational degrees of freedom. 

Single-stage vibration isolation systems are common as they 
are the simplest and provide good performance. Alternative 
configurations include two-stage vibration isolation systems 
where each isolator is an assembly of two springs separated 
by an intermediate mass (see Figure 4) and two-stage rafted 
systems where the supported mass is resiliently mounted on a 
platform, which in turn is resiliently supported on the founda-
tion (see Figure 6). The matrix equations for these two cases 
are derived in the following sections. 

MATRIX EQUATIONS FOR A TWO-STAGE 
VIBRATION ISOLATION SYSTEM 

A two-stage vibration isolation system is shown in Figure 4a. 
The intermediate masses introduce extra DOFs into the sys-
tem, and in general improve the high-frequency characteris-
tics of the isolator when compared to a single stage vibration 
isolator. This characteristic is often derived from the dynam-
ics of a uni-axial system (Figure 4b) (Beranek and Vér, 1992) 
and leads to the rule-of-thumb that the slope of the transmis-
sibility is -40 dB/decade at high frequencies for single stage 
isolators and -80 dB/decade for dual-stage isolators (Mead, 
2000). In this case high frequencies are greater than 1.5 times 
the highest natural frequency of the system. This will be fur-
ther illustrated by the example at the end of the paper.  

 

 

 

 

 

         (a)    (b) 
Figure 4. (a) General two-stage vibration isolation system; 

(b) uniaxial two-stage vibration isolation system. 

The equations of motion of a general two-stage vibration 
isolation system can be derived using matrix techniques in a 
similar way to that discussed for single-stage vibration isola-
tion systems. Figure 5 shows a mass m0 supported by a two-
stage vibration isolator at a position r0i = {r0x, r0y, r0z}i

T with 
respect to a coordinate system at the CoG of the supported 
mass. The two-stage isolator consists of two collinear springs 
separated by the intermediate mass. The upper spring has 
translational and rotational stiffness Kpui, Kλui, respectively, 
and the lower spring stiffness is represented similarly by 
exchanging the subscript u for l. The intermediate masses are 
of mass mi and have inertial properties Ipi. 

The upper and lower springs are assumed to act along the 
principal inertial axes of the intermediate masses and these 
are also assumed to be the principal elastic axes of the isola-
tor assembly. This is a reasonable assumption as in practice 
the intermediate mass could be a rectangular prism; the upper 
and lower springs may be made up of multiple resilient ele-

ments arranged symmetrically about the top and bottom faces 
of the intermediate mass. The height of the intermediate mass 
could be made small so as to minimise coupling between 
lateral forces and rotational displacements and vice-versa. 
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Figure 5. Mass supported by an arbitrarily located two-stage 

vibration isolator. 

The local coordinate systems on the supported mass at the 
point of action of the isolator assembly are as described for 
the single stage system (see Figure 3). In addition, the motion 
of the intermediate mass (xi; αi) is described with respect to 
coordinate systems centred on its CoG.  

The isolator assembly has arbitrary orientation, and the stiff-
ness of the upper and lower springs and the inertia of the 
intermediate mass are transformed from the principal elastic 
axes to axes parallel with x0, y0, z0 
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T
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Forces Applied to Supported Mass 

The forces applied to the supported mass by a single isolator 
are given by 

( ) 01000 αKxxKxmf uixuixx α−−−==∑ &&  (15) 

therefore 

0=+−+ 01000 αKxKxKxm uixuixuix α&&  (16) 

The last term in equation (16) is the coupled translational-
rotational stiffness Kxαui, which relates forces at the isolator 
to a rotation of the supported mass. Translation at the isolator 
due to rotation of the supported mass is given by 

0
T
0 αRx ii =  (17) 

where R0i is defined in equation (9). The forces at the isolator 
resulting from a rotation of the supported mass are 

0
T
0 αRKxKf iuixiuixxi ==  (18) 

Therefore the translational-rotational stiffness is given by 

T
0iuixuix RKK =α  (19) 
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Moments Applied to Supported Mass 

Moments (hx0) applied to the supported mass result from 
rotations of the supported mass relative to rotations of the 
intermediate mass; i.e. –Kαui(α0 – αi). Forces at the isolator 
location also produce moments about the CoG of the sup-
ported mass, and these forces are due to translations and 
rotations of the supported mass 

( ) 0
T
00 αRKxxKf iuixiuixxi −−−=  (20) 

Summing the moments about the CoG of the supported mass 

( ) xiiuix fRααKαIh 01000 +−−==∑ α&& , (21) 

and substituting equation (20) into equation (21) gives 

∑ = αIh &&00x  

( ) ( )( )0
T
00010 αRKxxKRααK iuixiuixiui −−−+−−= α  (22) 

Further manipulation yields 

( ) 0=−+−++ iuixuixuiiuixiui xKxKαKαRKRKαI αααα 010
T
000 &&  

 (23) 
where 

[ ] [ ]TTT
0 iuixuixuixiuix RKKKRK === αα  (24) 

 
is the rotational-translational stiffness. Note that Kxui (and 
Kαui) are symmetric. 

Forces Applied to the Intermediate Mass 

The forces applied to the intermediate mass are given by 

        ( ) 10
T
00111 xKαRxxKxmf lixiuixx −−−−==∑ &&  (25) 

therefore 

         (26) ( ) 0=−−++ 0
T
00111 αRKxKxKKxm iuixuixlixuix&&

and substituting equation (19) into equation (26) gives 

        ( ) 0=−−++ 00111 αKxKxKKxm uixuixlixuix α&&  (27) 

Moments Applied to the Intermediate Mass 

The moments applied to the intermediate mass are given by 

( ) 101 αKααKαIh liuiiixi αα −−−==∑ &&  (28) 

therefore 

( ) 0=++− 10 αKKαKαI liuiuiii ααα&&  (29) 

 

 

 

 

 

 

Matrix Equations 

Equations (16), (23), (26), and (29) can be assembled into a 
matrix equation for n isolators given in equation (30), with 
elements of the stiffness matrix given by equations (31) – 
(34). 
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R0i is given by equation (9). 

MATRIX EQUATIONS FOR A TWO-STAGE 
RAFTED VIBRATION ISOLATION SYSTEM 

A two-stage rafted vibration isolation system is shown in 
Figure 6. The supported mass is resiliently supported on top 
of the raft and the raft is resiliently supported on a rigid foun-
dation. The raft is effectively an intermediate mass but is 
typically much more substantial than intermediate masses 
used in a two-stage vibration isolation system. A desirable 
consequence is that the natural frequencies associated with 
the motion of the raft are lower than those associated with 
intermediate masses in a two-stage system.  

 

 
Figure 6. Two-stage rafted vibration isolation system. 

Figure 7 shows a mass m0 supported by isolator i with trans-
lational and rotational stiffness Kpui and Kλui, respectively, 
which act along the principal elastic axes of the isolator. The 
isolator is coupled to the supported mass at a position r0i = 
{r0x, r0y, r0z}i

T with respect to a coordinate system at the CoG 
of the supported mass. Similarly, the isolator is coupled to the 
raft with mass m1 at a position r1i = {r1x, r1y, r1z}i

T with re-
spect to a coordinate system located at the CoG of the raft. 
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Figure 7. Supported mass and raft with arbitrarily located 

upper and lower isolators. 

The raft is supported by isolator j with translational and rota-
tional stiffness Kplj and Kλlj, respectively, which act along the 
principal elastic axes of the isolator. This isolator is coupled 
to the raft at a position r1j = {r1x, r1y, r1z}j

T with respect to a 
coordinate system at the CoG of the supported mass.  

The isolator assembly has arbitrary orientation and the stiff-
ness of the upper and lower springs are transformed from the 
principal elastic axes to coordinates parallel with x0, y0, z0 

T
iipuiixu AKAK =  (35) 
T
iiuiiu AKAK λα =  (36) 

T
jpljjxlj AKAK =  (37) 
T
jljilj AKAK λα =  (38) 

The coordinates x1, y1, z1 are assumed to be parallel to x0, y0, 
z0; the inertial properties of the supported mass and the raft 
are given by I0 and I1, respectively. 

The equations of motion for the two-stage rafted system are 
derived in a similar way to that presented for the two-stage 
system. 

Forces Applied to Supported Mass 

The forces applied to the supported mass by the isolator i are 
given by 

( ) 010000 αKxxKxmf uixTOTuixx α−−−==∑ &&  (39) 

therefore 

0=+−+ 01000 αKxKxKxm uixTOTuixuix α&&  (40) 
 
where Kxαui is given by equation (19) and  

1
T
111 αRxx iTOT +=  (41) 

R1i is defined in an analogous way to R0i (equation (9)) using 
r1i.  Equation (41) represents translation of the raft at position 
r1i due to translation and rotation of the raft. Substituting 
equation (41) into equation (40), and then using the expres-
sion for Kxαui in equation (19) gives 

0=−−++ 110000 αKxKαKxKxm uixuixuixuix αα&&  (42) 

Moments Applied to Supported Mass 

Moments (hx0) applied to the supported mass result from 
rotations of the supported mass relative to rotations of the 
raft; i.e. –Kαui(α0 – α1). Forces due to translation at the isola-
tor location also produce moments about the CoG of the sup-
ported mass. Translation at the isolator location is due to 
translation and rotation of the supported mass 

( ) 0
T
010 αRKxxKf iuixTOTuixxi −−−= . (43) 

Substituting equation (41) into equation (43) gives 

0
T
01

T
110 αRKαRKxKxKf iuixiuixuixuixxi −++−=  (44) 

Summing the moments about the CoG of the supported mass 

( ) xiiuix fRααKαIh 010000 +−−==∑ α&&  (45) 

and substituting equation (44) into equation (45) gives 

( )1000 ααKαIh −−==∑ uix α&&  (46) 

          ( )0
T
01

T
1100 αRKαRKxKxKR iuixiuixuixuixi −++−+  

Further manipulation yields 

( ) ( ) 1
T
1010

T
000 αRKRKαRKRKαI iuixiuiiuixiui +−++ αα&&  

0=−+ 1000 xKRxKR uixiuixi  (47) 

Forces Applied to the Raft 

The forces applied to the raft are given by 

∑ = 11xmf &&x  (48) 

      ( ) ( )1
T
110

T
001

T
11 αRxKαRxαRxK jlixiiuix +−−−+−=  

which includes the effect of translation and rotation of both 
the supported mass and the raft. Rearranging equation (48) 
gives 

( ) 10
T
0011 xKKαRKxKxm lixuixiuixuix ++−−&&  

( ) 0=++ 1
T
1

T
1 αRKRK jlixiuix  (49) 

Moments Applied to the Raft 

Moments applied to the raft are due to upper and lower rota-
tional stiffness, and the rotations of the raft relative to the 
supported mass and the foundation; i.e. –Kαui(α1 – αo) – 
Kα l j(α1). In addition, moments about the CoG of the raft are 
caused by forces from the upper and lower isolators, and 
these forces are due to translations and rotations of the raft. 
Forces on the raft due to the upper isolator are given by  

( ) 1
T
1011 αRKxxKf iuixTOTuixix −−−=  (50) 

Substituting into equation (50) gives 0
T
000 αRxx iTOT +=

1
T
110

T
001 αRKxKαRKxKf iuixuixiuixuixix −−+=  (51) 

Forces on the raft due to the lower isolator are given by 

1
T
111 αRKxKf jljxljxjx −−=  (52) 

where R1j is defined in an analogous way to R0i (equation (9)) 
using r1j. Summing the moments about the CoG of the raft 
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( ) jxjixiliuix 1111101111 fRfRαKααKαIh ++−−−==∑ αα&&   
 (53) 

Substituting equations (51) and (52) into (53) and rearranging 
gives 

( ) 0
T
010111 αKRKRxKRαI uiiuixiuixi α+−−&&  

( ) 111 xKRKR ljxjuixi ++  

( ) 0=++++ 1
T

1
T
11 αRKRKRKRK jljxjliiuixiui αα  (54) 

Matrix Equations 

Equations (42), (47), (49), and (54) can be assembled into a 
matrix equation given by equation (55). The effect of n isola-
tors above the raft and m isolators below the raft is taken into 
account by summing the stiffness sub-matrices for each isola-
tor, as shown by equations (56) – (64). 
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 (55) 

where  

∑
=
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n
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1
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ANALYSIS OF VIBRATION ISOLATION 
SYSTEMS 

Equations (3), (30), and (55) can be represented by 

 [ ] [ ] 0=+ XKXM &&  (65) 

Natural frequencies and mode shapes (eigenvectors) can be 
obtained by solving the generalised eigenvalue problem  

[ ] [ ] λXXKM =−1  (66) 

The natural frequencies are given by ωk = (λkk)0.5; and λkk are 
the diagonal elements of λ. 

Forced vibration of the systems described by equations (3), 
(30), and (55) is given by 

[ ] [ ] FXKXM =+&&  (67) 

The transfer function matrix relating the displacement re-
sponse at each DOF to forces applied at each DOF is given 
by  

( ) [ ] [ ][ ] 12 −
+−= KMH ωω  (68) 

Assuming a rigid foundation, the transmissibility of a vibra-
tion isolator is defined as the ratio of the force transmitted to 
the foundation and the force applied to the supported mass 
(Mead, 2000). The force applied to the foundation is calcu-
lated by first obtaining the displacements across isolators 
coupled to the foundation that result from the force applied to 
the supported mass. The displacements across the springs 
attached to the foundation are then multiplied by the corre-
sponding stiffness to yield the force applied to the founda-
tion.  

The transmissibility between DOFs that are of interest will 
vary depending on the particular application and the level of 
coupling between different DOFs. This results from the loca-
tion and stiffness of the isolators and the inertial properties of 
the supported mass (and any intermediate masses). For ex-
ample, reciprocating engines may be excited by shaking mo-
ments about the engine’s vertical and lateral axes, in addition 
to significant torsional vibration about the engine’s longitu-
dinal axis (Taylor, 1985). In this case, it may be of interest to 
examine the transmissibility between rotational DOFs on the 
supported mass, and the resultant forces and moments ap-
plied to the foundation.  

REPRESENTATIVE EXAMPLES 

The following examples illustrate the application of the equa-
tions presented in this paper for a single stage, two-stage and 
two-stage rafted system. The characteristics of each type of 
system are briefly discussed.  

Mass and inertial parameters used for the three examples are 
given in Table 1; stiffness parameters are given in Table 2; 
and number and location of isolators are given in Tables 3 – 
5. In each model, the even-numbered isolators were inclined  
from vertical by –30° about the x axis, and odd-numbered 
isolators were inclined from vertical by 30° about the x axis. 

Results 

Natural frequencies and eigenvectors (proportional to mode 
shapes) are shown for the single-stage model in Figure 7, and 
for the two-stage rafted system in Figure 8. A subset of the 
54 natural frequencies for the two-stage system (i.e. with 
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intermediate masses) is listed in Table 6 with a description of 
the motion for each listed mode. 

 
Table 1. Mass and inertial parameters 

 Single Stage 
System 

Two-Stage 
System 

Two-Stage 
Rafted System

Supported 
Mass (kg) 10000 10000 10000 

Ixx (kg m2) 2708 2708 2708 

Iyy (kg m2) 5208 5208 5208 

Izz (kg m2) 4167 4167 4167 
Intermediate 
mass or raft 
mass (kg) 

- 500 12000 

Ixx (kg m2) - 5.42 4160 
Iyy (kg m2) - 8.33 9160 
Izz (kg m2) - 10.42 13000 

 
Table 2. Stiffness parameters about principal elastic axes 

 Kp Kq Kr Kλ Kξ Kν 
  (N/m)  (Nm/rad) 

Upper and 
lower isolators 107 2×106 2.5×106 3×106 4×106 5×106

 
Table 3. Location of upper isolators for single-stage and two 
stage models (relative to CoG of supported mass; distances in 

metres) 
 Isolator 
 1 2 3 4 5 6 

r0x 1 1 0 0 -1 -1 
r0y 0.5 -0.5 0.5 -0.5 0.5 -0.5 
r0z -0.95 -0.95 -0.95 -0.95 -0.95 -0.95 

 
Table 4. Location of upper isolators for two-stage rafted 

model (distances in metres) 
 Relative to CoG of 

supported mass  
Relative to CoG of raft 

Isolator r0x r0y r0z r1x r1y r1z 
1 1 0.5 -0.95 1 0.85 0.2 
2 1 -0.5 -0.95 1 -0.85 0.2 
3 0 0.5 -0.95 0 0.85 0.2 
4 0 -0.5 -0.95 0 -0.85 0.2 
5 -1 0.5 -0.95 -1 0.85 0.2 
6 -1 -0.5 -0.95 -1 -0.85 0.2 

 
Table 5. Location of lower isolators for two-stage rafted 

model (relative to CoG of raft; distances in metres) 
 Isolator 
 1 2 3 4 5 6 

r1x 1 1 0 0 -1 -1 
r1y 0.85 -0.85 0.85 -0.85 0.85 -0.85 
r1z -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 

 Two-stage isolator assemblies in the two-stage model 
included the same mass and stiffness properties and 
consequently the 36 modes dominated by motion of the 
intermediate masses (six intermediate masses with six DOFs 
each) occurred as six groups of six modes with similar 
natural frequencies. The average natural frequency of each 

group of modes is listed in Table 6 with a description of the 
dominant motion. 
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Figure 7. Natural frequencies and eigenvectors for the single 

stage vibration isolation model 
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Figure 8. Natural frequencies and eigenvectors for the two-
stage rafted vibration isolation model. 

The eigenvectors or mode shapes provide an indication of the 
coupling between different degrees of freedom at each natu-
ral frequency. For example, the modes at 6.68 Hz and 
16.87 Hz for the two-stage rafted system in Figure 8 include 
motion of the supported mass and the raft in the z direction; 
however, little or no motion of other degrees of freedom. The 
mode at 7.53 Hz has coupled motion in the y and α directions 
for both the raft and the supported mass. 

The sum of the magnitude of vertical forces applied to the 
foundation due to a 1 N vertical (i.e. z direction) force ap-
plied to the supported mass is plotted versus frequency in 
Figure 9. Figure 10 shows the sum of the magnitude of the 
vertical forces applied to the foundation due to a 1 Nm mo-
ment applied to the supported mass about the x axis (i.e. a 
moment in the α direction).  
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Table 6. Natural frequencies and descriptions of modes for 
two-stage vibration isolation model. 

Natural 
Frequency 

(Hz) 
Description of Vibration Mode 

3.46 x translation of m0 
4.93 y translation of m0 
7.55 z translation of m0 

9.96 γ rotation of m0 coupled to y displacement of 
intermediate masses 1, 2, 5, 6 

10.90 β rotation of m0 coupled to x displacement of 
all intermediate masses 

10.97 α rotation of m0 coupled to y displacement of 
all intermediate masses 

14.53 x translation of intermediate masses 

17.17 Coupled y and z translation of intermediate 
masses 

32.37 Coupled y and z translation of intermediate 
masses 

120.83 Coupled β and γ rotation of intermediate 
masses 

174.38 Coupled β and γ rotation of intermediate 
masses 

193.47 α rotation of intermediate masses 

Both two-stage systems have a steeper roll off of transmitted 
force at higher frequencies when compared to the single stage 
system. However, the extra degrees of freedom in the two-
stage systems lead to additional modes, and the performance 
of the vibration isolation system is degraded for forcing fre-
quencies in the vicinity of the natural frequencies. Therefore, 
care must be taken to ensure the natural frequencies associ-
ated with all the modes of vibration of the isolation system 
are not aligned with forcing frequencies.  

A limitation of the two-stage system is that modes with sig-
nificant motion of the intermediate masses occur at high fre-
quencies relative to the modes with motion of the supported 
mass. This is due to the difference in mass. For example, in 
the two-stage isolation model, modes with significant motion 
of the supported mass have natural frequencies below 12 Hz 
(see Table 5). Modes with significant translational motion of 
the intermediate masses occur at approximately 15 Hz, 
17 Hz, and 32 Hz, and modes with rotational motion of the 
intermediate masses have natural frequencies at approxi-
mately 121 Hz, 174 Hz, and 193 Hz. The effects of the 
modes at 17 Hz, 32 Hz, and 193 Hz can be seen in Figure 10.  

Note that the models used in these examples did not include 
damping. The effect of damping would be to limit the magni-
tude of the response at resonant frequencies and broaden the 
resonant peaks. 

CONCLUSION 

Equations of motion for two-stage and two-stage rafted vibra-
tion isolator systems have been derived using a matrix meth-
odology, based on the work of Smollen (1966). The equa-
tions of motion are valid for systems with any number of 
isolators with arbitrary location and position. Utilising matrix 
equations to describe the dynamics of the vibration isolator 
system overcomes some of the difficulty associated with 
manipulating equations in terms of scalar variables and can 
be easily implemented in numerical analysis software. Use of 
the equations has been demonstrated by analysing representa-

tive single-stage, two-stage, and two-stage rafted vibration 
isolation systems. Characteristics of the systems, including 
the level of coupling between degrees-of-freedom, and the 
transmissibility of the systems have been discussed. 
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Figure 9.  Summed  magnitude of forces applied to the foun-
dation in the z (vertical) direction due to a 1 N force on the 

supported mass in the z  direction. 

100 101 102-150

-100

-50

0

50

100

Frequency (Hz)

Fo
rc

e 
(d

B
 re

 1
N

)

 

 

Single-stage
Two-stage
Two-stage rafted

 
Figure 10. Summed magnitude of forces applied to the foun-

dation in the z (vertical) direction due to a 1 Nm moment 
applied to the supported mass in the α direction. 
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