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ABSTRACT

By identifying the efficiently radiating acoustic radiation modes of a fluid loaded vibrating structure, the storage re-
quirements of the acoustic impedance matrix for calculation of the sound power using the boundary element method
can be greatly reduced. In order to compute the acoustic radiation modes, the impedance matrix needs to be symmetric.
However, when using the boundary element method, it is often found that the impedance matrix is not symmetric. This
paper describes the origin of the asymmetry of the impedance matrix and presents a simple way to generate symmetry.
The introduction of additional errors when symmetrising the impedance matrix must be avoided. An example is used
to demonstrate the behaviour of the asymmetry and the effect of symmetrization of the impedance matrix on the sound
power. The application of the technique presented in this work to compute the radiated sound power of a submerged
marine vessel is discussed.

INTRODUCTION

Acoustic radiation modes have become a popular tool for sound
power computation and acoustic characterization of structures
in exterior acoustics since its introduction in 1990 (Borgiotti,
1990). Acoustic radiation modes are the eigenvectors of the
acoustic impedancematrix and form an orthogonal set of lin-
early independent surface velocity distributions. Since the acous-
tic radiation modes diagonalize the impedance matrix, the to-
tal radiated sound power is the sum of all independently radi-
ating sound power contributions of each mode. Additionally,
the eigenvalue associated with each acoustic radiation mode is
proportional to the radiation efficiency of each modal contri-
bution. An important property of acoustic radiation modes is
that at low frequencies, a very small number of the most effi-
ciently radiating acoustic radiation modes dominate the sound
radiation in to the far field (Elliott and Johnson,1993). For ex-
ample, Naghshinehet al. (1992, 1998) exploited the use of the
efficiently radiating acoustic modes to minimise sound power
radiated from a beam and a cylindrical shell with end caps us-
ing an active control strategy.

Reciprocity relations have been used to show that the acous-
tic impedance matrix must be symmetric (Chen and Ginsberg,
1995). The reciprocity relation states that an interchange of a
sender anda receiver in an acoustic field will not affect the
receiver signal. Many other researchers confirm the symme-
try of the impedance matrix in the context of radiated sound
power (Borgiotti,1990; Cunefare,1991; Cunefare and Currey,
1994; Cunefare et al.,2001). Cunefare et al. (2001) appear to
be thefirst to comment on deviations from symmetry of the
impedance matrix. They noticed that in the boundary element
method, the impedance matrix is not symmetric. They attribute
this asymmetry to differences in element area associated with
each node in the discretised model. It will be shown in this
article that this is not the reason for the asymmetry of the
impedance matrix.

The aim of this paper is to examine the cause and extent of
the asymmetry of the acoustic impedance matrix. It is shown
that the observed asymmetry of the acoustic impedance ma-
trix is due to a discretization error that is inevitable when dis-
cretizing the symmetric impedance operator using collocation
BEM (Cunefare et al.,2001). An h-convergence study shows
thattheerror decreases with a constant rate of convergence. It
is also shown that the effect of asymmetry on an acoustic radia-

tion mode decreases with increasing radiation efficiency of that
mode. Finally, it is demonstrated that computing the symmet-
ric part of the acoustic impedance matrix provides a simple tool
for symmetrization of the acoustic impedance matrix, without
introducing any significant errors with respect to calculation of
the sound power using a truncated series of acoustic radiation
modes.

RADIATED SOUND POWER

In time-harmonic and linear acoustics, the total radiated sound
powerP is defined as

P=
1
2

ℜ







ˆ

Γ

p(x)v∗(x)dΓ(x)







(1)

wherep is soundpressure,v is velocity,Γ is the boundary cir-
cumscribing the radiating object and(·)∗ denotes the conjugate
complex. The goal is to compute the acoustic radiation modes
with respect to velocity. The formulation of the quadratic eigen-
value problem requires rearranging Eq. (1) as an expression
that isquadratic in velocityv. Thus a relationship of the form

Lp (p(x)) =Lv (v(x)) (2)

is required (Chen and Ginsberg,1995). Lp andLv are linear
operatorswith respect top andv. Solving Eq. (2) for sound
pressurep and substitutioninto Eq. (1) yields

P=
1
2

ℜ







ˆ

Γ

L
−1
p Lv (v(x))v∗(x)dΓ(x)







. (3)

To enable an algebraic treatment of the quadratic eigenvalue
problem, Eqs. (1) and (2) are discretised. UsingN basis func-
tionsφl (x), the continuous variablesp andv are approximated
by (Marburg and Nolte,2008)

p(x) =
N

∑
l=1

φl (x)p = φT(x)p , v(x) =
N

∑
l=1

φl (x)v = φT(x)v.

(4)
Substitution of Eq. (4) into Eq. (1) yields

P=
1
2

ℜ
{

pT
Θv∗

}

(5)

AustralianAcoustical Society 1



2–4 November 2011, Gold Coast, Australia Proceedings of ACOUSTICS 2011

whereΘ is the boundary mass matrix and is given by

Θ=

ˆ

Γ

φ(x)φT(x)dΓ(x). (6)

Eq. (5) is the result of discretisation of Eq. (1). Application
of the boundary element method and discretization by colloca-
tion (collocation BEM) to Eq. (2) leads to the following matrix
equation (Marburg and Nolte,2008)

Hp = Gv. (7)

Solving Eq. (7) for sound pressurep and substitution into the
discretised expression for sound power in Eq. (5) yields a dis-
cretised expression for sound power that is a quadratic in terms
of velocity v

P=
1
2

ℜ
{

vT
(

H−1G
)T

Θv∗
}

=
1
2

ℜ
{

vTZv∗
}

. (8)

Z =
(

H−1G
)T

Θ is the acoustic impedance matrix. It is impor-
tant to note that theoretically,Z should be a symmetric matrix
(Chen and Ginsberg,1995). However, due to the discretisation
error in collocation BEM,Z is no longer a symmetric matrix
(Cunefare et al.,2001).

RADIATION EFFICIENCY AND ACOUSTIC RADI-
ATION MODES

The radiation efficiencyσ is defined as the ratio of the sound
powerP from Eq. (8) and the reference sound powerP̄ from the
same object radiating with the spatial mean velocity ¯v= |v(x)|.
The reference sound power̄P is given by

P̄=
1
2

ℜ







ˆ

Γ

p̄v̄∗ dΓ(x)







(9)

and using the specific acoustic impedancez= ρ0c, the radia-
tion efficiency becomes

σ =
P

P
=

P
ρ0c
2

´

Γ |v(x)|
2 dΓ(x)

. (10)

Discretisation of Eq. (10) is performed in a similar way to the
discretisation of Eq. (1) and yields

σ =
1

ρ0c

ℜ
{

vTZv∗
}

vTΘv∗
. (11)

For symmetricZ, the expression for the radiated sound power
in Eq. (8) can be simplified to

P=
1
2

ℜ
{

vTZv∗
}

=
1
2

vTℜ{Z}v∗ =
1
2

vTZRv∗ (12)

whereZR is the resistive part of the acoustic impedance ma-
trix resulting in real radiated sound power (Chen and Ginsberg,
1995). From hereafter,ZR is referred to as the acoustic resis-
tance matrix. Mathematically speaking, the simplification in
Eq. (12) is only applicable for symmetricZ, however here it
will also be used for asymmetricZ. It is shown that the effect of
the asymmetry ofZ on computed results such as sound power
and radiation efficiency is small. Hence, irrespective of the
symmetry properties ofZ, the radiation efficiency in Eq. (11)
is rewritten as

σ =
1

ρ0c
vTZRv∗

vTΘv∗
. (13)

Eq. (13) leads to the generalised eigenvalue problem and, for
an asymmetricZR, right and left eigenvectors are computed
which are respectively given by

ZRψr = λΘψr , ZT
Rψl = λΘTψl . (14)

The radiation efficiencyσ is related to the eigenvalueλ by
λ = ρ0cσ . The eigenvectorsψr andψr form the right and left
modal matricesψr andψl , respectively. It is important to note
that for asymmetricZR, the eigenvectors are complex and non-
physical (Cunefare et al.,2001) and hence can not be called
acoustic radiation modes. The eigenvectors are normalised so
that (Zurmühl and Falk,1997)

ψT
l Θψr = I , ψT

l ZRψr =Λ (15)

whereI is the identity matrix andΛ= diag
{

λ j
}

. If the acous-
tic resistance matrixZR is symmetric, the eigenvectors ofZR
becomeψ = ψr = ψl and are real values. In this case, the
eigenvectors are equivalent to the well-known acoustic radia-
tion modes. The acoustic radiation modes form a set of orthog-
onal basis functions. Choosing an appropriate set of modal par-
ticipation coefficientsζ, the superposition of these basis func-
tions allows the reproduction of an arbitrary surface velocity
pattern via

v =ψζ. (16)

Left multiplication of Eq. (16) withψT
Θ and consideration of

Eq. (15) yields the modal participation coefficients

ζ =ψT
Θv. (17)

Based on Eq. (8) and under consideration of Eqs. (12), (16),
(15) and asymmetricZR, the radiated sound power can be re-
covered from the normalised eigenvalues and eigenvectors via

Psym=
1
2
ζT

Λζ∗ =
1
2

vT
ΘψΛψT

Θv∗. (18)

Eq. (18) also holds when using a reduced number of radiation
modesψk.

MEASURES OF ASYMMETRY AND SYMMETRI-
SATION

Measures of Asymmetry

In order to assess the degree of asymmetry, three measures are
defined. They are discussed in what follows.

Modal Assurance Criterion

The Modal Assurance Criterion (MAC) provides an indication
of the correlation between two vectors (modes)a and b via
(Allemang,2002)

MAC(a,b) =

∣

∣aHb
∣

∣

2

(

aHa
)(

bHb
) (19)

If ZR is symmetric, MAC(ψr ,ψl ) is equal to unity for all eigen-
vectors ofZR. For asymmetricZR, the MAC values are be-
tween zero and one.

Mean Deviation from Symmetry

In the matrixZR, the symmetry errorεkl of the matrix entry
zR,kl is defined as

εkl = 2

∣

∣

∣

∣

zR,lk −zR,kl

zR,lk+zR,kl

∣

∣

∣

∣

(20)

The mean deviation from symmetry is then defined as the mean
value of allεkl

ε =
1

N2

N

∑
k=1

N

∑
l=1

εkl (21)

A symmetric matrixZR results inε = 0. Increasing values ofε
indicate an increasing deviation from symmetry.
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Asymmetric Fill of ZR

A pair of matrix entrieszR,kl andzR,lk is considered symmetric
if

zR,lk −zR,kl < τ
zR,lk +zR,kl

2
(22)

whereτ is the threshold for symmetry. The share of asymmet-
ric zR,kl andzR,lk of theN2 matrix entries ofZR is termed asym-
metric fill κ of ZR. Again,κ = 0 indicates a symmetric matrix
ZR.

Symmetrisation of ZR

Symmetrisation ofZR is simply achieved by calculating the
symmetric part ofZR (Weisstein).

ZR,sym=
ZT

R+ZR

2
(23)

Other methods for symmetrisation are available but will not be
used in this study. For example,ZR can also be symmetrised
by taking the strictly upper triangular matrixU and the main
diagonalD of ZR and computingZR,sym2 = UT +U+D.

MODEL

A simplified model of the pressure hull of a submarine (Fig.1)
is investigated. The cylindrical section is 45m long with a 6.5m
diameter. The acoustic fluid is water with densityρ = 1000kg/m3

and speed of soundc0 = 1482m/s. The acoustic fluid is mod-
elled using 4-node super-parametric discontinuous linear bound-
ary elements in AKUSTA, a non-commercial code developed
by the author Marburg and co-workers (Marburg and Schnei-
der, 2003; Marburg and Amini,2005). Fig. 1 illustrates that
discontinuous boundary elements do not have to match at their
edges. The cylinder in Fig.1 is shown with the coarsest discreti-
sation used in this study (seed = 1). Table1 lists the different
mesh seeds and the corresponding number of elements.

Figure 1: Cylinder with hemispherical end caps

Table 1: Mesh seedsd, maximum element sizeh and corre-
sponding degrees of freedom (DOF)

d h (m) DOF

1 9 176

2 4.5 704

4 2.25 2816

8 1.125 11264

RESULTS

H-Convergence

The results of the h-convergence study for the cylinder are pre-
sented. Figs.2 and3 show the mean errorε and the asymmet-
ric fill κ versus seedd at 10Hz and 100Hz. The threshold for
symmetryτ is not equal for calculations at 10Hz and at 100Hz.
This difference is due to the fact that for calculations at 10 and
100Hz, the same discretisations are used despite the one order
of magnitude difference in wavelength in the acoustic fluid.

 

 

α = 1.64

23222120

M
ea

n
E

rr
or

ε

Seedd

10−4

10−3

10−2

23222120

A
sy

m
m

et
ric

F
ill

κ

Seedd

10−1

100

Figure 2: Mean error and asymmetric fill (τ = 10−4) for the
cylinder at 10Hz
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Figure 3: Mean error and asymmetric fill (τ = 10−2) for the
cylinder at 100Hz
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This choice is made because of the prohibitive cost of models
with more than 12000 degrees of freedom. It is found that the
error dependence is of the form

ε (d,k)∼C(k)d−α (24)

wherek is the wave number,C(k) is a constant with respect to
mesh seedd andα is the rate of convergence. A similar rela-
tionship applies to the asymmetric fillκ versus seedd. Figs.2
and3 show that the measures of asymmetry decrease with a
constant rate of convergenceα . This demonstrates that a dis-
cretisation error introduced by the approximations in Eq. (4) is
responsible for the asymmetry of the acoustic impedance ma-
trix Z.

MAC

Figs.4 and5 present the modal assurance criterion and the ra-
diation efficiency for the coarsest and finest discretisation at
100Hz for the cylinder model. Correlation of the rightψr and
leftψl eigenvectors can be observed in Fig.4. The MAC(ψr ,ψl )
values demonstrate that the eigenvectors correlate very well for
low mode numbers which correspond to high and medium ra-
diation efficienciesσ . Examination of the results for the cylin-
der model with 11264 degrees of freedom shows that once the
initial decay of the radiation efficiency has stopped at about
σ ≈ 10−5, the MAC value decreases rapidly and almost no
correlation between the right and left eigenvectors remains, es-
pecially at high frequencies. The transition from a good cor-
relation to a poor correlation of eigenvectors occurs rapidly.
The eigenvectors that correspond to a radiation efficiency of
σ > 10−5 are hardly affected by the asymmetry of the acous-
tic resistance matrixZR. Even for boundary element models
with much fewer elements, this effect is clearly visible. Fur-
thermore, the transition point at which the correlation of the
right and left eigenvectors switches from good to poor is still
σ ≈ 10−5. The next question that arises is how the eigenvec-
torsψr orψl using an asymmetricZR correlate with the acous-
tic radiation modesψ using a symmetricZR,sym. Fig. 5 shows
the MAC(ψr ,ψ) values and compares them to the correspond-
ing radiation efficiencies. Similar to previous observations, it
is found that the efficiently radiating acoustic radiation modes
correlate very well with the right eigenvectors obtained from
the eigenvalue problem with asymmetricZR. The transition be-
tween good and poor correlation is even more abrupt but the
critical radiation efficiencyσ ≈ 10−5 still holds. MAC(ψl ,ψ)
is not shown because MAC(ψr ,ψ) and MAC(ψl ,ψ) yield vir-
tually indistinguishable results. It is concluded that efficiently
radiating acoustic radiation modes are hardly affected by an
asymmetry of the acoustic resistance matrixZR. The asymme-
try of ZR seems to only be reflected in the eigenvectors that
correspond to low radiation efficiencies ofσ < 10−5.

Radiated Sound Power

For comparison, the radiated sound power is calculated using
five different expressions. The reference valuePre f is obtained
from Eq. (8). A second (P)and third (Psym) value for the radi-
ated sound power are obtained from Eqs. (12) and (18), respec-
tively. Note that Eqs. (8) and (12) are not equal for asymmetric
ZR since the simplification that leads to Eq. (12) is only valid
for symmetricZR. In contrast to these equations, Eq. (18) is
based on the symmetrisedZR,sym. Similarly to Eq. (18), the ra-
diated sound power may also be recovered fromΛ,ψr andψl ,
which are obtained from the asymmetricZR via

Pr =
1
2
ζT

r Λζ
∗
r (25)

Pl =
1
2
ζT

l Λζ
∗
l . (26)
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Figure 4: MAC(ψr ,ψl ) andσ for the cylinder model at 100Hz

Note that Eqs. (25) and (26) are physically questionable and
are used here solely for the purpose of comparison.

Figs.6 and7 show the real and imaginary parts ofP, Psym, Pr
andPl normalised by the real reference valuePre f . The veloc-
ity v is a random and complexN×1 vector. The real part of
P according to Eq. (12) is not affected by the simplification
which is strictly speaking not valid for asymmetricZR. This
simplification does, however, create a non-physical imaginary
part ofP which decreases with increasing discretisation. As a
result, it is found thatPre f = ℜ{P} even for asymmetricZR.
The value ofPsymaccording to Eq. (18) using the symmetrised
ZR is identical toPre f , thusPre f =Psym. It can therefore be con-
cluded that symmetrisation ofZR has no effect on the accuracy
of the radiated sound power. The real part of the values ofPr
andPl deviates significantly fromPre f at coarse discretisations
but converges to the reference value with increasing degrees
of freedom. The deviation of the imaginary parts ofPr andPl
are close to zero for all discretisations. This illustrates that as
the discretisation error decreases, the eigenvectorsψr andψl
converge towards the acoustic radiation modesψ.
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Figure 5: MAC(ψr ,ψ) andσ for the cylinder model at 100Hz

CONCLUSIONS

In this paper, the asymmetry of the acoustic impedance matrix
Z has been investigated. It was demonstrated that the symme-
try error decreases with increasing degrees of freedom of the
computational model. This shows that the discretisation error
is the major source for the observed asymmetry ofZ using
collocation BEM. It is further demonstrated that simply tak-
ing the symmetric part of the acoustic resistance matrixZR
supplies an adequate and convenient way of symmetrisingZR
without introducing any additional errors with respect to the ra-
diated sound power and the acoustic radiation modes. Justified
by the acoustic reciprocity theorem and the conclusion that the
impedance relationship must be symmetric (Chen and Gins-
berg,1995), even a numerical method such as the collocation
BEM that yields an asymmetric impedance matrix is perfectly
suitable for the analysis of acoustic radiation modes.
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