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ABSTRACT 
One of the prevalent issues in condition based maintenance (CBM) is to predict the residual life of the equipment. This paper propos-
es a novel framework to predict the remnant life of the equipment, called Residual life prediction based on optimally parameterized 
Wavelet transform and Mute-step Support vector regression (RWMS). In optimally parameterized wavelet transform, a generalized 
criterion is proposed to select the wavelet decomposition level which works for all the applications and decomposition nodes are 
selected by characterizing their dominancy level based upon relative fault signature-signal energy contents. The prediction model is 
based on multi-step support vector regression (MSVR) and prediction accuracy is improved in comparison with the techniques based 
on support vector regression (SVR). Performance of RWMS is evaluated in terms of Root Means Square Error (RMSE), studies 
show that proposed algorithm predicts the residual life of the equipment accurately.  
 

INTRODUCTION 

Machine health monitoring (MHM) is crucial in all industrial 
processes to achieve high reliability, reduced man power and 
scheduled maintenance. MHM specifically deals with ab-
normality diagnosis and prognosis. Many works have already 
been done in the field of fault diagnosis, also proposed by the 
authors (Yaqub et al., 2011a, Yaqub et al., 2011c, Yaqub et 
al., 2011e, Yaqub et al., 2011d, Yaqub et al., 2011b, Hu et 
al., 2007, Teotrakool et al., 2009). One of the challenging 
problems in CBM is to predict the residual life of the equip-
ment. Figure 1 gives the flowchart for condition based moni-
toring of the rotary system.  
 
 
 
 
 
 
 
 
 
 
 
In Figure 1, the first phase is to categorize the type of the 
fault.  Once the type of the fault is categorized, it is crucial to 
predict the residual life of the equipment as it facilitates the 
maintenance staff to schedule the repair by optimizing de-
mand-supply relationships rather than sudden and unplanned 
break down of the equipment. The conventional techniques 
are based upon scheduled plant maintenance after a specific 
predefined period of time, which is prone to sudden break 
down of the equipment as well as dissembling and reassem-
bling may initiate problems in already perfectly running pro-
cess. The proposed model can schedule on-demand and intel-
ligent maintenance by predicting the residual life of the 
equipment and repair is only advised when necessary. 
In order to predict residual life of the equipment, it is im-
portant to record certain physical parameters such as ‘vibra-
tion’ which varies according to the variation in the machine 
dynamics. In case of rotary machinery, malfunctioning in the 
operation of the bearing is the most common fault. It has 
been investigated that 40% of the total machine faults are 

because of bearing (Morel, 2002). These bearing faults 
change the machine dynamics and generate certain vibration 
patterns which depend upon bearing characteristics frequen-
cy. The vibration characteristics frequencies (El Hachemi 
Benbouzid, 2000) for inner race (𝑓𝐼𝐷), outer race (𝑓𝑂𝐷) and 
ball (𝑓𝐵𝐷) defects can be represented by (1) − (3):  
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where 𝑓𝑟𝑚, 𝑑𝑝𝑖𝑡𝑐ℎ, 𝑑𝑏𝑎𝑙𝑙 , 𝑛 and 𝜙 represent frequency of 
rotation, pitch diameter, ball diameter, number of balls and 
the contact angle respectively as highlighted in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
Vibration signal is non-stationary in nature, i.e., its spectral 
contents vary with respect to time. Wavelet transform (WT) is 
effectively used in order to extract the time-frequency domain 
contents of the vibration signal (Peng and Chu, 2004). In par-
ticularly, wavelet packet transform (WPT) (Peng and Chu, 
2004, Eren and Devaney, 2004, Teotrakool et al., 2009, Lau 
and Ngan, 2010, Yen and Kuo-Chung, 1999, Zhao et al., 
2009, Eren et al., 2010, Jianhua et al., 2010) decomposes the 
signal into multiple frequency nodes and provides multi-
resolution analysis. The fault diagnostic schemes use fixed 
predefined decomposition levels for WPT (Eren and Devaney, 
2004, Teotrakool et al., 2009, Lau and Ngan, 2010, Yen and 
Kuo-Chung, 1999, Zhao et al., 2009, Eren et al., 2010, Jianhua 
et al., 2010) and work only for a particular application, which 
is very limiting. The first contribution of the proposed tech-
nique, i.e., Residual life prediction based on optimally pa-

𝑑𝑝𝑖𝑡𝑐ℎ 
𝑑𝑏𝑎𝑙𝑙  

Figure 2. Rolling element ball bearing geometry. 

Figure 1. Condition based maitenance system. 
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rameterized Wavelet transform and Mute-step Support vector 
regression (RWMS) lies in developing a generalized criterion 
for optimal selection of the decomposition level for accurate 
profile of fault-signatures.   
In case of vibration signal, not the entire frequency band 
contains the true information about the fault vibration signal, 
only sub-portion (Yaqub et al., 2011c) of the whole frequen-
cy spectrum contains true fault signatures. In wavelet packet 
decomposition, the vibration data is decomposed into differ-
ent frequency sub-bands and feature vector is extracted from 
these frequency sub-bands. All the features do not contain 
true fault signatures, so feature selection is vital along with 
optimal decomposition level selection. The second contribu-
tion of RWMS is to characterize the dominancy level of the 
features and find an optimal number of features.   
In CBM, a few of the techniques deal with prognosis (Heng 
et al., 2009). Some of these techniques treat prognosis as the 
classification problem, i.e., datasets with multiple severity 
levels of the faults is used to build the fault prognostic model 
and same datasets is used to validate the performance of the 
prediction model (Hu et al., 2007, Zhang et al., 2010, Zhang, 
2010, Kwan et al., 2003). These prognostic models only pre-
dict the fault severity levels which were used in building the 
model and cannot predict the state when severity level of the 
fault is different than training levels for the prediction model. 
In (Tran et al., 2008, Samanta and Nataraj, 2009, Shao and 
Nezu, 2000, Wang and Vachtsevanos, 2002, Berenji and 
Yan, 2006), the predictor uses previous observations to pre-
dict the future values. These techniques can predict the future 
state of the equipment based upon current observations, but 
cannot determine the residual life in terms of how long the 
equipment is going to last. In these techniques, if number of 
steps to be predicted is increased, their reliability is decreased 
(Tran et al., 2008). Moreover, the cracks in the rotary ma-
chinery components such bearings propagate in a non-linear 
way with respect to time, from inception to breakdown as 
described in Paris’s fatigue model (Pugno et al., 2006). In 
order to incorporate the impact of non-linearity in defect 
propagation, RWMS is based upon multi-step SVR rather 
than simple SVR as in the existing literature (Sotiris and 
Pecht, 2007, Kim et al., 2009). The third contribution of 
RWMS is to enhance the prediction accuracy of the residual 
life of the equipment based on multi-step SVR.    
The paper is organized as follows: Section II presents the 
framework for the proposed technique; Section III illustrates 
the data acquisition and parameter optimization; Section IV 
contains the results and validates the performance of the pro-
posed predictive maintenance model in comparison with the 
existing scheme and Section V presents the concluding re-
marks. 

FRAMEWORK OF RWMS 

Figure 3 gives hierarchical paradigm for RWMS. In order to 
extract the time-frequency information in the non-stationary 
vibration signal, digitized data are decomposed using WPT 
(Peng and Chu, 2004, Eren and Devaney, 2004, Teotrakool et 
al., 2009, Lau and Ngan, 2010, Yen and Kuo-Chung, 1999, 
Zhao et al., 2009, Eren et al., 2010, Jianhua et al., 2010). WPT 
helps in investigating the frequency contents of the vibration 
data in different frequency ranges, i.e., nodes. A generalized 
criterion is proposed for optimal selection of wavelet decom-
position. Feature vectors are computed by evaluating RMS 
values of wavelet decomposition nodes at the selected decom-
position level (Eren and Devaney, 2004, Teotrakool et al., 
2009, Lau and Ngan, 2010). Once the optimal feature vector is 
finalized, the predictive maintenance model is built based 
upon multi-step support vector regression. 

 
 
  

 

 

 

 

 

 

Wavelet Packet Decomposition and Feature Extrac-
tion: 
Among the time-frequency domain signal processing tech-
niques, e.g., discrete Fourier transform (DFT), short time 
Fourier transform (STFT) and wavelet packet trans-
form(WPT), WPT can be used for comprehensive analysis of 
non-stationary vibration signal to reliably extract its time and 
frequency domain contents (Peng and Chu, 2004). DFT of a 
non-stationary signal 𝑥[𝑛] (4) does not exploit the variation 
in frequency contents with respect to time. Rather it averages 
out the frequency content over the whole signal range (Peng 
and Chu, 2004).  

𝑋(𝑘) =  ∑ 𝑥[𝑛] 𝑒−𝑗�
2𝜋
𝑁 �𝑘𝑛,𝑁−1

𝑛=0     𝑘 =  0,1, … (𝑁 − 1).  
(4) 

The short comings of DFT can be overcome by STFT (5), but 
STFT suffers from the problem that it yields same time and 
frequency resolution for low and high frequencies. The time 
and frequency resolution remains same because window size 
𝜔[𝑛] remains constant throughout the analysis (Peng and 
Chu, 2004).  

      𝑋(𝑚, 𝑘) =  ∑ 𝑥[𝑛]𝜔[𝑚 − 𝑛]𝑒−𝑗�
2𝜋
𝑁 �𝑘𝑛𝑁−1

𝑛=0 ,  

 𝑘 =  0,1, … (𝑁 − 1).                               (5) 

In order to overcome the drawback of fixed time-frequency 
resolution in STFT, wavelet transformation can be used 
which has the tendency to perform multi-resolution analysis. 
Wavelet packet transform provides multi-resolution analysis, 
i.e., time and frequency resolution can be adjusted (Eren and 
Devaney, 2004, Teotrakool et al., 2009, Lau and Ngan, 2010, 
Yen and Kuo-Chung, 1999, Zhao et al., 2009, Eren et al., 
2010, Jianhua et al., 2010). Figure 4 gives the decomposition 
tree for WPT. Digitized vibration data are passed through 
high pass ℎ[𝑛] and low pass 𝑔[𝑛] Quadrature Mirror Filters 
(QMFs) (6)-(7) and then down sampled. QMFs are finite 
impulse response (FIR) filters or infinite impulse response 
(IIR) filters (Walker, 1999). Filter selection is a very crucial 
part in case of analysis using WT. In the proposed scheme, 
Daubechies (Db5) filter (Yen and Kuo-Chung, 1999) is used 
which is an FIR filter. Figure 4 also shows that the total 
number of nodes at any decomposition level is given by (8): 

𝑦𝑎𝑝𝑝𝑟𝑜𝑥[𝑛] = 𝑥[𝑛] ∗ 𝑔[𝑛], 

or      𝑦𝑎𝑝𝑝𝑟𝑜𝑥[𝑛] = ∑ 𝑥[𝑘] × 𝑔[𝑛 − 𝑘].𝑘= ∞
𝑘= −∞             (6) 

𝑦𝑑𝑒𝑡𝑎𝑖𝑙𝑒𝑑[𝑛] = 𝑥[𝑛] ∗ ℎ[𝑛], 

or      𝑦𝑑𝑒𝑡𝑎𝑖𝑙𝑒𝑑[𝑛] = ∑ 𝑥[𝑘] × ℎ[𝑛 − 𝑘]𝑘= ∞
𝑘= −∞ .           (7) 

 𝑁𝑗 =  2𝑗𝑑𝑒𝑐𝑜𝑚𝑝.                                   (8) 

Figure 3. Framework of RWMS. 

Adaptive Wavelet Nodes Selection 

Residual Life Prediction 

Wavelet Decomposition Level Selection 

Vibration Data 



Proceedings of ACOUSTICS 2011 2-4 November 2011, Gold Coast, Australia 

 

Acoustics 2011 3 

RMS value of wavelet decomposition nodes is computed as 
in (9) which is extensively used as feature extraction metric 
in the literature (Eren and Devaney, 2004, Teotrakool et al., 
2009, Lau and Ngan, 2010). 

𝑋𝑟𝑚𝑠 =  �1
𝑁
∑ 𝑥𝑖2𝑁
𝑖=1

2 .                              (9) 

 

 

 

 

 

 

 

 

 

 

 
Table I lists the RMS values for the first node (lowest fre-
quency node) in each of the six decomposition levels. It 
shows that the RMS value of the first decomposition node 
decreases by increasing the decomposition level, which justi-
fies that the level of distribution of the signal energy among 
decomposition nodes increases by increasing the decomposi-
tion level. Moreover, Figure 5 plots the first (lowest) fre-
quency node for each of the six decomposition levels (vibra-
tion data is for outer race fault). The transients in the first 
node decrease by increasing the decomposition level, which 
justify that by increasing the decomposition level, the distri-
bution of signal transients is improved among wavelet de-
composition nodes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 and Figure 5 validate that the distribution of the sig-
nal transients is improved by increasing the decomposition 
level, i.e., the increment in the decomposition level provides 
more detailed distribution of the signal contents in different 
frequency bands. At the same time, increase in the decompo-
sition level gives rise in the number of decomposition nodes 
(features) so it is very important to devise a generalised crite-
rion, which defines an upper limit for the optimal decomposi-
tion level selection. Apparently, the decomposition level 
should be as high as possible, but there should be an upper 
limit to optimally select the decomposition level, after which 
the performance of the prognostic system is not improved 
further.  

Wavelet Decomposition Level Selection:  

RWMS proposes a novel criterion for optimal selection of the 
decomposition level which works for all the application con-
trary to existing schemes (Peng and Chu, 2004, Eren and 
Devaney, 2004, Teotrakool et al., 2009, Lau and Ngan, 2010, 
Yen and Kuo-Chung, 1999, Zhao et al., 2009, Eren et al., 
2010, Jianhua et al., 2010) which are application specific. The 
decomposition level selection is such that the high-energy 
frequency bands in the vibration signal are split so that max-
imum fault signature-signal energy is achieved.  This is be-
cause only a particular band of the overall vibration spectrum 
contains true fault signature, called resonant frequency bands 
with maximum signal to noise ratio (SNR) (Yaqub et al., 
2011c). In the given vibration signal, splitting of high energy 
frequency bands into multiple lower level decomposition 
nodes helps in identifying the nodes which are true repre-
sentative of the fault. The optimal decomposition level can be 
determined based on the criterion defined in proposition 1:  

Proposition 1: The high energy frequency bands in the vibra-
tion signal should be decomposed into lower level wavelet 
nodes such that the maximum fault signature-signal energy is 
achieved in a node.  

To study the analytical relations and expressions for the pro-
posed scheme, let us assume that 𝑅𝑖

𝑗 represents the RMS 
value of the 𝑖-𝑡ℎ node at the 𝑗-𝑡ℎ decomposition level and 𝑅𝑗 
is the vector with RMS values for the nodes at 𝑗-𝑡ℎ decompo-
sition level as represented in (9). It is shown in (8) that wave-
let decomposition at level 𝑗 divides the overall vibration 
spectrum into  2𝑗 nodes. 𝑅𝑖

𝑗 gives a measure of signal energy 
at wavelet decomposition nodes, i.e., greater RMS value 
represents greater signal energy.   

𝑹𝒋 = { 𝑅1
𝑗 ,𝑅2

𝑗 ,𝑅3
𝑗 , … ,𝑅2𝑗

𝑗 }.                  (10) 

In order to achieve high energy frequency bands for the fault 
signature-signal, nodes are reordered in the descending order 
of their energy values at their respective level. Let 𝑅�𝑖

𝑗 repre-
sents the 𝑖-𝑡ℎ maximum value at the 𝑗-𝑡ℎ decomposition 
level. Then the number of nodes 𝑁𝐿 which contain 𝜏𝑄 signal 
energy can be determined from the relation in (11):  

𝛾𝑗 =
∑ 𝑅�𝑖

𝑗𝑁𝐿
𝑖=1

∑ 𝑅𝑖
𝑗2𝑗

𝑖=1
≥ 𝜏𝑄,                        (11) 

where 𝜏𝑄 represents the threshold for quantifying the node 
ratio containing certain portion of the signal energy, i.e., 𝑁𝐿 
is the number of nodes which contain 𝜏𝑄% of the signal con-
tents in terms of RMS value. The node-ratio (11) is computed 
for every decomposition level. By increasing the decomposi-

Figure 4. Wavelet packet transform (WPT). 
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Table 1. RMS value of the lowest frequency nodes at 
levels1-6 
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Figure 5. Coefficients for the lowest frequency node at levels 1-6.  
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tion level, the ratio decreases as the number of sub-bands is 
increased and the probability that lesser number of nodes 
would contain signal energy greater than 𝜏𝑄. Once the maxi-
mum signature-signal energy nodes are determined, then the 
node-ratio (11) does not change even if decomposition levels 
are further increased, because least possible number of nodes 
has been achieved which contain signal energy less than 𝜏𝑄. 
Analytically, the rate of change of 𝛾𝑗  with respect to 𝑗 should 
be zero, resulting in maximum fault signature-signal energy 
in the nodes at that level (12): 

𝑑𝛾𝑗

𝑑𝑗
≈ 0.                                  (12) 

Studies were conducted for bearings faults: inner race, ball 
and outer race faults to determine the dependency of 𝜏𝑄 on 
node-ratio (11), by varying 𝜏𝑄 from 10% to 90% and it was 
observed (Section IV) that the horizontalness of the node-
ratio (11) is always achieved at the same decomposition level 
irrespective of the value of threshold, i.e., decomposition 
level selection is independent of the threshold value, 𝜏𝑄. The 
optimal decomposition level is found to be ‘6’, which results 
in 64 feature values (8). 

Adaptive Wavelet Nodes Selection 

It has been investigated (Yaqub et al., 2011c) that only a 
small portion of the overall vibration spectrum contains true 
information regarding the fault induced vibrations and the 
rest is noise. The useful information lies in the resonant fre-
quency band which contains the highest SNR (Yaqub et al., 
2011c). All the features do not contain true fault signatures, 
so feature selection is vital along with optimal decomposition 
level selection. A criterion is proposed to select the nodes 
containing relatively larger signal energy. The rest of nodes 
corresponding to poor SNR values are discarded and not used 
in the prediction model which ensures the robustness in the 
proposed scheme under poor SNR.  
Let us assume that 𝑅𝑖

𝑗 represents the RMS value of the 𝑖-𝑡ℎ 
node at the 𝑗-𝑡ℎ decomposition level. 𝑅𝑖

𝑗 gives a measure of 
the signal energy at 𝑖-𝑡ℎ node, i.e., greater RMS value repre-
sents greater signal energy.  

𝑹𝑗 = { 𝑅1
𝑗 ,𝑅2

𝑗 , … ,𝑅2𝑗
𝑗 }.                         (13) 

𝑹𝑗 represents the RMS values for all the nodes at 𝑗-𝑡ℎ de-
composition level. If 𝑅�𝑖

𝑗 represents the nodes order in the 
ascending order of their RMS values, ratio 𝛾𝑛 is defined such 
that 𝑁𝐷 nodes are selected out of the total 2𝑗 nodes as in (14). 
The optimal value for 𝛾𝑛 is determined using parameter op-
timization techniques given in Section III. Irrespective of the 
machine dynamics, the optimal value for 𝛾𝑛 gives the num-
ber of nodes which contain relatively higher value for signal 
energy, and the corresponding node indices give feature vec-
tor for the residual life prediction model. 

∑ 𝑅�𝑖
𝑗𝑁𝐷

𝑖=1

∑ 𝑅𝑖
𝑗2𝑗

𝑖=1
≥ 𝛾𝑛.                               (14) 

Residual Life Prediction:  

RWMS develops a novel multi-step predictive maintenance 
system based upon support vector regression. Vibration data 
from multiple severity levels is used and feature vectors are 
extracted as described in subsection ‘adaptive wavelet nodes 
selection’. The multi-step SVR (MSVR) model works in two 

steps. In the first step, the two severity levels (upper and low-
er) of the training data are selected which surround the test 
query (test datapoint) with unknown severity level of the fault. 
In the second step, the SVR based prediction model is built 
with the selected severity levels. Instead of building the pre-
diction model with all the severity levels of the training data 
(Sotiris and Pecht, 2007, Kim et al., 2009), MSVR uses only 
two severity levels of the training data within which test query 
lies. It enhances the overall prediction accuracy because defect 
propagation or RMS based feature values follow a non-linear 
curve with respect to time as described by Paris’s law (Pugno 
et al., 2006). It explains the rate of change of defect length 
with respect to speed of rotation as in (15):  

𝑑𝑎
𝑑𝑁

= 𝐶𝑜(∆𝐾)𝑛                                (15) 

where 𝑎 and 𝑁 represent instantaneous defect length and 
speed respectively, and 𝐶𝑜 and 𝑛 are material dependent con-
stants. ∆𝐾 represents range of strength intensity. It can also be 
written as in (16):  

 𝐷′ =  𝑑𝐷
𝑑𝑡

= 𝐶𝑜𝐷𝑛                             (16) 

It shows that the rate of change of instantaneous defect area 𝐷 
is exponential function of instantaneous defect area. Figure 6 
plots the average feature value (extracted by computing RMS 
value) with respect to the variation in the residual life of the 
equipment. It shows that the feature values used to determine 
the residual life of the equipment vary exponentially with 
defect propagation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 gives the orientation of the data points with the three 
severity levels, i.e., sev1, sev2 and sev3. Based on the position 
of the test query, represented as ‘star’, the training severity 
levels are selected, i.e., ‘sev1 = ’, ‘sev2 = ’. In the result 
section, it is validated that the selection of the training data-
points which are in the vicinity of test point, enhances the 
prediction accuracy contrary to the techniques (Sotiris and 
Pecht, 2007, Kim et al., 2009) based on building the predict 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

‘sev1 = ’, ‘sev2 = ’, ‘sev3 = +’, ‘test query =  
Figure 7. Residual life prediction. 

   

 

 

 

 

Figure 6. Average feature value vs. residual life. 
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tion model by using the training data points from all the sever-
ity levels.  
Support vector machine (SVM) is extensively used technique 
for classification and estimation (Sotiris and Pecht, 2007). 
Figure 8 gives the orientation of the optimal hyper-plane in 
the case when two severity levels are used to build the fault 
estimation model. The data points which are nearest to the 
decision boundary are called support vectors and help in 
calibrating the fault prediction model, represented as 𝑠𝑣1, 
𝑠𝑣2, 𝑠𝑣3, and 𝑠𝑣4 in Figure 8.  

 

 

 

 

 

 

 

 
 

In order to build the residual life prediction model, consider 
the training dataset 𝑫 = {(𝒙𝒊,𝑦𝑖)} with an input feature vec-
tor as 𝒙𝒊 ∈ 𝑅𝑁𝐷 and the corresponding severity levels are 
assigned the labels as 𝑦𝑖 ∈ {−1,1}. To find an optimal sepa-
rating hyper plane, each input 𝒙𝒊 is mapped to higher dimen-
sional space via a non-linear mapping, such that 𝒛𝒊 = 𝜑(𝒙𝒊). 
There exists a vector 𝒘 and scalar 𝑏 that define the separating 
hyperplane as 𝒘. 𝒛𝒊 +  𝑏 = 0 as in (17):  

𝑦𝑖(𝒘. 𝒛𝒊 +  𝑏) ≥ 1 − 𝜉𝑖   𝑤ℎ𝑒𝑟𝑒 (𝒘 𝜖 𝑅𝑛 , 𝑏 𝜖 𝑅), (17) 

where 𝜉𝑖 ≥ 0 are slack variables and only misclassified train-
ing samples generate non-zero 𝜉𝑖. As in Figure 8, the optimal 
hyper-plane with maximal margin is equivalent to minimiz-
ing the value of ‖𝒘‖ which may be defined as quadratic op-
timization problem as in (18): 

𝑚𝑖𝑛 1
2
〈𝒘.𝒘〉 + 𝐶 ∑ 𝜉𝑖𝐿

𝑖=1 ,                    (18) 

where C is a constant parameter, called regularization param-
eter, determines the trade-off between maximum margin and 
minimum classification error. The optimization problem in 
(18) is quadratic programming problem and can be formulat-
ed in terms of Lagrangian multipliers (Vapnik et al., 1994) as 
in (19): 

𝑚𝑎𝑥 𝐿(𝜶) =  ∑ 𝛼𝑖 −𝑚
𝑖=1

1
2

 ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾〈𝒙𝒊.𝒙𝒋〉 𝑚
𝑖,𝑗=1   

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝛼𝑖𝑦𝑖𝐿
𝑖=1 = 0 𝑎𝑛𝑑 0 ≤ 𝛼𝑖 ≤ 𝐶,          (19) 

where 𝛼𝑖 is non-negative Lagrangian multipliers and 𝐾 is the 
Kernel function which is equivalent to transforming the input 
feature vector 𝒙𝒊 to higher dimensional feature space as in 
(20):  

𝐾�𝒙𝒊,𝒙𝒋� =  〈𝜑(𝒙𝒊),𝜑�𝒙𝒋�〉,                       (20) 

There are many choices of Kernal’s such as RBF (21), Poly-
nomial (22) and Hyperbolic tangent (23):  

𝐾�𝒙𝒊,𝒙𝒋� = 𝑒−𝛾𝑘�𝒙𝒊−𝒙𝒋�
2
,                       (21) 

𝐾�𝒙𝒊,𝒙𝒋� = (𝒙𝒊.𝒙𝒋 + 1)𝑑,                      (22) 

𝐾�𝒙𝒊,𝒙𝒋� = 𝑡𝑎𝑛ℎ(𝛽𝒙𝒊.𝒙𝒋 + 𝑏).                (23) 

In fault severity estimation model, labels are only defined to 
determine the orientation of the optimal hyper-planes other-
wise SVM also gives the probabilistic measure for the near-
ness and farness of the test data point with unknown severity 
level from the training data points with known severity levels 
(Platt, 1999), which gives the residual life of the equipment. 
In support vector regression (SVR), the optimal regression 
hyperplanes (17)-(19) are determined that best fit the training 
datasets belonging to different severity levels. In this paper, 
the performance of RWMS is measured by using linear and 
RBF kernels which are the most commonly used kernel func-
tions (Hu et al., 2007, Hsu et al., 2003).  

DATA ACQUISITION AND PARAMETERS 
OPTIMIZATION 

Data Acquisition:  

The data were generated by NSF I/UCR Center on Intelligent 
Maintenance Systems (IMS) with support from Rexnord 
Corp. in Milwaukee, WI (Qiu et al., 2003). Four bearings 
were installed on one shaft. The speed of rotation was kept 
constant at 2000RPM with a radial load of 6000lb. On each 
bearing two PCB 353B33 High Sensitivity Quartz ICP accel-
erometers were installed for a total of 8 accelerometers (one 
vertical Y and one horizontal X on each). Figure 9 shows the 
test rig and illustrates sensor placement. All failures occurred 
after exceeding designed life time of the bearings that is more 
than 100 million revolutions. Vibration data were recorded 
every 10 minutes for the period of 02/12/2004 10:32:39 – 
02/19/2004 06:22:39 using a NI DAQ Card 6062E. At the 
end of the test-to-failure experiment an outer race failure 
occurred on bearing 1. 

 

 

 

 

 

 

 

Parameters Optimization: 

There are five parameters to be optimized; decomposition 
level (𝑛𝑑𝑒𝑐𝑜𝑚𝑝), number of nodes (𝑁𝐷), regularization pa-
rameter 𝐶, RBF kernel 𝛾𝑘 and epsilon 𝜀. Two of the parame-
ters: 𝑛𝑑𝑒𝑐𝑜𝑚𝑝 and 𝑁𝐷 are related to wavelet decomposition, 
and rest of the parameters i.e., 𝐶, 𝛾𝑘 and 𝜀 belong to SVR. 
Results for optimizing 𝑛𝑑𝑒𝑐𝑜𝑚𝑝 and 𝑁𝐷 are presented in de-
tail in Section IV. The applicability of the proposed general-
ized criterion for the optimal selection of the decomposition 
level is also presented. In order to optimize the SVR parame-
ters, i.e., 𝐶, 𝛾𝑘 and 𝜀, vibration data are divided into two 
subsets, training dataset (67%) and test dataset (33%). The 
training dataset is used for optimizing the parameters using 5-
fold cross validation (Hsu et al., 2003). Root mean square 

𝑠𝑣1 

𝑠𝑣2 

𝑠𝑣3 

𝑠𝑣4 

𝐻1 
𝐻 
𝐻2 

Figure 8. Optimal hyper-plane in SVM. 

Figure 9. Experimental setup (Qiu et al., 2003). 
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error (RMSE) (24) is minimized as quantification metric in 
parameters optimization. It exploits the difference between 
the actual and the estimated value. Greater the value of 
RMSE, poorer is the performance of the predictor.  

𝑅𝑀𝑆𝐸 =  �∑ (𝐴𝑐𝑡𝑢𝑎𝑙𝑖−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑖)2𝑁
𝑖=1

𝑁

2
.              (24) 

EXPERIMENTAL RESULTS  

This section presents the result to validate the performance of 
RWMS. The performance is measured in terms of RMSE 
value. The actual value is taken from the curve presented in 
Figure 6. The first part of this section contains the perfor-
mance evaluation of RWMS. The second part illustrates op-
timal selection of the decomposition level. The last part pre-
sents the results which emphasize the need of dominant de-
composition nodes selection.  

Performance Evaluation of RWMS:  

Table 2 presents the results for the residual life prediction in 
RWMS. The experimental datasets is used for 13 levels, lev-
el-1 correspond to the data when remnant life of the equip-
ment is 100% and level-13 correspond to the point, when 
remaining life of the equipment is 0%. The regressor parame-
ters are optimized as described in subsection ‘parameters 
optimization’ using the training data given in Table 2 and 
performance is validated using the test data. Performance is 
measured using (24). Table 2 shows that the residual life 
prediction model is divided into three steps, i.e., [1→5], 
[5→9] and [9→13]. The performance of the proposed model 
is measured using linear as well as RBF kernel. The predic-
tion accuracy is better in case of RBF kernel as compared to 
linear kernel as it has tendency to define boundaries for non-
linearly separable datasets (Hsu et al., 2003).  

 

 

 

 

 
 
 
Table 2 gives the performance evaluation with 3-step predic-
tion model. Table 3 presents the performance evaluation by 
varying the number of steps in the prediction model. In case 
of ‘conventional SVR’, the prediction model is built by using 
training levels-1, 5, 9 & 13. Table 3 shows that the prediction 
accuracy of MSVR (2-step, 3-steps, 4-steps) is better as com-
pared to the prediction model based on SVR. In case of 
MSVR, since the defect propagation is non-linear as de-
scribed in Figure 6, by increasing the number of steps, accu-
racy is improved. Intuitively, the prediction accuracy is in-
creased as it requires larger information in terms of historical 
(training) data to build the fault prediction model. 
 
 

 

 

 

 

Optimal Decomposition Level Selection:  

Figure 9a-d present the results for optimal selection of de-
composition level. The node ratio 𝛾𝑗  in (11) is plotted against 
decomposition level for different value of the thresholds 𝜏𝑄 
(30%, 60% and 90%). The ratio corresponds to the number of 
nodes containing 𝜏𝑄% of the signal RMS value to the total 
number of nodes at a particular decomposition level. The 
results are presented for the training vibration datasets in 
Table 2: Figure 10a (Level-1), Figure 10b (Level-5), Figure 
10c (Level-9) and Figure 10d (Level-13). Figures 10a-d show 
that if the number of decomposition level is increased then 
the node-ratio decreases to a certain extent and then 
horizontalized. These figures show that the optimal 
decomposition level is ‘6’, after which there is no significant 
variation in the ratio. Moreover, Figures 10a-d manifest that 
the optimal decomposition level selection is independent of 
the node-ratio threshold in (11), i.e., 𝜏𝑄. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 2. RMSE vs. Node Ratio 
Train Test Kernel RMSE Avg. RMSE 
[1 5] [2 3 4] Linear 3.7635  
[5 9] [6 7 8] Linear 1.3358 2.4195 

[9 13] [10 11 12] Linear 2.1591  
[1 5] [2 3 4] RBF 2.5261  
[5 9] [6 7 8] RBF 1.3349 1.5288 

[9 13] [10 11 12] RBF 0.7254  
 

Table 3. Multi-step Prediction 
Experimental Setup RMSE (Linear) RMSE (RBF) 
Conventional SVR 

(Sotiris and Pecht, 2007, Kim 
et al., 2009) 

5.5190 3.6636 

2-Steps Prediction 5.3909 2.4422 
3-Steps Prediction (RWMS) 2.5067 1.9557 

4-Steps Prediction 1.9190 1.4398 
 

Figure 10a. Optimal decomposition level selection, Level-1 
 

 

 

 

Figure 10b. Optimal decomposition level selection, Level-5. 
 

 

 

 

Figure 10c. Optimal decomposition level selection, Level-9. 
 

 

 

 

Figure 10d. Optimal decomposition level selection, Level-13.  
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In order to further elaborate the working of the proposed 
scheme, Table 4a-b list the prediction accuracy by varying 
the decomposition level. It shows that by increasing the 
decomposition level, prediction accuracy is improved. 
Moreover, if the decomposition level is increased beyond ‘6’ 
(optimal decomposition level), the prediction accuracy 
almost remains same, i.e., further increment in the 
decomposition level is not enhancing the prediction accuracy.  
 

 

 

 

 

 

 

 

 

 

Optimal Decomposition Nodes Selection: 

RWMS emphasises the need for the optimal selection of the 
decomposition nodes rather than building the prediction 
model with all the nodes. Figure 11 presents the results both 
for ‘linear’ and ‘RBF’ kernel to substantiate the need for the 
selection of the dominant decomposition nodes. It shows that 
the prediction accuracy is maximum (RMSE is minimum) 
when number of decomposition nodes is ‘9’, although at sixth 
decomposition level, total number of nodes is ‘64’. The op-
timal selection of the decomposition nodes not only enhances 
the prediction accuracy but also reduces the complexity of 
the prediction model by decreasing the number of decompo-
sition nodes.  

 

 

 

 

 

 

 

CONCLUSION 

This paper proposes a novel technique for residual life pre-
diction of the rotary equipment based on optimally parame-
terized wavelet transform and multi-step support vector re-
gression. In optimally parameterized wavelet transform, a 
generalized criterion is proposed for optimal selection of the 
decomposition level as well as decomposition nodes. The 
criterion for decomposition level selection defines an upper 
limit on the decomposition level.  Optimal decomposition 
nodes selection does not only enhances the prediction accura-
cy, but also reduces the complexity. The ‘multi-step’ regres-
sor further enhances the prediction accuracy as compared to 
the conventional SVR based prediction techniques. The over-

all performance of the RWMS in terms of prediction accura-
cy justifies the efficacy of the proposed scheme in industrial 
processes to predict the residual life of the equipment. 
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