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ABSTRACT 

 
Many structures have apparent symmetries, implying symmetrical mode shapes of vibration. Practically many of 
those structures show asymmetric mode shapes. Slight variations in structure geometry, boundary conditions and ma-
terial properties are often the cause of such asymmetric vibration properties.  In this paper, the finite element method 
is applied to analyze the vibration characteristics of a cylinder with a slightly varying diameter. The results indicate 
that some mode shapes of the cylinder vibration are very sensitive to the small diameter variation. The numerical re-
sults of the cylinder vibration are verified experimentally. 

INTRODUCTION 

Symmetric structures are commonly assumed in engineering 
modelling. Practically structural irregularities, resulting from 
manufacturing tolerances and material nonuniformities, may 
change the property of the structural symmetry, and even 
make them asymmetric. For example, the cross sections of 
any pipe may not be perfect circles as there are always slight 
fluctuations in the diameters or material properties of the 
cross sections. As a result, the seemingly symmetrical pipe is 
actually asymmetric. This phenomenon is often ignored and 
the cross section shapes are considered uniform along length 
in traditional vibration modelling of pipes. However, the 
phenomenon may have a significant impact on the structural 
vibration and corresponding sound radiation behavior. There-
fore it is necessary to study the effect of the slight distortion 
in the cross sections on the vibration characteristics of a cy-
lindrical shell. 

Much effort has been devoted to study the influence of vari-
ous types of imperfections or geometric asymmetries on the 
vibration characteristics of the otherwise symmetric struc-
tures. Laura et al. [1] used Rayleigh–Ritz and finite element 
methods to analyze the effect of circumferential variations in 
wall thickness on the eigenfrequencies and axisymmetric 
modes of a nonuniform ring. Hwang et al. [2] employed the 
Novozhilov’s thin-shell theory and Rayleigh–Ritz analysis to 
study the free vibration of a thin ring with variations in the 
ring’s in-plane cross sectional profile. Khurasia and Rewtant 
[3] used finite-element method to examine the free vibrations 
of a thin circular plate with an eccentric hole. Hasheminejad 
et al [4] employed the translational addition theorem to de-
velop an exact 3D elasticity solution for free vibrations of a 
simply supported elastic circular cylinder (shear diaphragm) 
of finite length with an eccentrically located inner circular 
cavity. 

In contrast with the nonuniform rings, relatively few re-
searchers have investigated the effects of slight variation in 
the cross section diameter on the vibrational behavior of cy-
lindrical shells. In this paper, the finite element method 
(FEM) is employed to develop an asymmetric model of a 
free-free cylinder with a slight fluctuation in diameter to 

compare its modal characteristics with that of a similar cylin-
der with a uniform diameter. The geometric parameters of the 
asymmetric cylinder are based on those measured of a real 
pipe used for the experimental verification. 

Modal tests of the pipe are carried out to verify the accuracy 
of finite element model. Through comparisons between the 
experimental and FEM results, useful conclusions are drawn. 

NUMERICAL MODEL 

Modelling of asymmetric cylinder 
A practical pipe often has slight variation in its diameter, 
meaning its cross sections are not circular rings of constant 
thickness. The largest diameter of cross sections at the two 
ends of the pipe may be also twisted with an angular dis-
placement. Although these variations are too small to be in-
spected visually, they do exist. An example is shown in Fig-
ure 1, which is plotted based on the measured data of a steel 
pipe (see Appendix C). The length, average diameter and 
wall thickness of the pipe are respectively 1.2 m, 0.0161m 
and 7mm.  

In Figure 1, the fluctuations of the internal and external ra-
dius of the pipe cross section around averaged radius for each 
end are displayed. It can be seen that radii of the cross sec-
tions vary: the maximum relative variation is 0.35mm. There 
are also about 10 degree rotational displacements between the 
cross sections. Because the cylinder is a continuous system, it 
is assumed that its cross section continuously rotates along 
the length of the cylinder. The geometric model of the cylin-
der is established by plotting the cross section formed by the 
experiment data at the top end and linearly rotating the cross 
section along its length until a 10 degree angle is achieved at 
the bottom end. This model and free-free boundary condition 
are then imported into ANSYS [5-6] and meshed by the solid 
187 element, for finite element analysis. The finite element 
model is demonstrated as Figure 2. To compare with the 
dynamic characteristics of a uniform cylinder, a model with a 
perfect circle cross section in a perfect model twithout rota-
tion is drawn and imported into ANSYS. In the perfect model 
without rotation, the max element size is 0.01m and total 
number of elements is 40790.The umber of element change 
to 40422 in the rotational and varying cross section model of 
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same element size. The elastic modulus, Poisson’s ratio and 
density in both models are 2.1×1011N/m2 , 0.33 and 7.8×
103kg/m3 respectively. 

 

(a) top end of the pipe 

 
(b) bottom end of the pipe 

Figure 1: Radius fluctuations around the average radius 

 

Figure 2: Finite Element model of the cylinder 

Free vibration results 

The vibration characteristics of the undamped cylinders are 
described by the natural frequencies and mode shapes. The 
first 10 natural frequencies of the two cylinders are calculated 
and compared in Table 1. Accordingly, the mode shapes of 
cylinders at those frequencies are extended to a plan style and 
plotted in Figures 3-6 and Figures A.2-A.7. 

The out-of-plane modes of the cylinder are also summarised 
in Table 1, where n represents the circumferential number 
and m axial node number. Among the modes obtained, 
circumferential number n=1, 2, 3 and axial node number 
m=0, 1, 2, 3 were observed. The definition of n and m are 
given in reference [7]. 

Table 1 Natural frequencies of the uniform and asymmetric 
cylinders 

Order  

Natural frequency (Hz) Node 
num-
bers 

(n,m) 

figure 
number uniform 

cylinder 
asymmetric 

cylinder 
1 659.7 657.32 (1,2) Figure A1  

2 659.7 662.31 (1,2) Figure A2 

3 724.07 716.66 (2,0) Figure 3 

4 724.18 723.58 (2,0) Figure 4 

5 727.93 720.76 (2,1) Figure 5 

6 728.06 727.39 (2,1) Figure 6  

7 779.6 775.3 (2,2) Figure A3 

8 779.69 780.34 (2,2) Figure A4 

9 985.28 982.28 (2,3) Figure A5 

10 985.35 985.37 (2,3) Figure A6 

We have found that the modes of the asymmetric and uni-
form cylinders can be directly compared. They are grouped in 
Table 1 in terms of the mode order and its node numbers.  

For a given pair of node numbers (n, m), there are always two 
orthogonal modes. The natural frequencies and mode shapes 
of the asymmetric and uniform cylinder in the same group are 
compared below:   

(a.1) For the asymmetric and uniform cylinder modes with 
the same order and node numbers of n, m=0 or n, m=1, the 
natural frequency of the asymmetric cylinder mode is always 
lower than that of the uniform cylinder mode.  

(a.2) For the asymmetric and uniform cylinder modes with 
the same order and node numbers of  (n, m= 2) or (n, m=3), 
the difference between natural frequencies of the asymmetric 
cylinder modes with the same node numbers is greater than 
that of the counterpart uniform cylinder. For this case, the 
lower natural frequency in the mode pair of the asymmetric 
cylinder becomes lower than that of the uniform cylinder 
mode, and the higher natural frequency becomes higher. 

(a.3) For the modes of the uniform cylinder, either their axial 
node lines or anti-node lines start from zero degree of the 
coordinates. However for the modes of the asymmetric cylin-
der, their nodal lines or anti-nodal line have an angle off-set. 
In addition, the nodal lines or anti-nodal lines of some 
asymmetric cylinder modes even roll up or down by an angle.  
Taking the mode shapes in Figure A2 as an example, the first 
node line (red line) of the uniform cylinder starts at 0 de-
grees, while that of the asymmetric cylinder starts at 30 de-
grees. In Figure 4, the first node line of the asymmetric cyl-
inder mode at L =0 is located at 30 degrees. Then the node 
line rolls down as the length increases: it is at 12 degrees at 
L=1.2m. 

To show the relative change of the mode shapes between the 
asymmetric and uniform modes of the same order, the angu-
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lar difference between the starting angle (measured at L = 0) 
of the first nodal line (red lines in Figures 3 to 6 and Figures 
A1 to A6 ) of the asymmetric cylinder and that of the uniform 
cylinder is defined as the shift angle. The relative angle be-
tween the starting and the ending of the first nodal line is 
defined as the rolling angle. All shift and rolling angles of the 
10 modes are listed in Table 2.  

(a.4) In Figure 1, it can be seen that the largest radius of the 
top end of the asymmetric cylinder occurs at 120 degrees. In 
reference [8], the anti-node lines or node lines of the mode 
shapes of a cylinder with variable circumferential profile 
always appears at the highest or lowest radius. The calculated 
node or anti-node lines of the asymmetric cylinder agree 
approximately with the observation made in [8]. For exam-
ple, the first nodal line of the (1,2) asymmetric cylinder 
modes in Figure A1 is located at 30 degrees, and its first anti-
node line is indeed located at 120 degrees. 

Table 2. Shift and rolling angle of mode shapes of cylinders 

Mode 
Order 

Starting of the first node line 
Shift 

Angle 
(degree) 

uniform 
cylinder 

asymmetric 
cylinder 

(degree) (degree) 
1 90 120 30 
2 0 30 30 
3 45 75 30 
4 0 30 30 
5 45 75 30 
6 0 30 30 
7 45 70 25 
8 0 24 24 
9 45 35 -10 
10 0  -10(80) -10 

 

Mode 
Order 

asymmetric cylinder 
Rolling 
Angle 

(degree) 

Starting of 
the first 

node line 

Ending of  
the first 

node line 
(degree) (degree) 

1 120 120 0 
2 30 30 0 
3 75 69 6 
4 30 12 18 
5 75 63 12 
6 30 27 3 
7 70 70 0 
8 24 24 0 
9 35 35 0 

10 -10(80) -10(80) 0 

 

(a) uniform cylinder 

 
       (b) asymmetric cylinder 

Figure 3: Mode shapes of cylinders at the 3rd natural fre-
quency 

 
(a) uniform cylinder     

 
     (b) asymmetric cylinder 

Figure 4: Mode shapes of cylinders at the 4th natural fre-
quency 

 
(a) uniform cylinder 

 
      (b) asymmetric cylinder 

Figure 5: Mode shapes of cylinders at the 5th natural fre-
quency 
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(a) uniform cylinder 

 
      (b) asymmetric cylinder 

Figure 6: Mode shapes of cylinders at the 6th natural fre-
quency 

 (a.5) The alignment of the node and anti-node lines of the 
asymmetric cylinder in this paper, however, is more compli-
cated than that in [8]. This is not only due to the relative an-
gular shift of the profiles between the top and bottom cross 
sections, but also to the non-orthogonal angle between the 
directions for the maximum and minimum diameters of the 
cross sections.  

As a result, although the angular alignments of the first two 
modes are very close to 120 degrees (30 degrees) at both 
ends of the cylinder, such alignment is not exact because of 
the angular shift between maximum diameters at two ends. 
As the relative value of the angular shift between node and 
anti-node of the lower order modes is small, the exact align-
ment is difficult to determine. This also applies to higher 
order modes (for modes 7-10) of the asymmetrical cylinder.  
However, the observed angular alignment becomes quite 
different to that indicated in [8]. For this case, angular align-
ments of mode shapes are close to 70 degrees (25 degrees) 
and 80 degrees (35 degrees) at both ends of the cylinder. 
Based on the above results, it is concluded that anti-node 
lines and node lines in the alignment of the cylinder at those 
modes probably align closely with the angular positions of 
maximum and minimum radius of the two ends. Such align-
ment must be due to the effect of the relative shift of the an-
gles for the maximum diameters between the top and bottom 
sections and irregular profiles in the diameters. Nevertheless, 
future work is required to focus on the reasons causing the 
angular alignment of the modes. 

For the modes with axial node number below 2, their angular 
alignments at the two ends of the cylinder are significantly 
different. This phenomenon was not covered in [8]. For the 
3rd mode, it starts at 75 degrees at the top end and ends at 69 
degree at the bottom end. So the alignments at the two ends 
differ by 6 degrees. For the 4th mode, it starts at 30 degrees 
and stops at 12 degrees. Anti-nodes at two ends of above 
modes’ alignment are in-phase. For the 5th mode, the angular 
alignment changes from 75 degrees at the top end to 63 de-
grees at the bottom end. For the 6th mode, it changes from 30 
degrees to 27 degrees.  Along the alignment, the anti-nodes 
of the two modes at the two ends of cylinder are out of phase. 

Qualitatively the circumferential stiffness distribution of the 
cylinder is no longer the same along the length as the cylin-
der’s diameter profile varies with length.  Therefore the vi-
bration velocities must adjust their distribution at each fer-
quency to satisfy the requirement of the minimum energy 
principle. Finite element analysis is based on Hamiton’s 
minimum energy principle and demonstrated that the unique 
way for the cylinder to obey this principle is to adjust the 
node lines or anti-node lines of mode shapes so that they roll 
from the top end to the bottom end with a specific starting 
angle and rolling angle. 

EXPERIMENT RESULTS 

The pipe, whose measured geometric details are shown in 
Appendix C, is selected for experimental analysis. It is sus-
pended by two steel cables through 4 holes in the top end. 
The outside surface of the pipe is divided into 12×20 subar-
eas of equal size. The circumference of each cross section is 
equally divided by 12 points, and the total length of pipe is 
equally covered by 21 points. Thus, all together, 252 meas-
urement points are selected on the pipe surface. The number-
ing of the position begins from the welding line and increases 
clockwise from the top end to the bottom end of the pipe (see 
Figure 7). 

 

Figure 7: Distribution of test positions 

In the experiment, the natural frequencies and mode shapes 
are obtained using the impulse method, which involves the 
measurement of the impact force using an impact hammer at 
bottom of the cylinder near test point number 220 and the 
acceleration using accelerometers at all the test positions. As 
two accelerometers were used, the tests were repeated so that 
the different positions could be measured. Charge amplifiers, 
data acquisition card and signal processing software in a 
computer are used to extract the natural frequencies and 
mode shapes of the cylinder. The set up of the experiment is 
shown in Figure 8.  

   

Figure 8. Experimental setup 

At each measuring point, the acceleration and impulse force 
were measured simultaneously. They yield the Frequency 
Response Function (FRF) which is used to identify resonance 
frequencies and mode shapes.  
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The sampling frequency for the modal testing is 6400Hz. 
Attention was focused on the frequency range below 1000Hz, 
where the first 6 modes are located. The spatial averaged 
FRF functions of the cylinder are presented in Figure 9. To-
gether with the mass of the cylinder, the averaged FRF repre-
sents the spatial averaged vibration energy with respect to 
one unit force of excitation on the pipe.  
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Figure 9:  Average energy of the cylinder with respect to the 
driving force 

From the spatial averaged energy response, the resonance 
peaks can be readily identified. Comparing these results with 
the simulation results, the experimental natural frequencies 
are identified and listed in Table 3. Corresponding to each 
frequency, the amplitude and phase information were ex-
tracted to plot the modal shapes. To obtain a better under-
standing of the test results, the corresponding mode shapes of 
the cylinder obtained experimentally are also displayed in 
plan view, shown as Figures 10-11 and Figures B1-B4. Node 
number of each mode is also listed in Table 3 for an easy 
comparison between the simulated and tested mode shapes. 

Table 3: Measured natural frequencies of cylinder 

Order Number 

Frequency Node Number 

Figure Number (Hz) (n,m) 
1 656 (1,2) Figure B1  
2 - - -  
3 - - - 
4 712 (2,0) Figure 10 
5 717 (2,1) Figure 11 
6 - - - 
7 770 (2,2) Figure B2 
8 - - - 
9 975 (2,3) Figure B3 

10 980 (2,3) Figure B4 

 

Figure 10: Measured mode shape at the 4th natural frequency 

 

Figure 11: Measured mode shape at the 5th natural frequency 

We have the following observations from the experimental 
results: 

(b.1)  It has been shown in FEM calculation that the two 
modes with the same nodal numbers have their natural fre-
quencies closely located. As a result, the measurement of the 
mode shapes at those natural frequencies is dependent on the 
location of driving force. If the driving force is located near 
the nodal point of the mode, this mode may not be excited 
and therefore its mode shape and even its natural frequency 
may not be observed clearly. This might be the reason why 
the 2nd , 3rd , 6th and 8th modes are not identified.  Further-
more, the drive point may be between the antinode and node 
of two orthogonal modes whose frequencies are close to each 
other. In this case, the responses contributed from two modes 
are almost equal even at one of their natural frequencies. It 
will then be difficult to distinguish the individual mode con-
tribution. This might be the case for the measured mode 
shape at the 4th natural frequency. This is perhaps the other 
reason why four modes disappeared in the experiment. 

(b.2) The natural frequencies with the same node number 
depart from each other.  The mode shapes rotate from one 
end to other end, when m=0 or 1 in support of the simulation. 

 (b.3) Differences between the natural frequencies of the 
simulation and test results with same mode shape is very 
small and increase slightly with rise in frequency.  

(b.4) Because there is no experimental data for the uniform 
cylinder, tested mode shapes and mode shapes of the uniform 
cylinder in simulation are selected to reveal experimentally 
the alignment of the node/anti-node lines based on the cross 
section profile and relative angular shift of the node/anti-node 
lines between the top and bottom ends.  All results are listed 
and compared to simulation results in Table 4. Although 
there is obvious difference between results in simulation and 
experiment, the alignment of the node/anti-node lines and 
relative angular shift between the two sections at the ends are 
confirmed.  

Every cross section of cylinder is divided into 12 parts in 
experiment. The smallest distinguishable unit of change in 
angle of mode shape is thus 30 degrees. Hence, if the shift 
and rolling angle of mode shape are smaller than 30 degree, 
some of them may not be recognized in the test. This is the 
main reason why translational shift of mode shape in the 
experiment results and those in the calculation have great 
differences. 
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Table 4: Shift and rolling angles in simulation and measure-
ment results 

Order 
Shift Angle (degree) Rolling Angle(degree) 

experiment simulation experiment simulation 
1 30 30 0 0 
4 0 30 30 18 
5 0 30 30 12 
7 0 25 0 0 
9 -15 -10 0 0 

10 -30 -10 0 0 

 (b.5) The simulation and test results demonstrates that even a 
0.4% fluctuation in diameters of cylinder can generate the 
deterministic change in vibration characteristics, like mode 
shape rolling from the top end to the bottom end by 30 de-
gree. To understand the modal details of the structure, such as 
the asymmetric cylinder considered here, the effect of the 
cross section profile and relative angular shift between the 
cross sections must be taken into account. 

CONCLUSIONS  

This paper presents a model which can be used to analyse 
effects of slight fluctuations in diameter of cylinder on its 
dynamic characteristics. The model used the finite element 
method based on the geometric parameters of a real pipe. All 
the results were compared with those of uniform cylinder 
model in which difference of diameter are neglected. Both 
variations in diameters and rotation of the profiles along the 
length of the pipe were included. It is concluded that natural 
frequencies with same node number are divided into two 
different frequencies after considering slight changes in ge-
ometry of cylinder. The mode shapes shift an angle for each 
mode. Mode shapes rolling from one end to the other occur, 
when m numbers of them are equal to 0 or 1. Finally, modal 
testing of the pipe whose parameters used in the simulation 
was carried out and the results in the experiment and simula-
tion were close. It was demonstrated that model built in this 
paper is accurate and slight changes in diameter of a cylinder 
should be considered in establishing the dynamic model of 
real cylinder. 
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APPENDIX A 

 

Figure A1: 3D view of the 1st natural frequency 

 
     (a) uniform cylinder         (b) asymmetric cylinder 

Figure A2: Mode shapes of cylinders at the 1st natural fre-
quency 

 
     (a) uniform cylinder         (b) asymmetric cylinder 

Figure A3: Mode shapes of cylinders at the 2nd natural fre-
quency 

 
(a) uniform cylinder         (b) asymmetric cylinder 

Figure A4: Mode shapes of cylinders at the 7th natural fre-
quency 

 
(a) uniform cylinder         (b) asymmetric cylinder 

Figure A5: Mode shapes of cylinders at the 8th natural fre-
quency 

 
(a) uniform cylinder         (b) asymmetric cylinder 

Figure A6: Mode shapes of cylinders at the 9th natural fre-
quency 
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(a) uniform cylinder         (b) asymmetric cylinder 

Figure A7: Mode shapes of cylinders at the 10th natural fre-
quency 

APPENDIX B 

 

Figure B1: Measured mode shape at the 1st natural frequency 

 

Figure B2: Measured mode shape at the 7th natural frequency 

 

Figure B3: Measured mode shape at the 9th natural frequency 

 

Figure B4: Measured mode shape at the 10th natural fre-
quency 

APPENDIX C 

The size of the pipe for the test is 1.2m in length, 0.17 m in 
outside diameter and 0.007m in wall thickness. The cylinder 
has a welding line as shown in Figure C.1. Vernier callipers 
are used to measure the inside and outside diameters of the 
top end and bottom cross sections per 10 degree starting from 

the weld. Details of this measurement are plotted in Figure 
C.2 and all results are listed in Table C.1. 

 

Figure C1: The welding line in the cylinder 

 
Figure C2: Details of the cross section measurement 

Table C1: Inner and outer diameters of the cross sections 
Top End Bottom End 

degree 
  

Diameter(m) degree 
  

Diameter(m) 

inner outer inner outer 
0 0.1544 0.1680 0 0.1540 0.1685 

10 0.1545 0.1681 10 0.1545 0.1680 

20 0.1543 0.1681 20 0.1545 0.1681 
30 0.1545 0.1680 30 0.1544 0.1685 
40 0.1548 0.1684 40 0.1545 0.1685 
50 0.1547 0.1685 50 0.1542 0.1682 

60 0.1543 0.1681 60 0.1538 0.1675 
70 0.1539 0.1677 70 0.1535 0.1673 

80 0.1538 0.1677 80 0.1539 0.1675 
90 0.1539 0.1680 90 0.1540 0.1676 

100 0.1540 0.1680 100 0.1543 0.1680 
110 0.1543 0.1686 110 0.1549 0.1687 
120 0.1545 0.1688 120 0.1545 0.1685 
130 0.1545 0.1685 130 0.1543 0.1682 
140 0.1542 0.1681 140 0.1540 0.1680 
150 0.1540 0.1680 150 0.1537 0.1678 
160 0.1539 0.1681 160 0.1540 0.1680 
170 0.1543 0.1684 170 0.1540 0.1680 

 

REFERENCES 

 
[1] Laura P.A.A, Filipich C.P, Rossi R.E, Reyes J.A. 1988, 

“Vibrations of rings of variable cross section”,Applied 
Acoustics, Vol.125, pp. 225–234.  



2-4 November 2011, Gold Coast, Australia Proceedings of ACOUSTICS 2011 

 

8 Acoustics 2011 

[2] Hwang R.S, Fox C.H.J, McWilliam S. 1999, “The in-
plane vibration of thin rings within-plane profile varia-
tions —part I: general background and theoretical for-
mulation”, Journal of Sound and Vibration, Vol.220, no.3, 
pp. 497–516. 

[3] Khurasia H. B, Rewtant S. 1978, “Vibration analysis of 
circular plates with hole”, Journal of Applied Mechanics, 
Vol.45, pp. 215–217. 

[4] Hasheminejad Seyyed M, Mirzaei Yaser.2009, “Free 
vibration analysis of an eccentric hollow cylinder using 
exact 3D elasticity theory”, Journal of Sound and Vibra-
tion, Vol.326, no.3-5, pp. 687–702. 

[5] Lombard M.2008, SolidWorks 2007 Bible, Hoboken: John 
Wiley & Sons, Inc.  

[6] Hatch M.R.2001,Vibration simulation using MATLAB 
and ANSYS, Boca Raton: Chapman & Hall/CRC. 

[7] Liu Wei, Pan Jie, Matthews David. 2010, “Measurement 
of sound-radiation from a torpedo-shaped structure sub-
jected to an axial excitation”, Proceedings of the 20th In-
ternational Congress on Acoustics, ICA 2010, 23-27 Au-
gust 2010, Sydney, Australia. 

[8] Yamada G, Irie T, Tagawa Y.1984, “Free vibration of 
non-circular cylindrical shells with variable circumferen-
tial profile” , Journal of Sound and Vibration,Vol.95, no.1, 
pp.117-126. 

 


