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ABSTRACT 
The purpose of this study is to compare the well-known Ffowcs Williams and Hawkings (FW-H) equation of 
aeroacoustics with the non-uniform Kirchhoff equation derived previously by the author. The purpose of this com-
parison is the clarification of the issue of possible equivalence of the two equations, as they produce equivalent pre-
dictions for radiated sound in many cases despite having different appearance. The comparison is done by reconsider-
ing the original derivation by Ffowcs Williams and Hawkings. It is shown that one set of conditions within the me-
dium inside the rigid body leads to the FW-H equation, whereas another set of conditions leads to the non-uniform 
Kirchhoff equation. As the conditions within the rigid body can be chosen arbitrarily, it is concluded that the two 
equations are equivalent and the non-uniform Kirchhoff equation represents a new form of the FW-H equation. 

INTRODUCTION 

The development of jet aircraft in the 1950s caused signifi-
cant interest from researchers and engineers in the ability to 
predict the noise radiated by fluid flow near surfaces of fast-
moving objects. Sir James Lighthill, in his well-known paper 
(Lighthill 1952), achieved a breakthrough in understanding 
the mechanism of sound radiation by turbulent flow. He 
showed that this mechanism can be described by a non-
uniform wave equation where the source term is determined 
by Lighthill’s stress tensor which includes all non-acoustic 
stresses in the fluid. Lighthill also showed that the radiated 
sound had quadrupole characteristics. 

Curle (1955) extended Lighthill’s theory to fluid flows in the 
presence of rigid boundaries. He showed that, in addition to 
Lighthill’s quadrupole sound, fluid flow near a rigid bound-
ary radiates dipole sound which was determined by the force 
acting upon the flow from the boundary. 

Ffowcs Williams and Hawkings (1969) extended Curle’s 
theory to the case of moving boundaries. They showed that 
the sound radiated by a moving boundary is described by 
monopole sources on the boundary. The strength of these 
sources is determined by the velocity of the boundary with 
respect to a stationary observer. For a stationary object, 
Ffowcs Williams and Hawkings (FW-H) equation is reduced 
to Curle’s equation. 

Since its derivation, the Ffowcs Williams and Hawkings 
equation has become the foundation for one of the most fre-
quently used methods of prediction of sound radiated by fluid 
flow near rigid surfaces. A brief list of applications where the 
FW-H equation is utilised includes rotating helicopter blades 
(Brentner, Farassat 2003), rotating fans (Moon et al. 2003), 
and flow near an airfoil (Howe 1999). This equation is also 
used in the prediction of noise radiated by moving ships, 
submarines, torpedoes, and ship propellers. 

Despite being widely used, the FW-H theory has lacked accu-
rate experimental verification, as the obtained experimental 

results showed a discrepancy of at least a few decibels with 
theoretical predictions (see Zinoviev (2010) for references). 
In view of this fact, Zinoviev and Bies (2004) conducted a 
critical analysis of the derivation of Curle’s equation, where 
they showed that the correct application of theorems of vec-
tor analysis lead to a different equation. Later the obtained 
equation has been given the name “the non-uniform 
Kirchhoff equation” by the present author, as this equation 
contains Kirchhoff integrals (Stratton 1941) together with the 
source term which determines Lighthill’s quadrupole sound. 

The claim by Zinoviev and Bies (2004) that the derivation of 
Curle’s equation contains errors caused objections from some 
members of the aeroacoustical community (Farassat 2005, 
Farassat & Myers 2006), to which the authors provided their 
responses (Zinoviev and Bies 2005, Zinoviev & Bies 2006). 
Although the present author now accepts that some criticism 
regarding examples of application of FW-H and Curle’s 
equations is justified, he remains convinced that his original 
analysis of Curle’s equation is correct. 

As both FW-H and the non-uniform Kirchhoff equations are 
derived for the same problem with the same assumptions, 
there exists a possibility that they are equivalent, i.e. they are, 
in fact, different forms of the same equation. The first attempt 
to answer the question whether these equations are equivalent 
was made by the present author (Zinoviev 2010). He showed 
that the two equations were indeed equivalent if the sum of 
two integrals containing Lighthill’s stress tensor over the 
rigid surface was zero. These two integrals are equivalent to 
the acoustic field radiated by sources determined by 
Lighthill’s stress tensor and its spatial derivatives on the 
boundary.  

The equivalence of the two equations was considered for a 
few situations by Zinoviev (2010). First of all, it was shown 
that the sum of the integrals was zero where Lighthill’s stress 
tensor vanished altogether, for instance, for linear acoustical 
waves in an ideal fluid. Also, it was shown that, for a weakly 
non-linear flow in an ideal fluid near an infinite plane the 
equations are equivalent if the plane is stationary. If the plane 
was vibrating or for flow in a viscous fluid, the sum of the 
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two integrals could be, in general, non-zero, and a more de-
tailed investigation was shown to be required for a definite 
conclusion. 

As Curle’s and the FW-H equations are derived by different 
methods, it has become necessary to consider the equivalence 
of the FW-H and the non-uniform Kirchhoff’s equations 
separately from the analysis conducted in Zinoviev (2010) for 
Curle’s equation. In this paper, the derivation of the FW-H 
equation is reconsidered with the purpose to verify the possi-
ble equivalence of this equation and the non-uniform 
Kirchhoff equation. 

This paper has the following structure. First, the original 
derivation of the Ffowcs Williams and Hawkings equation is 
considered. Second, it is shown that the boundary conditions 
on the inner side of the rigid surface can be chosen arbitrar-
ily. Third, it is demonstrated that a different set of boundary 
conditions leads not to the FW-H equation, but to the non-
uniform Kirchhoff equation. Last, it is concluded that these 
two equations are equivalent. 

THE DERIVATION OF THE FFOWCS WILLIAMS 
AND HAWKINGS EQUATION 

To derive their equation, Ffowcs Williams and Hawkings 
(1969) considered a volume of fluid, V, bounded by a sur-
face, Σ (Figure 1). 

 
Figure 1. Layout of the fluid volume, V, with the surface of 

discontinuity, S 

The volume V  is divided into regions 1 and 2 by a closed 
surface, S, moving towards the region 2 with the velocity, v. 
Note that the surface S is a surface of discontinuity, i.e. 
sources of mass and momentum can be located on S, so that 
the vectors of mass and momentum flows can become dis-
continuous. Assume that l is the outward normal to Σ, and n 
is the normal to S directed from the region 1 towards the 
region 2. As in the original derivation by Ffowcs Williams 
and Hawkings, in the analysis that follows the superscripts 1 
and 2 refer to values in the corresponding regions, and an 
overbar implies that the variable is defined in the total vol-
ume V. 

If ρ is the fluid density and t is time, then the rate of change 
of mass in the volume V equals the sum of rates of change of 
mass in the two regions 
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Due to the moving boundary S, for each region the rate of 
change of mass equals the sum of mass flows through the 
surfaces Σ and S 
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In Equation (2), ui are components of the vector of fluid ve-
locity, where the index i=1,2,3 refers to one of the axes in the 
three-dimensional Cartesian space. Summation over repeat-
ing indices is assumed. The rate of change of the total fluid 
mass within the volume V can now be written as 
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According to the divergence theorem, the flux of a vector 
over a closed surface equals the integral of the divergence of 
the vector over the volume bounded by the surface. By apply-
ing the divergence theorem to the first term on the right in 
Equation (3) the following can be obtained 
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Rewriting Equation (4) for an elementary volume of the fluid 
leads to the mass conservation law for this volume 
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where δ(S) is Dirac’s delta-function determined for the sur-
face S 

( ) ( ) , .S Sδ δ= − ∈0 0x x x  (6) 

The momentum conservation law for the elementary volume 
can be derived analogically. It has the following form 
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Here pij is the compressive stress tensor (Lighthill 1952) 
2 ,
3
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where µ is the coefficient of viscosity, p is the pressure, and 
δij is Kronecker’s delta. 

Note that Equations (5) and (7) are derived for a general fluid 
volume V. The only assumptions used during the derivation 
are the validity of mass and momentum conservation laws 
everywhere in the fluid except on the surface S. To derive an 
equation for a rigid surface in the fluid, it is necessary to 
make additional assumptions regarding the boundary condi-
tions on the rigid surface. 
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Following Ffowcs Williams and Hawkings (1969), assume 
that the region 1 is the region inside the rigid surface S. Due 
to the rigidity of the surface S it can be considered impene-
trable for the surrounding fluid. Therefore, it is logical to 
consider the first boundary condition to be the equality of the 
normal component of the fluid in the outside region and that 
of the surface 

( )2 .n nS
u v=  (9) 

In addition, Ffowcs Williams and Hawkings (1969) assume 
that the fluid inside the rigid object (i.e. in the region 1) is at 
rest and, as a result, all thermodynamic variables in that re-
gion have their equilibrium values. This leads to the follow-
ing boundary conditions for the region 1 

( )1
0 ,constρ ρ= =  (10) 

( )1 0ijp = , (11) 

where pij is interpreted as the difference of the stress tensor 
from its mean value. 

After the substitution of Equations (10) and (11) into Equa-
tions (5) and (7), the latter two equations take the following 
form 
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By eliminating 
iuρ  from Equations (12) and (13) one can 

obtain Ffowcs Williams and Hawkings equation in the differ-
ential form 
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where Tij is Lighthill’s stress tensor 
( )2

0 .ij i j ij ijT u u p cρ ρ ρ δ= + − −  (15) 

Equation (14) is a non-uniform wave equation for fluid den-
sity fluctuations where the right-hand part determines the 
acoustic sources in the fluid. The solution of such an equation 
can be written via the integral of the source term over the 
fluid volume. With the assumption of low Mach numbers  
(v/c<<1), such a solution for Equation (14) takes the follow-
ing form (Ffowcs Williams and Hawkings 1969) 
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where ( ) ( ) 0, ,t tρ ρ ρ′ = −x x  are density fluctuations, 

r = −x y  is the distance between the source point y and the 

observation point x.  

Equation (16) is Ffowcs Williams and Hawkings equation in 
the integral form. The first term in the right-hand part deter-
mines Lighthill’s quadrupole sources in the fluid volume, the 
second term is responsible for dipole sources on the surface 
due to forces acting between the fluid and the surface, and the 
third term describes the monopole sources due to the surface 
motion. 

ARBITRARINESS OF BOUNDARY 
CONDITIONS ON THE INNER SIDE OF THE 
RIGID SURFACE 

From the start of the derivation, the boundary S is assumed to 
be the surface of discontinuity, and indeed, Equations (9), 
(10) and (11) considered together imply discontinuous vec-
tors of mass and momentum flows on S, as the normal com-
ponents of these vectors are, in general, different on both 
sides of S.  

At the same time, the condition of the impenetrable boundary 
determined by Equation (9) is, in fact, the definition of the 
rigid boundary and considering this condition only is suffi-
cient to solve any problem of sound radiation and scattering 
by a rigid boundary. The conditions determined by Equations 
(10) and (11) on the inner side of the rigid boundary are dif-
ferent in this respect. The sources of mass and momentum, 
which are allowed on the surface S, can account for any pres-
sure and velocity fields on the inner side of S and this will 
not affect the boundary condition on the outer side of S de-
termined by Equation (9). It is possible to say that the fluid 
inside S is effectively shielded from the fluid outside S by the 
sources of mass and momentum on S.  

 
Figure 2. De-coupling of the velocity fields on both sides of 

the surface S due to sources of mass on S. 

The independence of the velocity fields in the regions 1 and 2 
is demonstrated in Figure 1. The Figure shows that the nor-
mal velocity of the surface and that of the fluid in the region 
2 (the outer side of S) are equal according to Equation (9). 
Note that these velocities may not be zero, as shown in Fig-
ure 2, but they must be equal. At the same time, the normal 
velocity in the region 1 (the inner side of S) is not zero. This 
discontinuity in the normal velocity can be attributed to the 
sources of mass in the region 1. These sources of mass affect 
only the field in this region, as any flow of mass from this 
sources towards the region 2 is prohibited by the condition of 
the rigid boundary (Equation (9)).  

A similar argument can be put forward about the momentum 
flows, or, which is the same, the stress fields in the fluid. Any 
difference in stress fields on both sides of S can be compen-
sated by force acting from the surface on the fluid. 
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This argument leads to the inevitable conclusion that the two 
regions should be considered as decoupled and non-
interacting, which means that the boundary condition inside 
should have no bearing on the field outside. As a result, the 
choice of boundary conditions on the inner side of the bound-
ary S should not affect the result of this derivation, i.e. the 
equation for the sound wave radiated by the fluid flow near 
this boundary. 

ALTERNATIVE BOUNDARY CONDITIONS AND 
THE NON-UNIFORM KIRCHHOFF EQUATION 

Consider, for instance, the boundary conditions on the inner 
side of the rigid surface, which imply continuous normal 
component of velocity and the compressive stress tensor 
across the surface S. Such conditions are commonly used at 
boundaries between two media, as, in many cases, there are 
no sources of mass and momentum on such boundaries. The 
continuous boundary conditions on the surface S can be writ-
ten as 

( ) ( )1 2 ,n n nS S
u u v= =  (17) 

( ) ( )1 2 .ij ijS S
p p=  (18) 

Equations (17) and (18) will now take place of the Equations 
(10) and (11). After the substitution of Equations (17) and 
(18) into Equations (5) and (7), the right-hand parts of these 
equations vanish, and the following equations will take place 
of Equations (12) and (13) 
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By eliminating, as above, 
iuρ  from Equations (19) and (20) 

it is possible to obtain the following non-uniform wave equa-
tion for density fluctuations 
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According to well-known theorems of the potential theory 
(Korn 1971), the solution of such an equation in the presence 
of rigid boundaries can be written as 
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Note that, during the derivation of Equation (22), derivatives 
in the first term in the right-hand part have been interchanged 
due to the property of such integrals mentioned by Ffowcs 
Williams and Hawkings (1969). 

Equation (22) is the non-uniform Kirchhoff equation. It is 
clear that it differs in its appearance from the FW-H Equation 
(16). Whereas the first terms in the right-hand parts of these 
equations, which are responsible for Lighthill’s quadrupole 
sound, are identical, the second and the third terms are differ-
ent. In the FW-H equation, the second and third terms are 

determined by the total force and the total normal velocity on 
the boundary respectively. In the non-uniform Kirchhoff 
equation, the second and third terms are determined by the 
density fluctuations and their normal derivative on the 
boundary or, in other words, by acoustic components of the 
force and the normal velocity. 

Despite their different appearance, the FW-H and the non-
uniform Kirchhoff equations are derived with equivalent 
boundary conditions. Therefore, they do not contradict each 
other and, in fact, are different forms of the same equation. 
This statement is the main result of this paper. 

Being equivalent, both equations can be used for predicting 
the noise radiated by gas or fluid flows near solid boundaries. 
As stated above, examples of such flows may be found in 
various civilian and military applications in air and water. 
Whereas in different applications any of these equations can 
be more convenient for use than the other, an investigation of 
this question for any specific examples is considered to be 
outside of the scope of this work. 

CONCLUSIONS 

In this paper, the original derivation of the Ffowcs Williams 
and Hawkings equation is considered. It is shown that the 
boundary conditions used by these authors on the inner side 
of the rigid boundary can be chosen arbitrarily, as the regions 
outside and inside the rigid boundary are shielded from each 
other by the boundary. It is also demonstrated that, if the 
boundary conditions implying continuous thermodynamic 
variables across the boundary are used, the derivation leads to 
the non-uniform Kirchhoff equation. As a result, the conclu-
sion about the equivalence of the two equations is made. 

Due to their equivalence, these two equations can be used for 
predicting flow noise parameters in similar circumstances. 
The question as to which of the equations is more applicable 
to any particular fluid flow requires further investigation. 
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