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ABSTRACT

A meshfree multipole moment preserving condensation (MmMPC) method is proposed to spatially condense the
volumetric quadrupole sources based on Lighthill’s acoustic analogy that are extracted from computational fluid
dynamics (CFD) data. The purpose of the method is to reduce both the amount of data that must be stored during the CFD
analysis and the number of acoustic sources driving the subsequent acoustic propagation analysis, while preserving the
accuracy of the predicted sound pressure field. The method uses a distribution of particles with quintic kernels to integrate
the acoustic sources and employs a multipole expansion of the harmonic free-field Green’s function to preserve the
multipole moments of the underlying acoustic sources. The directivity of the sound pressure field due to the quadrupole
sources are presented for the first four harmonics of the vortex shedding frequency for flow past a circular cylinder with
Reynolds number, ReD=100 and Mach number, M=0.02. Using the MmMPC method, the number of acoustic sources is
reduced by a factor of 120 with the associated far-field sound pressure levels within 0.5 dB of the non-condensed results
for all four harmonics.

INTRODUCTION

Lighthill (1952, 1954) reformulated the Navier-Stokes equa-
tion into a wave equation that represents the acoustic source
generation by fluid motion and the propagation of these acous-
tic sources. He derived an acoustic analogy that demonstrates
sound generated by a turbulent fluid flow is equivalent to the
sound generated by a distribution of acoustic quadrupoles com-
puted from the instantaneous velocity fluctuations. The acoustic
sources are extracted from the transient flow field data and then
a wave equation, derived from Lighthill’s acoustic analogy, is
solved to predict the propagation of these acoustic sources.

An important result from Lighthill’s work is that the acoustic
source terms can be calculated from hydrodynamic flow field
variables. This has prompted the development of a wide range
of hybrid methods which use CFD to calculate acoustic source
terms from transient flow variables and Lighthill’s acoustic
analogy to predict the acoustic propagation. These hybrid meth-
ods typically make use of the Green’s function solution of the
wave equation to reformulate the acoustic propagation problem
into a boundary integral equation (BIE). The most common
approach is to employ a free-field Green’s function or its spatial
derivatives to predict the propagation of the acoustic sources.

If the acoustic propagation is performed in the frequency do-
main, the entire time history of Lighthill’s stress tensor must be
stored for each CFD cell. Even if the acoustic propagation is
performed in the time domain, a significant portion of the time
history must still be stored as this approach relies on retarded,
or forward, time to propagate the individual acoustic sources
to the field points. Both of these approaches have a significant
data storage requirement. Additionally, the propagation of each
acoustic source point to each field point must be calculated
separately using the Green’s function or its derivatives. For
high Reynolds number flows, the CFD model will typically
contain a large number of cells and hence a large amount of
acoustic source data will need to be stored. This will result in a
potentially huge data storage requirement and time consuming
acoustic propagation analysis.

This paper presents a method to spatially condense the vol-
umetric sources of Lighthill’s acoustic analogy, significantly
reducing the number of acoustic sources that are stored and

the number of propagation calculations that must be performed.
BIE does not have a volume mesh that can be used to inte-
grate or interpolate the acoustic source data extracted from the
CFD results. Hence, a meshfree method is proposed to spa-
tially condense the acoustic source data. Suleau and Bouillard
(2000) have applied meshfree methods to solve the Helmholtz
equation on a distribution of particles or nodes. All of these
methods suffer from dispersion errors. However, He et al. (2011)
demonstrated that with careful selection of particle properties,
the dispersion errors of these meshfree methods are consider-
ably less than those obtained with many FEM implementations.
Golberg et al. (2000) used meshfree radial basis functions, in
conjunction with the dual reciprocity method, to convert the
volume integral into a series of boundary integrals. The solution
of these boundary integrals then provides the particular solution
of the Helmholtz equation due to the volume distribution of
sources. In the present method, a distribution of particles is
overlaid on the CFD mesh. The resolution of these particles
is coarser than the underlying CFD mesh. A particle approxi-
mation of the volume integral is then obtained in conjunction
with a multipole expansion of the harmonic free-field Green’s
function, relative to each particle’s centre, to spatially condense
the acoustic source data. The net result of this approach is that
only the multipole moments of the Lighthill tensor components
relative to the particle centre needs to be stored. The Green’s
functions and their derivatives then only need be evaluated
at each particle centre for each field point. The combination
of a particle method approximation of the volume integral in
Lighthill’s acoustic analogy, coupled with the multipole expan-
sion of the Green’s function within each particle’s smoothing
length, results in significant savings to both the data storage
requirements and the number of calculations required for the
acoustic propagation analysis.

The Meshfree multipole Moment Preserving Condensation
(MmMPC) method is used to predict the far-field sound pressure
produced by the volumetric quadrupole sources arising from
laminar flow past a cylinder at a Reynolds number, ReD=100
and Mach number, M=0.02. The radiated sound pressure due to
the volumetric quadrupole sources of Lighthill’s acoustic anal-
ogy is predicted with and without the spatial condensation and
the accuracy of the method is demonstrated. It is noted that the
dominant sound produced by vortex shedding from a cylinder
is of a dipolar nature and is caused by the scattering of the volu-
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metric quadrupole sources by the surface of the cylinder. The
present method does not consider this scattered sound field and
deals only with the direct radiation of the volume quadrupoles
to the far-field. Future work will extend the MmMPC method
to include the sound field scattered from a body.

NUMERICAL METHODS

Background - Lighthill’s Acoustic Analogy

Lighthill’s acoustic analogy is given by (Lighthill 1952,1954):

∂ 2ρ

∂ t2 − c2
0

∂ 2ρ

∂x2
i
=

∂ 2Ti j

∂xi∂x j
(1)

where ρ is the fluid density and c0 is the speed of sound in the
medium at rest. Ti j is the Lighthill tensor and is given by:

Ti j = ρuiu j +
(

p− c2
0ρ
)

δi j− τi j (2)

where p is the pressure, ui and u j are the ith and jth components
of the velocity vector respectively, δi j is the kronecker delta
and τi j is the viscous stress tensor. The first term on the right
hand side of equation (2) represents the contribution due to the
Reynolds stresses. The second term relates to sound generation
by non-isotropic processes and the third term represents the
contributions due to viscous stresses. The ultimate application
of this work is for low Mach number, high Reynolds number
flows. For such a flow regime, it is reasonable to approximate
Lighthill’s tensor by:

Ti j = ρ0uiu j (3)

where ρ0 is the incompressible fluid density. In what follows,
a harmonic time dependence of e−iωt has been assumed. An
expression for calculating the acoustic pressure, pa, at a field
point, x, due to the direct radiation of the quadruole sources in
a finite volume, Ω, is given by:

p̂a (x) =−
ˆ

Ω

T̂i j
∂ 2Gk (x,y)

∂yi∂y j
dy (4)

where Gk is the harmonic Green’s function. Equation (4) is the
harmonic integral formulation for Lighthill’s acoustic analogy.
Note that the scattering and diffraction of sound caused by a
rigid body is not considered in the present work.

Multipole Moment Preserving Condensation Method

The fundamental concept of the spatial condensation method
is to overlay a distribution of particles over the CFD mesh. A
particle approximation of the volume integral in equation (4) is
then used to calculate the contribution of the volumetric acous-
tic sources to the acoustic pressure. The method also makes
use of a Taylor series expansion of the quadrupole kernel of
the harmonic Green’s function on a particle-by-particle basis.
These two concepts combine to offer significant reduction in
the amount of data that must be stored during the CFD simula-
tion and the number of calculations that must be performed to
evaluate the volume integral.

To formulate a particle approximation of the volume integral in
equation (4), the following function is defined:

f (x,y) = T̂i j(y)
∂ 2Ĝk(x,y)

∂yi∂y j
(5)

Using the unique properties of the Dirac Delta function given
by:

δ (y−y
′
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(6)

ˆ
Ω
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′
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equation (5) can be expressed as:

f (x,y) =
ˆ

Ω

f (x,y
′
)δ (y−y

′
)dy

′
(8)

Equation (8) can not be approximated in a discrete sense. To
overcome this, the Delta function is replaced by a kernel func-
tion, w(y−y′ ,h) with finite support h. A 1D piecewise quintic
kernel is used as the building block for all kernels. The 1D
piecewise quintic kernel is defined by:
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where yi and y
′
i are the ith components of the y and y′ position

vectors respectively and qi =

∣∣∣yi−y
′
i
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h . Kernel functions for higher

dimensions are constructed using tensor products of this 1D
piecewise quintic kernel as follows:
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where R is the dimension of the problem. The kernel approxi-
mation of f (x,y) is then expressed as:

〈 f (x,y)〉=
ˆ

Ω

f (x,y
′
)w(y−y

′
,h)dy′ (11)

where the smoothing length, h, is the size of the compact support
of the smoothing function. Using the kernel approximation
given by equation (11), equation (5) can be expressed as:

〈 f (x,y)〉=
ˆ

Ω

T̂i j(y
′
)

∂ 2Gk(x,y
′
)

∂yi∂y j
w(y−y

′
,h)dy

′
(12)

In what follows, it is assumed that hydrodynamic flow vari-
ables and hence the Lighthill stress tensor components, T̂i j(y

′
),

are available on a CFD mesh. It is also assumed that the CFD
cell centre coordinates, yn, and cell volumes, 4Vn, are known.
To make use of the kernel approximation of equation (12), a
distribution of particles is overlaid over the CFD mesh. Fig-
ure 1 shows an example of a particle distribution overlaid on
a CFD mesh. In Figure 1, x is the field point, yp and yn are
the coordinates of the centre of the pth particle and nth CFD
cell respectively, r is the distance separating x and yp, h is the
smoothing length of the particle and is typically defined as a
ratio of particle spacing, d.

Figure 1: Schematic diagram of spatial condensation method

For a particular particle, p, the discrete kernel approximation of
the function f (x,y) based on the underlying CFD cell variables
is given by:

〈
f (x,yp)

〉
=

N

∑
n=1

T̂i j(yn)
∂ 2Gk(x,yn)

∂yi∂y j
w(yp−yn,h)4Vn (13)
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where N is the total number of nodes within the particle’s
smoothing length. To simplify the expressions, the following
abbreviations are used:

Ti jn = Ti j(yn)

wp,n = w(yp−yn,h)

In its current form, the discrete kernel approximation given in
equation (13) requires the evaluation of the second derivative of
the harmonic Green’s function for all CFD cells for each field
point, x. This provides no savings in computational expense over
directly evaluating the volume integral of equation (4). A more
efficient approach is achieved by performing a Taylor series
expansion of the second derivative of the harmonic Green’s
function for all CFD cells within the compact support of the
particle’s kernel function, around the centre of the particle. Thus,
the discrete approximation of the function is expressed as:

〈
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〉
=

N

∑
n=1

ˆTi jn

(
∞

∑
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···
∞
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mR

m1!···mR!

×
∂ 2+m1+···+mR Gk(x,yp)

∂yi∂y j∂ym1
1 ···∂ymR

R

)
wp,n4Vn (14)

where m1 to mR represents the order of the expansion in the 1
through R coordinate directions, respectively. y1p to yRp repre-
sents the 1st to Rth component of the position vector yp and
similarly, y1n to yRn are the 1st to Rth components of the position
vector yn. Reorganising equation (14) produces the following:
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where ykp and ykn represent the kth component of the position
vectors yp and yn, respectively. Similarly, yl p and yln represent
the lth component of the position vectors yp and yn, respectively.
The discrete approximation given by equation (15) only requires
evaluation of the spatial derivatives of the Green’s function at
the centre of the kernel. However the trade-off is that higher
order spatial derivatives of the Green’s function are required.
The next step is to sum the contributions to the acoustic pressure
from the total number of particles, P, that are overlaid on the
CFD mesh for a particular field point x as follows:
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With this approach it is common for a CFD cell to lie within
the smoothing length of multiple particles, as seen in Figure 1.
The sum of the particle weightings applied to the nth CFD cell
is given by:

Wn =
P

∑
p=1

wp,n

For the applied method to be globally conservative, Wn = 1
for all CFD cells. To ensure this condition, a scaling factor of
Cn =

1
Wn

is introduced for each CFD cell. Inserting the scaling
factor into equation (16) gives:
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The first term on the right hand side of equation (17) represents
the 0th order, or monopole moment, of the Taylor series expan-
sion. The second term represents the 1st order, or dipole moment,
and the third term represents the 2nd order, or quadrupole mo-
ment, of the Taylor series expansion. The above method is
termed a ‘meshfree multipole moment preserving condensation’
method and is given the abreviation MmMPC, where m denotes
the order of the multipole moments that are preserved. Also,
m corresponds to the order of terms retained from the Taylor
series expansion. For example, if only the monopole moments
of the underyling acoustic sources are retained in the particle
approximation, the method is given the abbreviation M0MPC.
If monopole, dipole and quadrupole moments of the underlying
acoustic sources are used, the method is termed M2MPC.

Equation (17) requires the summation of the Fourier trans-
form of the components of Lighthill’s tensor at each CFD
cell. To compute these Fourier transforms, the time histories of
Lighthill’s tensor at each CFD cell must be known. In its current
form, equation (17) does not reduce the amount of data that
must be stored from the CFD simulation. This can be remedied
by exploiting the linearity of Fourier transformations, namely:

f̂ +g = f̂ + ĝ

This allows the summations in equation (17) to be performed in
the time domain. Hence the summations can be performed in
the CFD simulation as the analysis proceeds and only the result-
ing summations need be stored on a particle-by-particle basis.
For each particle, the amount of data that must be saved de-
pends on the order of the retained terms. In a three-dimensional
analysis, there are one, four and ten terms required per particle
for each component of Lighthill’s stress tensor for the M0MPC,
M1MPC and M2MPC spatial condensations, respectively. For a
two-dimensional analysis this becomes one, three and six terms
for each component. In order to reduce the data storage require-
ments and computational burden of the acoustic propagation
analysis, the total number of particles must be significantly less
than the total number of CFD cells.

Truncation of the Flow Domain

Impact on Hydrodynamic Analysis

If vortical structures reach the outlet boundary of the CFD do-
main, pressure disturbances can occur that contaminate the flow
field and hence the acoustic source data. There are a number
of techniques to reduce these pressure disturbances. Boundary
conditions that attempt to emulate the Sommerfeld radiation
condition can be applied to the outlet boundaries. These bound-
ary conditions are designed to allow the vortical structures to
pass through the outlet with very little reflection and hence min-
imal pressure disturbance. Examples of such ‘non-reflecting’
boundary conditions include the convective boundary condition
derived by Orlanski (1976) and the Navier-Stokes character-
istic boundary condition of Poinsot and Lele (1992). Another
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approach, proposed by Israeli and Orszag (1981), is to apply
additional damping to the fluctuating flow field in a ‘sponge
layer’ upstream of the boundary so that all vortical structures
have been dissipated before they reach the outlet. In this work,
a sponge layer was created immediately upstream of the bound-
ary, with its viscosity artificially increased by a factor of 35.

Impact on Acoustic Analysis

Derivation of equation (4) relies on Gauss’ divergence theo-
rem and the fact that the Lighthill stress tensor equals zero at
the infinite bounds of the domain. The implicit assumption in
these derivations is that the Lighthill tensor also vanishes on
the boundary of the CFD model. This assumption requires that
the flow domain is large enough that there are no velocity fluc-
tuations at the boundary. Perez et al. (2007) demonstrate that
when Ti j is non zero on the boundary of the flow domain, the ac-
curacy of the acoustic propagation analysis can suffer severely.
This requirement on flow domain size is not practical for most
flows of interest and hence steps must be taken to address the
issue. Several methods have been used previously. Caro et al.
(2009) used a spatial window function to artificially force the
Lighthill tensor to zero at the boundary of the computational
domain. Perez et al. (2007) accounted for non-zero Lighthill
stress tensor boundary values in the derivation of the acoustic
propagation equations. Wang et al. (1996) approximated the
values of the Lighthill stress tensor outside the flow domain
from the computed values inside. Martínez-Lera and Schram
(2008) provide a good review of available techniques. They in-
vestigated the effect that different source truncation treatments
have on the predicted far-field sound pressure field.

In the present work, a simple spatial window function has been
applied to the Lighthill stress tensor. This window function has
the following shape:

φ(r) =


1 0≤ r ≤ 10

0.5
(

1+ cos
(

π(r−10)
20

))
10 < r ≤ 30

0 r > 30

(18)

The sponge layer described in the previous section will reduce
the velocity fluctuations and thereby the Lighthill stress tensor at
the boundary. However, there is no way to guarantee beforehand
that the value of the Lighthill stress tensor will vanish on the
boundary, hence the spatial window function is also applied.

Transient Laminar CFD Simulation

To demonstrate the MmMPC method, laminar vortex shedding
from a cylinder of diameter D is simulated at ReD = 100 and M =

0.02. A two-dimensional circular domain around the cylinder
has been modelled and analysed using ESI Group’s CFD-ACE+
software package. The velocity-pressure form of the Navier-
Stokes equations are solved by CFD-ACE+ and in this instance,
a direct numerical simulation (DNS) of the flow field has been
performed. The Navier-Stokes equations are given by:

∂ (ρux)

∂ t
+O · (ρuux) = − ∂ p

∂x
+O · (µOux)+SMx

∂ (ρuy)

∂ t
+O · (ρuuy) = − ∂ p

∂y
+O · (µOuy)+SMy (19)

∂ (ρuz)

∂ t
+O · (ρuuz) = − ∂ p

∂ z
+O · (µOuz)+SMz

where u = (ux,uy,uz) is the velocity vector and SMx, SMy and
SMz are momentum source terms in the x, y and z directions,
respectively. CFD-ACE+ uses an iterative, segregated solution
method with the pressure-velocity coupling handled using the
SIMPLEC algorithm.

The model used for the CFD simulation is shown in Figure
2, with the mesh topology in the vicinity of the cylinder inset.

The interior of the computational domain extends radially for
25D. A sponge layer extends radially for an additional 20D. The
interior domain contains 71,760 quadrilateral cells, with a cell
spacing adjacent to the cylinder of 0.005D. The cell distribution
is biased so that the wake region contains a high cell density to
resolve the vortices shed from the cylinder. The sponge layer
contains an additional 6,960 quadrilateral cells. The cell size
on either side of the interface between the interior domain and
sponge layer is uniform, with the cells in the sponge layer then
growing rapidly in the radial direction.

 

 

 

 

 

Figure 2: Domain shape and size for CFD analysis

The viscosity in the sponge layer has been artificially increased
by a factor of 35 to damp out the fluctuations in the velocity
field in an attempt to force the acoustic source terms to zero at
the boundary. A steady state simulation was performed with the
converged solution used as the initial condition of the transient
simulation. The simulations were second order accurate in time
and space, with a central difference scheme used for the spatial
discretisation and a Crank-Nicholson scheme used for the tem-
poral discretisation. The transient simulation was executed with
a time step size of 2.99E-5s and was allowed to progress until
the flow field achieved periodicity. Recording of the acoustic
source data commenced after this periodicity had been attained
and data from eight vortex shedding periods was obtained.

Far-field Sound Pressure Level

The field points were placed on a circle of radius 6000D cen-
tred on the cylinder in 2.5◦ increments with 0◦ aligned with the
direction of fluid flow. The method presented here has been
developed for three-dimensional applications and hence the
acoustic propagation was also carried out in three dimensions.
As the two-dimensional hydrodynamic simulation assumes that
the cylinder is infinitely long, to approximate the acoustic prop-
agation in three dimensions, the cylinder was assumed to have a
finite length of 42,600D. The contribution to the sound pressure
at a field point, x, due to a source point located on the cylinder
end plane has a magnitude of approximately 0.02 relative to
the same source located at the cylinder mid plane. This length
was divided into 7,100 equal intervals of 6D, ensuring that at
least 12 adjacent sources reach the field point within the same
wavelength to prevent aliasing of the propagated sound field.
Acoustic sources were extracted from the two-dimensional hy-
drodynamic data. Assuming an out-of-plane cell depth of 6D,
7,100 identical copies of these acoustic sources were then cre-
ated. For the particle approximation a similar approach was
adopted, that is, a particle distribution was overlaid on the two-
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dimensional mesh and the acoustic sources were calculated for
each particle. 7,100 identical copies of these acoustic sources
were then created in the out-of-plane direction. Hence, even
though the resulting acoustic propagation analysis is conducted
in three dimensions, the spatial condensation is only applied
in two dimensions. In the discussion on the accuracy of the
MmMPC method, the number of particles created in two dimen-
sions are used as the reference.

RESULTS AND DISCUSSION

Hydrodynamic Analysis

Figure 3 shows a snap shot of the vorticity in the flow field, with
the black arcs representing the boundary of the sponge layer.
Figure 3 shows that the sponge layer is effective in damping out
the vorticity before reaching the downstream boundary.

Figure 3: Vorticies in wake of cylinder. The contours are of
vorticity, ω, with levels from ωmin =−100 s−1 to ωmax = 100 s−1

with an increment of 10 s−1

Figure 4 shows the frequency spectra of the fluctuating lift and
drag forces exerted on the cylinder. The fundamental vortex
shedding frequency occurs at 16.5 Hz. This figure also illus-
trates that peaks of the fluctuating lift force occur at odd harmon-
ics of the vortex shedding frequency and peaks of the drag force
occur at even harmonics. The mean drag coefficient calculated
from the transient CFD simulation is CD = 1.32 which compares
well with the experimental value of 1.24 to 1.26 obtained by
Tritton (1959). The Strouhal number predicted from the present
analysis is St = 0.165 and is in very close agreement with the
experimental value of 0.164 reported by Fey et al. (1998).

Figure 4: Frequency spectra of the lift and drag forces

Based on published simulation data for laminar shedding from
circular cylinders in cross flow, Norberg (2001) developed an
empirical relationship to approximate the RMS of the fluctu-
ating lift force based on the Reynolds number. The RMS of
the fluctuating lift force predicted from the present analysis is
0.218, which compares well with the approximate value of 0.227
obtained using the empirical relationship of Norberg (2001).

Acoustic Source Extraction

Figures 5, 6 and 7 show the magnitude and phase of the T11,
T12 and T22 components of Lighthill’s tensor, respectively, for
the CFD simulation including the sponge layer. These acoustic
sources are used to compute the far-field sound pressure and
are also used as the underlying data for the MmMPC.

Far-field Directivity of Non-Condensed Sources

The contribution to the far-field sound pressure from the non-
condensed volumetric acoustic sources was calculated directly
using equation (4). Figure 8 shows the far-field sound pressure
for the first four harmonics of the vortex shedding frequency.
These results are used as a reference to determine the accuracy
of the MmMPC method.

Accuracy of the MmMPC Method

Figure 9 shows the directivity of the sound pressure predicted
by the monopole condensation method (M0MPC) for the first
four harmonics of the vortex shedding frequency and for four
particle distributions, P = 633, 1737, 6799 and 27417. A particle
smoothing length of h = 1.2d was used. There is no appreciable
difference between the non-condensed and spatially condensed
results for the first three harmonics of the vortex shedding fre-
quency. For the fourth harmonic there is an obvious discrepancy
between the non-condensed results and the spatially condensed
results for coarser distributions of particles. However as the par-
ticle distribution increases, the error between the non-condensed
and spatially condensed results becomes negligible.

Figure 10 (a) and (b) shows the impact of higher order spatial
condensation on the accuracy of the predicted sound pressure
directivity at the fourth harmonic, for P = 663 and P = 1737, re-
spectively. A particle smoothing length of h= 1.2d was used. For
both cases, the accuracy is considerably improved by increasing
the order of the spatial condensation. However, the number of
acoustic propagation calculations per particle increases with the
order of spatial condensation. For the two-dimensional conden-
sation considered here, there is one propagation calculation per
particle for M0MPC, three for M1MPC and six for M2MPC
per component of Lighthill’s tensor.

The accuracy for the M0MPC case, with P = 663 and hence
663 calculations per field point per component of Lighthill’s
tensor, is within approximately 6%, or 0.5 dB, for the 4th har-
monic frequency, and has significantly greater accuracy at lower
frequencies. This represents a reduction by a factor of approx-
imately 120 on the amount of data that must be stored during
the CFD simulation and on the number of acoustic propagation
calculations that must be performed. For the M2MPC case, with
P = 663 and hence 3978 calculations per field point per compo-
nent of Lighthill’s tensor, the accuracy is within approximately
0.4%, or 0.04 dB, with a reduction by a factor of 20 on the data
storage and acoustic propagation calculations.

CONCLUSIONS

A particle method has been developed to approximate the vol-
ume integral of Lighthill’s acoustic analogy. The MmMPC
method has been applied to predict the flow induced noise di-
rectly produced by the volumetric acoustic sources. The method
extracts the acoustic sources along with their multipole mo-
ments about the particle centres from incompressible CFD data.
This results in a significant saving in the amount of data that
must be stored during the CFD analysis as the particle distri-
bution can be much coarser than the underlying CFD mesh.
The method also makes use of a Taylor series expansion of the
Green’s function about the particle centres and then predicts
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(a) Vortex shedding frequency

(b) 2nd harmonic frequency

(c) 3rd harmonic frequency

(d) 4th harmonic frequency

Figure 5: Magnitude (left) and phase (right) of the T11

component of Lighthill’s quadrupole source term.

(a) Vortex shedding frequency

(b) 2nd harmonic frequency

(c) 3rd harmonic frequency

(d) 4th harmonic frequency

Figure 6: Magnitude (left) and phase (right) of the T12

component of Lighthill’s quadrupole source term.

6 Acoustics 2011



Proceedings of ACOUSTICS 2011 2–4 November 2011, Gold Coast, Australia

(a) Vortex shedding frequency

(b) 2nd harmonic frequency

(c) 3rd harmonic frequency

(d) 4th harmonic frequency

Figure 7: Magnitude (left) and phase (right) of the T22

component of Lighthill’s quadrupole source term.

(a) Vortex shedding frequency (b) 2nd harmonic frequency

(c) 3rd harmonic frequency (d) 4th harmonic frequency

Figure 8: Directivity of the quadrupole pressure amplitude,∣∣∣ p̂a
ρ0U2

∞

∣∣∣, calculated from the non-condensed volumetric sources
at r = 6000D, for the first four harmonics of the vortex shedding

freqency

(a) Vortex shedding frequency (b) 2nd harmonic frequency

(c) 3rd harmonic frequency (d) 4th harmonic frequency

Figure 9: Directivity of the quadrupole pressure amplitude,∣∣∣ p̂a
ρ0U2

∞

∣∣∣, calculated from M0MPC condensation of volumetric
sources relative to non-condensed sources, at r = 6000D, for the

first four harmonics of the vortex shedding
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the far field acoustic pressure by solving the harmonic wave
equation using a Green’s function solution. This results in a
significant reduction in the number of calculations to perform
the acoustic propagation analysis. The method was applied to
predict the direct sound field radiated by the volume quadrupole
sources in low Reynolds number flow past a circular cylinder.
Using the MmMPC method, the amount of data stored during
the CFD simulation and the number of acoustic propagation
calculations were reduced by a factor of approximately 120,
with the resulting sound pressure level within 0.5 dB of the
non-condensed solution. In this paper it has been shown that the
MmMPC method is capable of accurately capturing the magni-
tude and relative phase of the underlying volume quadrupole
acoustic sources obtained from a CFD analysis.
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