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ABSTRACT 
Many types of slender or thin walled structures experience forces which traverse across them. For example: vehicles 
passing over a bridge, overhead crane operations and liquid "slug" movement in spanning pipelines. This moving 
force can initiate a large dynamic stress within the structure and is often important for assessing structural fatigue. For 
many of these force/structure scenarios, modelling of the force as a concentrated point force would be an adequate 
simplifying approximation. In some cases, however, it may not be appropriate to simplify the distributed force into a 
single point force. For instance, slug lengths in pipelines can be significant in relation to span lengths.  
There is currently no guidance in the literature regarding the distribution effect of the force on the response of a struc-
ture under a moving force. This paper investigates the dynamic response of an elastic, simply supported beam under 
the influence of a moving distributed force, with varying distribution to span length ratios. In addition, it examines 
the speed of the traversing force, which is also highly influential on the dynamic response of the beam. This investi-
gation is undertaken using an explicit transient dynamic finite element formulation of a simply supported beam. 
Guidelines are provided to discriminate between those scenarios when it is appropriate to simplify a distributed mov-
ing force as a concentrated force, and those when it must be modelled as the original distributed force.

INTRODUCTION  

The majority of previous literatures on the dynamic response 
of beam like structures subjected to a moving load treat the 
load as a concentrated force (Yang, Yau & Wu, 2004) as 
shown schematically in Figure 1. The case of a distributed 
load, as shown schematically in Figure 2, has yet to be ad-
dressed in the current literature. 

 
Figure 1: Simply Supported Beam Subjected to a Concen-

trated Load 

 
Figure 2: Simply Supported Beam Subjected to a Distrib-

uted Moving Load 

(Wu, Whittaker & Cartmell, 2002) presented a finite element 
technique to investigate the dynamic response of structures 
under a concentrated moving load, where the inertia of the 
concentrated moving load is ignored.  

(Rieker & Whittaker, 1999) studied the dynamic response of 
a simply supported beam under the passage of a distributed 
moving mass, where the inertia of the distributed load is con-
sidered. (Rieker & Whittaker, 1999) simplified the distribut-
ed moving mass to a sequence of equal concentrated loads 
moving at constant speed. The study concluded that simplify-
ing the moving mass to a concentrated mass, instead of mod-

elling the actual length of the moving mass, is a conservative 
approximation of the true response. 

Recently  (Reda, Forbes & Sultan, 2011) investigated the 
dynamic response of a simply supported beam further, con-
sidering the bending moment along the length of the beam 
span at various speed parameters and damping ratios under a 
concentrated moving force. This work was undertaking using 
combinations of analytical and finite elements approaches. 
Results presented by (Reda, Forbes & Sultan, 2011) indicated 
that the maximum bending moment does not necessarily 
occur at the mid-point of the simply supported beam. The 
location of the maximum bending moment depends on both 
the speed of the moving force and the damping within the 
structure. On the contrary, the maximum deflection always 
occurs at approximately the mid-point of the simply support-
ed beam irrespective of the moving load speed or damping 
present. 

The aim of this paper is to investigate the dynamic response 
of an elastically simply supported beam, subjected to a dis-
tributed moving load. The response is also compared with 
that due to a concentrated moving load to determine when it 
is appropriate to model a distributed load as a concentrated 
point force and whether this simplification provides a more 
conservative response form. 

A finite element formulation is presented for Euler-Bernoulli 
beam elements subjected to a distributed moving load. The 
formulation uses a modified shape function to account for the 
presence of the distributed load as well as to calculate the 
equivalent nodal forces and moments.  

An explicit integration scheme is used in the transient finite 
element formulation. The explicit integration formulation is 
an exact formulation in contrast to the implicit form. These 
two competing methods are broadly similar, with the main 
difference being the exact nature and conditional stability of 
the explicit form as opposed to the implicit formulation.  
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The finite element code within this paper was implemented in 
Matlab, as in spite of the sophistication of the commercial 
finite element codes such as ANSYS and ABAQUS, these 
commercial packages can require enormous effort to simulate 
either a moving force or moving mass problem.  

The results presented are prepared by performing multiple 
runs of a finite element model, while varying the length of 
the distributed load and the speed of the traversing force. A 
total of six distributed moving length combinations and one 
concentrated load are run at speed ratios varying from 0.2 to 
1 (of the critical speed). The results also showed that the 
assumption of modelling or simplifying the moving load as a 
concentrated force rather than its original distributed length is 
robust and provides a conservative approximation of the dy-
namic response.  

A DISTRIBUTED LOAD MOVING ALONG A 
SIMPLY SUPPORTED BEAM 

This section presents the formulations which are used to in-
vestigate the dynamic response of an elastically simply sup-
ported beam subjected to a moving distributed load. In the 
view of the nature of the distributed moving load, it is im-
portant to know the location of the front and the rear of the 
distributed moving load. This allows for the modelling of the 
following three possible scenarios: 

Case-1:  The distributed moving load enters the simply sup-
ported beam as illustrated in Figure 3. 

 

 

 
 

Figure 3: Arrival of the Distributed Moving Load to the 
Simply Supported Beam 

Case-2a:  the distributed load travels along the simply sup-
ported beam, as illustrated in Figure 4 (distributed load is 
shorter than span length). 

 
 
 
 
 

Figure 4: The Distributed Moving Load Travels along the 
Simply Supported Beam (Distributed load is shorter than 

span length) 

Case-2b: The distributed load length is longer than the simply 
supported beam length, as illustrated in Figure 5. 

 
 

Figure 5: The Distributed Moving Load Travels along the 
Simply Supported Beam (Distributed load is longer than 

span length) 

Case-3: The distributed load exits the simply supported beam 
as illustrated in Figure 6 . 

 

 

 
 

Figure 6: The Distributed Moving Load Exits the Simply 
Supported Beam 

EQUATIONS OF MOTION 

Before embarking on any structural vibration analysis, it is 
crucial to formulate the equation of motion. The equation of 
motion for a simply supported beam subject to a passage of 
continuous moving load can be written in the following form: 

[M]{ẍ} + [C]{ẋ} + [K] {x} = {fo(t)}                                    (1) 
 
Where: 
 
[M] : Mass matrix of the simply supported beam element. 
[C] : Damping matrix of the simply supported beam element 
[K] : Stiffness matrix of the simply supported beam element    
       
{fo(t)}: External force vector. 
{ẍ} : Acceleration vector of the simply supported beam. 
{ẋ} : Velocity vector of the simply supported beam. 
{x} : Displacement vector of the simply supported beam. 

SELECTING THE TIME STEP 

When applying the explicit central difference method in any 
transient dynamic analysis, it is important to select the appro-
priate time step size on the basis of the shortest period which 
a wave within the FE mesh can travel. The shortest period 
also corresponds to the highest natural frequency in the sys-
tem. The time step size should be small in order to guarantee 
that the time history of the force excitation is adequately 
captured. The time step size is selected using the following 
equation (Cook et al., 2002): 

∆t ≤ 2
ωmax

                       (2) 

DEFINITION OF THE SHAPE FUNCTION 

The nodal forces for any given load within a finite element 
model are given by (Cook et al., 2002): 

fo = P∫ N. dεb
a                                                  (3) 

Where 

N: Element shape function 

P = Load vector 

a-b :Limits of the load vector 

ε: Non-dimensional element length 

The nodal forces can be calculated by integrating the shape 
functions to account for the effect of distributed load. 

Beam element cubic shape functions (Cook et al., 2002) for 
each element are used and defined as: 

N1(ε) = 1 − 3ε2 + 2ε3                  (4) 
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N2(ε) = (ε − 2ε2 + ε3)LE                  (5) 

N3(ε) = 3ε2 − 2ε3                                    (6) 

N4(ε) = (−ε2 + ε3)LE                  (7) 
 
Where: 

ε = x
LE

                                     (8) 
 
x   : Distance along the element to the point load application.   
LE : Element length. 

The modified shape functions are calculated as follows: 

Nxmodified=LE ∫Nx dε               (9) 

The vector of nodal forces equivalent to distributed load is 
obtained as: 

fo = P∫ Nxmodified. dεb
a = P(N. ε(b) − N. ε(a))             (10)            

Integrating the shape function in regards to ε will result in the 
following: 

N1_mod(ε) = (2ε − 2ε3 + ε4) LE
2

              (11) 

N2_mod(ε) = (6ε2 − 8ε3 + 3ε4) LE
2

12
                                (12) 

N3_mod(ε) = (2ε3 − ε4) LE
2

               (13) 

N4_mod(ε) = (−4ε3 + 3ε4) LE
2

12
                                (14) 

DETERMINATION OF THE EQUIVALENT 
NODAL FORCES TO DISTRIBUTED LOAD 

Knowing the location of the front and the rear edges of the 
moving load is quite important to facilitate the modelling of 
the distributed moving load, as stated earlier. At any given 
time, the position of the rear and front moving continuous 
load in relation to the left end of the beam are calculated by: 

xp1 (t) = V ∗ i∆t                                  (15) 

xp2 (t) = V ∗ i∆t− distributed load length             (16) 
Where: 
 
V: Continuous load speed. 
i:   Time step. 
∆t: Time step size. 
xp1:Acting positions of the rear of the moving distributed 

load. 
xp2:Acting positions of the front of the moving distributed 

load. 

The approach, adopted in this work to determine the location 
of the front and rear edges of the moving load, is similar to 
the way adopted by (Wu, Whittaker & Cartmell, 2000) to 
determine the location of the concentrated load in reference 
to the first node of the beam.    

Letting  S1 and S2 denote the element number that the con-
tinuous moving load is applied to at any given time for the 
rear and front of the distributed moving load, are given by 
(Wu, Whittaker & Cartmell, 2000): 

S1 = �Integer part of xp1 (t)
l
� + 1                                   (17) 

S2 = �Integer part of xp2 (t)
l
� + 1                                        (18) 

It should be noted that the modified shape functions, equa-
tions 9-12, are expressed in terms of the local x coordinate. 
Therefore, it is important to modify 𝜀 in terms of the 
al  xp1(t)and xp2(t). The modified ε1  and ε2for the rear and 
the front respectively of the distributed moving load are giv-
en by (Wu, Whittaker & Cartmell, 2000): 

ε1 = xp1(t)−(S1−1)LE
LE

                (19) 

ε2 = xp2(t)−(S2−1)LE
LE

                (20) 

ε3 = 1                 (21) 

Where 𝜀3 is an integer, which is used in the simulation when 
the distributed moving load is located between two nodes. 
i.e., the distributed moving load covers the entire element 
length. 

ASSUMPTIONS 

The following assumptions are made throughout this study: 
• The beam is of a constant cross section and constant unit 

mass per length. 
• The beam cross section is pipe. 
•  The material of the beam is homogenous and isotropic. 
• The deflections are small compared to the cross-

sectional dimensions. 
• No initial curvature exists. 
• The effect of transverse shear deformation is negligible. 
• The mass of the moving load is smaller than that of the 

mass of the beam. 
• No damping is used. 

INPUT DATA  

In order to illustrate the principles presented to determine the 
external forces vectors and bending moment vectors, consider 
a 50 m long simply supported beam with the properties pre-
sented in Table 1 with 30 elements (31 nodes). The 30 ele-
ments are equally spaced along the simply supported beam. 

In the first case, the simply supported beam is subjected to a 
concentrated load of -2000 N. In the second case, the simply 
supported beam is subjected to a distributed load of 15m 
length and with unit weight of (2000 N/15 m). In both cases, 
the loads travel with the same constant speed. It is obvious 
that the time required for the distributed load to travel from 
one end to the other end is greater than that of the concentrat-
ed load. 

Figure 7 and Figure 8 highlight the force-time for three con-
secutive nodes for the concentrated and distributed loads 
respectively. The Y-axis represents the value of the load 
while the X-axis represents the total number of time steps.   

Figure 7 illustrates the force-time graph for three consecutive 
nodes of the simply supported beam subjected to a concen-
trated load. It is clear that forces on each node are zero for all 
time steps except when the concentrated force traverses the 
respective elements either side of the node of interest. 
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Table 1: Input data used for analysis 

 

Parameter Unit Value 

Span Length  m 50 

Pipe Outside Diameter mm 323.9 

Wall Thickness mm 12.7 

Material Young’s Modulus GPa 205 

Steel Density kg/m3 7850 

Pipe Unit Weight kg/m 97.47 

Total Damping Ratio -- 0 

Speed Parameter -- 0.2-1 

Distributed Moving Load 
Length (ratio of span) 

% 0/10/30/50/70
/90/200 

Total distributed Moving Load 
Weight  

N 2000 

 
 

Figure 7: Force-Time Step Graph for Nodes-20/21/22 for 
the Concentrated Load 

 
 

Figure 8: Force-Time Step Graph for Nodes-20/21/22 for 
the Distributed Load 

Figure 8 illustrates the force-time graph for the same three 
consecutive nodes of the simply supported beam subjected to 
a distributed load. It is also clear that forces on each node are 
zero for all time steps except when the distributed force trav-
els across the elements either side of the node of interest. It 
can be seen that the load is constant as the distributed load 

passes over the node of interest. It can be seen from compar-
ing Figure 7 with Figure 8 that the model captures correctly 
the nature of the distributed moving load. 

Figure 9 and Figure 10 highlight the bending moment time 
for the same consecutive three nodes for the concentrated 
load and distributed load respectively. The Y-axis represents 
the value of the bending moment while the X-axis once again 
represents the total number of time step.   

 
 

Figure 9: Bending Moment-Time Step Graph for Nodes-
20/21/22 for the Concentrated Load 

 

 
 

Figure 10: Bending Moment-Time Step Graph for Nodes-
20/21/22 for the Distributed Load 

DETERMINATION OF THE RESPONSE 
HISTORY USING DIRECT EXPLICIT METHOD 

The central difference explicit method is used to determine 
the transient response history of displacement and bending 
moment. The central difference method expresses the veloci-
ty and the acceleration at time tj  in terms of displacement at 
times tj-1 , tj and tj+1 The velocity and the acceleration are 
obtained by approximating the response curve by a quadratic 
polynomial within the time interval ( tj-1 , tj+1). 

The following equations are used to determine the velocity 
and acceleration (Petyt, 2010): 

dt =̇ di+1−di−1
2(∆t)

               (22) 

dı̈ = dı+1̇ −dı−1̇

2(∆t)
                                                 (23) 

 The response at the time tj+1 is then obtained by substituting 
equations 22 and 23 into equation 1 (equation of motion) 
evaluated at time tj , which gives (Petyt, 2010):: 

[M]
(∆t)2

�uj+1 − 2uj + uj−1� + [C]
2∆t

�uj+1 − uj−1� + [K]uj =
{fo(j)}                  (24) 
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Solving for uj+1 gives the following (Petyt, 2010): 

� [M]
(∆t)2

+ [C]
2∆t
�uj+1 = {fo(j)} + �2[M]

(∆t)2
+ [K]�uj −

� [M]
(∆t)2

− [C]
2∆t
�uj−1                                                            

(25) 

It may be seen that the displacements uj+1 can be determined 
provided that the displacements uj-1 and uj  are known. The 
time history of the displacements and bending moments are 
calculated by assuming j=1,2 ,3……. 

RESULTS  

Figure 11 and Figure 12 highlight the maximum deflection 
and the maximum bending moment, respectively, versus the 
speed parameter. The maximum deflection and the maximum 
bending moment presented in these two figures are the max-
imum values which occur along the simply supported beam 
as the moving load travels across it. (Reda, Forbes & Sultan 
2011) showed that the maximum bending moment does not 
necessarily occur at the mid-point of the simply supported 
beam. 

Figure 11 and Figure 12 show that the dynamic response of 
the concentrated load is very similar to the dynamic response 
of 10% (load/span length) distributed load. These figures 
show that the maximum deflection and the maximum bend-
ing moment decreases with the increase of the distributed 
moving load length. It is believed that the forced and free 
vibrations induce sinusoidal waves which will cancel out 
each other. In view of the deflection of the simply supported 
beam under the passage of the distributed moving load is 
caused by: 
• Forced Vibration: due to the distributed moving load   
        acting on elements along the beam. 
• Free Vibration: due to elements that the moving distrib-

uted load have passed. 

Figure 13 and Figure 14 illustrate the normalised deflection 
Max u(x, t)/u0 at various distributed load lengths at speed 
ratios of 1.0 and 0.6 respectively. 

Figure 15 and Figure 16 illustrate the normalised bending 
moment Max M(x, t)/M0 at various distributed load lengths 
at speed ratios of 1.0 and 0.6 respectively. 

 
 

Figure 11: Maximum Deflection Vs. Speed Parameter 

 

 
 

Figure 12: Maximum Bending Moment Vs. Speed Param-
eter 

The normalised deflection/bending moment describes the 
maximum dynamic deflection/ bending moment in relation to 
the static deflection/ bending moment that would be produced 
by a steady load, as the moving load travels across the beam.   
The static deflection and static bending moment assume that 
the total load is located at the centre of the simply supported 
beam. In other words, the static deflection and static bending 
are calculated by mimicking the total distributed load at the 
centre of the beam. Figure 15 and Figure 16 show that the 
maximum bending moment does not necessarily occur at the 
mid-point of the beam. It is evident that the location of the 
maximum bending moment is much more sensitive to the 
speed parameter.  

 
 

Figure 13: Normalised Deflection Max u(x,t)/u0 for Vari-
ous  Distributed Load Lengths at Speed Parameter of 1.0 

 
 

Figure 14: Normalised Deflection Max u(x,t)/u0 for Vari-
ous  Distributed Load Lengths at Speed Parameter of 0.6 
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Figure 15: Normalised Bending Moment Max M(x,t)/M0 
for Various  Distributed Load Lengths at Speed Parame-

ter of 1.0 

 
 

Figure 16: Normalised Bending Moment Max M(x,t)/M0 
for Various  Distributed Load Lengths at Speed Parame-

ter of 0.6 

SUMMARY & CONCLUSION  

The dynamic response of an elastically supported beam sub-
jected to a distributed moving load using a finite element 
model is presented in this paper.   The technique applied to 
derive the shape functions, equivalent nodal forces and 
equivalent bending moments are only valid for a beam ele-
ment, but in principle it is a general procedure and can be 
adopted for other element types.  

A finite element code was written in order to determine the 
equivalent nodal forces and equivalent bending moments as a 
result of the distributed moving load travelling along the 
simply supported beam. The finite element code is used to 
investigate the dynamic response of the simply supported 
beam under either, a moving concentrated load or moving 
distributed load. This is in an effort to highlight the conserva-
tive approximation associated with modelling any moving 
load as a concentrated load rather than the actual length of 
the moving load.  

The following conclusions are made by comparing the dy-
namic response of the beam subjected to either a concentrat-
ed load or distributed moving load: 
• The dynamic response of the beam subjected to a con-

centrated load represents the upper bound of the maxi-
mum deflections and the maximum bending moments at 
any given speed parameter. The dynamic response of the 
simply supported beam subjected to a concentrated 
moving load is shown to be very similar to the dynamic 
response of the simply supported beam subjected to a 

10% distributed moving load. In other words, a beam 
subjected to small length ratio distributed loads behaves 
in the same manner to that of a concentrated load.  

• It is overly conservative to simplify any moving load 
into a concentrated load. However, this simplification is 
acceptable in the cases where the length of the moving 
load is unknown or difficult to predict. For instance, 
slug flow across unsupported pipeline spans. 

The maximum bending moment does not necessarily occur at 
the mid-point of the simply supported beam. The location of 
the maximum bending moment might be an important design 
aspect for some areas. The nature of the distributed moving 
load leads to a suppression in the response compared to that 
of a concentrated moving force. In a view of the deflection of 
the simply supported beam under the passage of the distribut-
ed moving load is believed to be caused by: 
• Forced Vibration: due to the distributed moving load 

acting on elements along the beam. 
• Free Vibration: due to elements that the moving load has 

passed. 
The forced and free vibrations induce sinusoidal waves which 
will cancel out each other. 

RECOMMENDATIONS 

The following recommendations are made for further work: 
• Investigate the behaviour of the beam subjected to a 

distributed moving load when the speed ratio is greater 
than 1. 

• Investigate the behaviour of a beam subjected to a dis-
tributed moving load under different damping ratios. 

REFERENCES 
 
Cook, R.D., et al., ‘Concepts and applications of finite ele-

ment analysis’,4th edn, Wiley, New York. 
 
Fryba, L., ‘Vibration of solids and structures under moving 

loads’. 3rd edn, Thomas Telford, London.  
 
Petyt, M, ‘Introduction to Finite Element Vibration Analy-

sis’,2nd edn,Cambridge University Press, London 
 
Reda, A.M., Forbes, G.L. and Sultan, I.A. ‘Characterisation 

of Slug Flow Conditions in Pipelines for Fatigue Analy-
sis’, ASME 30th International Conference on Ocean, Off-
shore and Arctic Engineering ,June 2011, Rotterdam, 
The Netherlands,OMAE 2011-49583. 

 
Rieker, J.R., Whittaker, M.W. ‘Finite Element Analysis of an 

Elastic Beam Structure Subjected to a Moving Distribut-
ed Mass Train’, Mechanical Sustsems and Signal Pro-
cessing, 1999. 13(1): p. 31-51. 

 
Yang, Y.B., Yau, J.D.,Wu, Y.S., ‘Vehicle-Bridge Interaction 

Dynamics - With Applications to High-Speed Rail-
ways’,2nd edn, World Scientific, Singapore. 

 
Wu, J.-J., A.R. Whittaker, and M.P. Cartmell, ‘Use of finite 

element techniques for calculating the dynamic response 
of structures to moving loads’, International Journal of 
Computers and Structures, 2000. 78(6): p. 789-799. 



Proceedings of ACOUSTICS 2011 2-4 November 2011, Gold Coast, Australia 

 

Acoustics 2011 7 

APPENDIX A: DERIVATION OF NODAL 
FORCES 

The simulation of the moving distributed load requires the 
application of the forces and moments to all the nodes of the 
beam. In an effort to investigate the dynamic response of the 
simply supported beam subjected to a passage of distributed 
moving load, and based on the nature of the distributed mov-
ing load, the distributed moving load will be discretised into 
the following three different cases to calculate the external 
forces and the bending moment vectors: 

Case-1: Arrival of moving load on a simply sup-
ported beam 

When the front of the continuous moving load covers part of 
element-1 of the beam, as shown in Figure 17, the external 
forces and the bending moments vectors are given by: 

 
Figure 17- Arrival of the Distributed Load to the Simply 

Supported Beam (Covers Node-1). 

Node-1: 

F(1, i) = P �N1mod
(ε2) + N3mod

(ε3)� 

M(1, i) = P �N2mod
(ε2) + N4mod

(ε3)� 

Node-2: 

F(2, i) = P �N3mod
(ε2) − N3mod

(0)� 

M(2, i) = P �N4mod
(ε2) − N4mod

(0)� 

Other nodes of the beam 

F(j, i) = zero 

M(j, i) = zero 

When the front of the continuous moving load covers ele-
ment-1 and part of element-2 of the beam, as shown in Figure 
18, the external forces and the bending moment vectors are 
given by: 

 
Figure 18- Arrival of the Distributed Load to the Simply 

Supported Beam (Covers Whole of the 1st Element & Part 
of the 2nd Element). 

 

 

 

 

Node-1: 

F(1, i) = P �N1mod
(ε3) − N1mod

(0)� 

M(1, i) = P �N2mod
(ε3) − N2mod

(0)� 

Node-2: 

F(2, i) = P �N1mod
(ε2) + N3mod

(ε3)� 

M(2, i) = P �N2mod
(ε2)+N4mod

(ε3)� 

Node-3: 

F(3, i) = P �N3mod
(ε2) − N3mod

(0)� 

M(3, i) = P �N4mod
(ε2) − N4mod

(0)� 

Other nodes of the beam 

F(j, i) = zero 

M(j, i) = zero 

Case-2 Departure of moving load from a simply 
supported beam 

When the rear of the continuous moving load covers part of 
the last element of the beam, as shown in Figure 19 ,whilst 
the front of the distributed moving load left the structure, the 
external forces and the bending moments vectors are given 
by:  

 
Figure 19: Departure of Moving Load from the Simply 
Supported Beam (Distributed Load Covers Part of the 

Last Element) 

Node EL+1: 

𝐹(𝐸𝐿 + 1, 𝑖) = P �𝑁3𝑚𝑜𝑑
(𝜀3) − 𝑁3𝑚𝑜𝑑

(𝜀1)� 

𝑀(𝐸𝐿 + 1, 𝑖) = P �𝑁4𝑚𝑜𝑑
(𝜀3) − 𝑁4𝑚𝑜𝑑

(𝜀1)� 

Node EL: 

F(EL, i) = P �𝑁1𝑚𝑜𝑑
(𝜀3) −𝑁1𝑚𝑜𝑑

(𝜀1)� 

M(EL, i) = P �𝑁2(𝜀3) − 𝑁2𝑚𝑜𝑑
(𝜀1)� 

Other nodes of the beam 

F(j, i) = zero 

M(j, i) = zero 

When the rear of the continuous moving load covers the ele-
ment between nodes EL and EL+1, covers the element be-
tween nodes EL and EL-1 as well as part of the element be-
tween nodes EL-1 and EL-2, as shown in Figure 20, whilst 
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the front of the distributed moving load left the structure, the 
external forces and the bending moments vectors are given 
by: 

 
Figure 20: Departure of Moving Load from the Simply 

Supported Beam  

Node EL+1 (S2): 

F(EL + 1, i) = P �N3mod
(ε3) − N3mod

(0)� 

M(EL + 1, i) = P �N4mod
(ε3) − N4mod

(0)� 

Node EL (S2-1): 

F(EL, i) = P �N1mod
(ε3) − N1mod

(0)�

+ P �N3mod
(ε3) − N3mod

(0)� 

M(EL, i) = P �N2mod
(ε3) − N2mod

(0)�

+ P �N4mod
(ε3) − N4mod

(0)� 

Node EL-1(S1+1): 

F(EL − 1, i) = P �N3mod
(ε3) − N3mod

(ε1)�

+ P �N1mod
(ε3) − N1mod

(0)� 

M(EL − 1, i) = P �N4mod
(ε3) − N4mod

(ε1)�

+ P �N2mod
(ε3) − N2mod

(0)� 

Node EL-2 (S1): 

F(EL − 2, i) = P �N1mod
(ε3) − N1mod

(ε1)� 

M(EL − 2, i) = P �N2mod
(ε3) − N2mod

(ε1)� 

Other nodes of the beam 

F(j, i) = zero 

M(j, i) = zero 

Case-3 Steady Vibration 

When the distributed moving load is located between three 
elements as shown in Figure 21, the external forces and bend-
ing moments vectors are given by: 

 

 

 

 
Figure 21: Distributed Load Travels along the Simply 

supported beam 

Node-S1 

F(S1, i) = P �N1mod
(ε3) − N1mod

(ε1)� 

M(S1, i) = P �N2mod
(ε3) − N2mod

(ε1)� 

Node-S1+1 

F(S1 + 1, i) = P �N3mod
(ε3) − N3mod

(ε1)�

+ P �N1mod
(ε3) − N1mod

(0)� 

M(S1 + 1, i) = P �N4mod
(ε3) − N4mod

(ε1)�

+ P �N2mod
(ε3) − N2mod

(0)� 

Node-S2 

F(S2, i) = P �N3mod
(ε3) − N3mod

(0)�

+ P �N1mod
(ε2) − N1mod

(0)� 

M(S2, i) = P �N4mod
(ε3) − N4mod

(0)�

+ P �N2mod
(ε2) − N2mod

(0)� 

Node-S2+1 

F(S2 + 1, i) = P �N3mod
(ε2) − N3mod

(0)� 

M(S2 + 1, i) = P �N4mod
(ε2) − N4mod

(0)� 

Other nodes of the beam 

F(j, i) = zero 

M(j, i) = zero 

The external forces and bending moments vectors at each 
time are determined for all the nodes of the subject beam 
based on the three cases presented above. 
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