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ABSTRACT 
The directivity of an electroacoustic sound source can be controlled by dividing its surface into independently con-
trolled elements, and there have been several approximately spherical loudspeaker arrays developed from this idea re-
cently. This paper describes a virtual dodecahedral loudspeaker array, which is achieved using a sealed loudspeaker 
possessing a single driver (through successive measurements). We compare the measured spatial response of this 
loudspeaker to a computer modelled loudspeaker array in terms of the applicable spherical harmonics. 

INTRODUCTION 

There has been a growing interest in controlled directivity 
sound sources for acoustic measurement over the past dec-
ade, complementing the much more rapidly growing devel-
opments in high-order microphony (Noisternig et al. 2011). 
Such transducers use an array of discrete transmitters or re-
ceivers, often around a sphere (or a Platonic solid approxima-
tion of a sphere). The spatial control of these transducers can 
be generically encoded using a spherical harmonic series 
(Williams 1999), using techniques that are often referred to 
as higher-order Ambisonics (HOA). The theoretically possi-
ble HOA order increases by one as the number of transmitters 
or receivers is increased to the next squared integer: i.e., four 
elements can yield first-order, nine elements can yield second 
order, sixteen can yield third order, etc. As an alternative to 
spherical harmonics, the transducer can be controlled in 
terms of its acoustic radiation modes (ARMs), which have 
the advantage of preserving the degrees of freedom estab-
lished by the number of transducer elements, and the disad-
vantage of a transducer-specific encoding, which may be 
frequency dependent (Pasqual et al. 2010; Zotter and Pasqual 
2011). In addition to considering the number of transducer 
elements, the spacing between elements determines a spatial 
aliasing wavelength (with a corresponding frequency) – in 
short, there must be at least two sampling points per wave-
length. A third consideration is the radius of the array, be-
cause radiation efficiency becomes vanishingly small for 
high order spherical harmonics when the product of wave 
number and radius is small (e.g., <1). In this study we exam-
ine the potential of a small dodecahedral loudspeaker array 
for directivity control using spherical harmonics. The unusual 
characteristic of our loudspeaker is that it has just a single 
driver, and we create the virtual loudspeaker array by con-
ducting successive measurements with the loudspeaker ori-
ented onto each of the twelve faces. 

Examples of previously reported high order directivity-
controlled loudspeakers can be found in the work of Avi-
zienis et al. (2006), Zotter (2009), Pollow and Behler (2009), 
Pasqual et al. (2010), Rafaely (2009), and others. Many of 
these approaches use Platonic solid loudspeaker driver con-
figurations, especially the dodecahedron (12 faces) and ico-
sahedron (20 faces). One departure from this is found in the 
work of Avizienis et al. (2006), who developed a 120-
element loudspeaker (albeit configured on an icosahedron). 

With a high order microphone, a single impulse response 
measurement delivers all of the spatial information that the 
microphone can gather from the soundfield. However, with a 
high order loudspeaker, successive measurements must be 
made, because the sound from each element mixes with that 
of the others. These successive measurements could be done 
in a number of ways, and the most straightforward is to 
measure from one face at a time. Another possibility is to 
synthesise a succession of spherical harmonics – and this 
approach has the potential to reduce the number of measure-
ments (for example, in the case of a dodecahedral array, nine 
measurements would be needed, instead of twelve). For our 
prototype loudspeaker, only the first option is available, and 
the spherical harmonic radiation patterns are derived post 
hoc. The inevitability of successive measurements means that 
this measurement technique is necessarily vulnerable to time 
variance in the environment around the loudspeaker, even if 
the loudspeaker is not repositioned between successive 
measurements. Repositioning the loudspeaker increases the 
risk of time-variance error, and so this must be done with 
great care. 

A loudspeaker with a single driver has advantages: it is very 
easy and inexpensive to construct, and so it provides easy 
access to the possibility of controlled directivity source 
measurements of acoustic environments. A further potential 
advantage of the single driver loudspeaker is that there is no 
possibility of ‘cross-talk’ (i.e., the movement of one driver 
affecting the movement of other drivers), and so there is no 
need for a matrix of cross-talk cancellation filters. 

Used in conjunction with a high order microphone, a high 
order loudspeaker could be used to derive a matrix of room 
impulse responses from source to receiver. For example if 
both source and receiver were configured for second-order 
Ambisonics, then the resulting matrix would have nine loud-
speaker radiation patterns and nine microphone reception 
patterns (expressed as spherical harmonics), yielding 81 room 
impulse responses in the matrix. With such a matrix, the di-
rectivity of both source and receiver could be manipulated 
post hoc, and it would be a simple matter to have these di-
rectivities varying in time for the purpose of source/receiver 
simulation (e.g., to simulate the time varying directivity of a 
musical instrument or human voice; together with the time 
varying directivity of a listener’s ears with incidental head 
rotations). This matrix grows rapidly as the Ambisonics order 
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is increased (e.g. 256 RIRs for 3rd order, 625 RIRs for 4th 
order, 1296 RIRs for 5th order). 

While the icosahedron is the Platonic solid with the most 
faces, and is capable of synthesising spherical harmonics for 
3rd order Ambisonics, the dodecahedron does have some 
advantages (even though it is limited to 2nd order Ambison-
ics). As shown by Pasqual et al. (2010), the dodecahedron is 
the Platonic solid with the greatest proportion of its surface 
available for radiation from circular transducers, and so has 
greatest radiation efficiency for a given radius. 

PROTOTYPE DESIGN AND CONSTRUCTION 

We chose to construct our loudspeaker enclosure as a dodec-
ahedron, rather than as a sphere, as a plastic dodecahedral 
box was readily available to us. An advantage of the dodeca-
hedron is that it is easy to see how it should be rotated during 
the twelve successive measurements. The plastic box is 77 
mm between opposite faces. One of the faces was almost 
entirely replaced by the loudspeaker driver. Given these di-
mensions, the spatial aliasing frequency is about 3.44 kHz. 
Prior to the insertion of the driver, mass and stiffness was 
added to the box by gluing large steel washers on the interior 
eleven remaining faces and adding a layer of resin over the 
entire interior surfaces. Sound absorptive material was insert-
ed into the box. Steel (ferromagnetic) screws were mounted 
on each of the twenty vertices for the magnetic suspension 
system described below. 

The driver selected was an Aurasound type NSW2-326-8A, 
which has a nominal diameter of 51 mm, and a rated long 
term rms power capacity of 15 W. This is the same as the 
driver used by Pasqual et al. (2010) in their dodecahedral 
array (mounted on a sphere surface), and some details of its 
performance are given by them. One of the distinctive fea-
tures of this driver is its long maximum excursion of 10 mm 
peak to peak. In order to mount the driver in our box, the 
flange was removed (yielding a 49 mm diameter driver 
body), and the driver was glued in place. 

 
Figure 1. Photograph of the prototype sound source, showing 

the magnetic suspension system and the laser-guided posi-
tioning (the red spots). 

We developed an acoustically transparent suspension system 
for the loudspeaker. Three neodymium magnets, attached to 

nylon lines, were suspended so that the magnets could sup-
port the loudspeaker consistently in any of the twelve orienta-
tions. In order to verify that the loudspeaker was suspended 
correctly after reorienting it, two fixed lasers were used – one 
horizontal and one vertical (from below). In the absence of 
the loudspeaker, these laser beams intersected. In the pres-
ence of the loudspeaker, the horizontal laser shone in the 
centre of a face, and the vertical laser shone on a vertex. 

LOUDSPEAKER MEASUREMENTS 

Measurements of the loudspeaker response were made at a 
distance of 2 m from the dodecahedron centre. Impulse re-
sponses were derived by analysing a swept sinusoid signal 
(logarithmic, 50 Hz – 20 kHz) that was played by the loud-
speaker and recorded simultaneously by six Brüel & Kjær 
type 4190 microphones. For each measurement orientation, 
six sweeps, each 58 s in duration, were recorded, and the 
final impulse response for each receiver position was derived 
from the synchronous average of the six. Measurements were 
made in a quiet anechoic room. From these measurements, 
using 64-bit floating point processing, we derived impulse 
responses with a signal to noise ratio of about 80 dB. 

The loudspeaker has an axis of symmetry that runs through 
the centre of the driver to the centre of the opposite face. 
Hence, in a free field there are four non-redundant face orien-
tations if the loudspeaker is to be repositioned onto each of 
its twelve faces. Therefore, we conducted free field meas-
urements on the four non-redundant orientations. The six 
microphones were arranged so that one was in line with the 
centre of a face, and the remaining five microphones were 
towards each of the five vertices of the same face (Figure 2). 
As a result, there are some redundant microphone positions, 
which depend on the orientation of the loudspeaker, shown in 
Fig. 2. In total there are twelve non-redundant measurements. 

 
Figure 2. Microphone positions (red dots) expressed as 

equivalent angles from the dodecahedron centre on each of 
the four non-redundant faces of the dodecahedron (shown as 
a partial net). Redundant microphone positions are linked by 

red lines. 

COMPUTER SIMULATION 

Computer simulation was done using a ‘spherical caps’ con-
cept similar to the approaches of Zotter et al. (2007), Pollow 
and Behler (2009) and Aarts and Janssen (2011). That is, 
each driver on the virtual dodecahedral array was modelled 
as a convex circular piston on a sphere. This was done by 
using an analytic expression of the transfer function between 
a point on a sphere (approximating the dodecahedron) and a 
point 2 m from the sphere centre, taking into account the 
diffraction around a solid sphere, after Williams (1999). The 
surface area of the piston was created by making a dense 
array of such points, forming a circle that approximated the 
circular outline of the loudspeaker driver’s diaphragm (with 
52 points over the diaphragm area). A matrix of receivers 
was used, forming a sphere centred on the dodecahedron 
centre (radius of 2 m). At each reception point, the sum of all 
transfer functions from the driver was made. 
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RESULTS 

If the measurements explained in the Loudspeaker Measure-
ments section were to be distributed around a sphere, seven-
ty-two receiver positions would be obtained (six measure-
ment positions per dodecahedron face). These seventy-two 
measurement positions were replicated in the computer simu-
lation. In order to test the performance of the simulation and 
the actual loudspeaker, comparisons are made with the values 
obtained for theoretical first and-second order spherical har-
monics.  

Impulse responses were obtained in both the simulation and 
loudspeaker measurements at each of the seventy-two receiv-
er positions by adding the impulse responses from on the 
actual driver or simulation points on the modelled driver. 
Prior to this, gain corrections were applied in order to create 
the desired spherical harmonic patterns to each driver or, in 
the case of the computer simulation, clusters of points repre-
senting each driver.  

Correlation coefficient was used as a measure of similarity 
between the theoretical response and the actual response of 
the simulation and loudspeaker measurements. The correla-
tion coefficients were calculated on an octave band basis, 
performed on the value calculated by obtaining the RMS of 
the entire impulse response and then normalising to the high-
est value (thus obtaining values ranging from 0 to 1). Corre-
lation coefficients were not calculated for the 0th order har-
monic as the ideal values are constant and therefore correla-
tion cannot be determined. 

For the simulation case, this allows us to understand the theo-
retical usable frequency range for a loudspeaker array with 
the characteristics of the one presented here. For the meas-
urement case, the correlation coefficient allows us to under-
stand the performance of the array, bearing in mind that 
spherical harmonics will be used as the basis for directivity 
control in the future. 

For reference, Figure 3 illustrates the spherical harmonics up 
to the second order, which are usually referred to by Yn

m, 
where n is the order, and m is the degree. 

 
Figure 3. Visualisation of spherical harmonics, up to the 

second order. Colour indicates phase. 

 

Table 1. Correlation coefficients calculated for first and se-
cond order harmonics between the computer simulation and 

the theoretical values. 
 Spherical Harmonic Order and Degree 

Freq(Hz) Y1
-1 Y1

0 Y1
1 

125 -0.0003 0.4331 0.4676 

250 0.9999 0.9998 0.9897 

500 0.9999 0.9999 0.9942 

1k 1 1 0.9982 

2k 1 1 0.9991 

4k 0.9999 1 0.9993 

 Spherical Harmonic Order and Degree 

Freq(Hz) Y2
-2 Y2

-1 Y2
0 Y2

1 Y2
2 

125 0.4275 0.3848 0.0175 0.4888 0.5787 

250 0.6749 0.5304 0.5556 0.7256 0.4991 

500 0.6208 0.5415 0.438 0.6754 0.5688 

1k 0.994 0.9264 0.9928 0.9987 0.8508 

2k 0.9967 0.9926 0.9977 0.9991 0.9856 

4k 0.9929 0.9943 0.9914 0.9954 0.9951 

 
 

Table 2. Correlation coefficients calculated for first and se-
cond order harmonics between spherical harmonics synthe-

sised from the measurements and the corresponding theoreti-
cal values. 

 Spherical Harmonic Order and Degree 

Freq(Hz) Y1
-1 Y1

0 Y1
1 

125 0.8299 0.9055 0.9113 

250 0.698 0.8353 0.8648 

500 0.7467 0.8545 0.8763 

1k 0.7916 0.8744 0.8907 

2k 0.8682 0.9105 0.9152 

4k 0.8502 0.904 0.9105 

 Spherical Harmonic Order and Degree 

Freq(Hz) Y2
-2 Y2

-1 Y2
0 Y2

1 Y2
2 

125 0.7118 0.6756 0.7126 0.6339 0.6694 

250 0.4727 0.441 0.2006 0.5079 0.5579 

500 0.4415 0.4275 0.2077 0.4605 0.4895 

1k 0.5288 0.4991 0.291 0.5377 0.6022 

2k 0.5932 0.5634 0.2774 0.5451 0.5664 

4k 0.5027 0.4828 0.2295 0.5252 0.6219 

A more detailed characterisation of the computer simulation 
was also performed by calculating impulse response to a grid 
of 961 points around the source, also at 2 m. The deviation 
from ideal values was calculated, again, by comparison with 
the theoretical response of the first and second order spheri-
cal harmonics. As in the correlation coefficient calculation, 
values were obtained by calculating RMS of each impulse 
response and then normalising to the maximum value. Re-
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sults are presented in Figures 4-6. The figures show the shape 
of the response obtained. The colour-coding represents abso-
lute error from the ideal value, also normalised to 1. Error is 
shown in green to gray for values from 0 to 0.5, and errors 
greater than 0.5 are coded monotonically in red. Results are 
presented for three orders of spherical harmonics and one 
degree for each order; results are presented at 125 Hz, 500 Hz 
and 2 kHz. The zeroth order spherical harmonic is well ren-
dered at all three frequencies (Fig 4). The first order spherical 
harmonic is well rendered at 500 Hz and 2 kHz, but the di-
rectivity pattern at 125 Hz bears little resemblance to the 
desired pattern (Fig 5). The second order spherical harmonic 
pattern is only well rendered at 2 kHz (Fig 6).  

DISCUSSION 

As demonstrated in the simulation and measurement results, 
a loudspeaker as compact as ours will have problems at lower 
frequencies when trying to reproduce spherical harmonic 
patterns, making the start of the range of usability the 250 Hz 
octave band for 1st order harmonics, and 1000 Hz for 2nd 
order harmonics. This is taken from the correlation coeffi-
cient results and graphically shown in the results from the 
simulation at a high-density sampling grid (Fig 4-6). It should 
be noted that this could be corrected with individual frequen-
cy dependent filtering for each driver. For this paper only 
gain has been taken into account to produce the spherical 
harmonic patterns investigated.  

 
Figure 4. Directivity patterns for 0th order spherical harmonic 
simulation. Colour-coding shows absolute error from normal-

ised values. 

 
Figure 5. Directivity patterns for 1st order spherical harmonic 
simulation. Colour-coding shows absolute error from normal-

ised values. 

 
Figure 6. Directivity patterns for 2nd order spherical harmon-
ic simulation. Colour-coding shows absolute error from nor-

malised values. 
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The small size of our loudspeaker means that it has relatively 
poor radiation efficiency at low frequencies, especially for 
the second order spherical harmonics. In quiet environments, 
perhaps this can be overcome by making long duration meas-
urements with optimised gain structure. However, it should 
be borne in mind that the measurements presented here were 
6 minutes in duration (each), and the anechoic room was very 
quiet – and yet the rendering of second order spherical har-
monics was poor. These errors could be caused by several 
other factors, including misalignment of measurement micro-
phones, misalignment of the loudspeaker as it is rotated, dif-
ferences in driver directivity from theoretical approximation 
and inappropriate driver and enclosure damping. These im-
perfections would be hard to quantify and correct with signal 
processing, however improvements could be made that in-
clude correction of off-axis response of the driver and time 
misalignment. Ultimately, a larger radius loudspeaker would 
be preferable as a directivity-controlled measurement source. 

CONCLUSION 

A loudspeaker capable of providing directivity pattern con-
trol by using a single driver and multiple measurements has 
been presented. The theoretical constraints of the loudspeaker 
configuration presented have been explored by a computer 
simulation. Also, measurements of the device have been pre-
sented and areas of improvement to the device under test 
have been identified. Possible avenues for future research 
include exploring the beam-forming capabilities of the device 
in its current configuration, physical improvements of the 
device and exploring the possibility of constructing a loud-
speaker with different characteristics that could help improve 
its low frequency beam-forming capabilities. 
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