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ABSTRACT 
This paper discusses the design and evaluation of a pole placement controller for reducing vibration of structures. The 
design of the controller involves shifting the poles of a transfer function describing the structure’s dynamic behaviour 
by using a feedback control gain. The feedback control gain is chosen to minimise the vibration response of the 
structure. The performance of the controller is evaluated by simulation using a dynamic model of a plate estimated 
from experimental data. The experimental data consisting of natural frequencies, structural damping and eigenvectors 
are used to construct a state-space model where the state vector is multiplied by the control gain to produce a control 
input. The effect of pole location and the effect of excitation type on structural response and control signal required 
are discussed in detail. Also, the effect of measurement noise on the robustness of the controller is investigated. 
Results show that the controller produces a significant reduction in the plate vibration. 

INTRODUCTION 

Vibration control of structures is an important issue in many 
applications. Active control of vibration and sound radiation 
from flat plates are examples which have received 
considerable attention in the past and will continue to do so 
in the future, as flat plates are the basic building blocks of 
many engineering structures, including the hull of a marine 
vessel.  

Early work on active feedforward control of vibration of 
plates was investigated by rearranging the vibration field 
(Pan & Hansen 1995 and Johnson & Elliot 1995). Recently, 
control systems have increasingly used feedback control to 
damp the vibration rather than a feedforward arrangement, 
because of its ability to deal with broadband random 
vibration without an external reference signal. Gardonio and 
Elliott (2004) reviewed the decentralized feedback control 
approach for a smart panel with different types of 
transducers. Pan and Forrest (2010) extended their work on 
control of sound radiation from a smart panel to any size of 
flat plate. The latter work assumed that an appropriate 
controller is available. 

An overview of essential aspects involved in the design of an 
active vibration control system can be found in Alkhatib and 
Golnaraghi (2003). One of the key issues is to design the 
controller. A survey of the issues of digital controller 
implementation was presented by Hanselmann (1987). 
Various controllers can be designed such as proportional-
plus-integral, linear quadratic regulator, or pole placement. 
The poles are related to the damped natural frequencies of the 
system. The pole placement method was chosen for the 
current study, as it is one of the simple but effective methods 
for multimodal active vibration suppression (Sethi & Song 
2006). The pole placement control system can be realised by 
applying a simple feedback control gain matrix, and the gain 
matrix is based on a dynamic model which produces a fast 

response to the system through control actuators. The pole 
placement method is also known as a direct time control 
technique with closed loop poles (Marium et al. 2005). 

The pole placement control has been successfully 
implemented by Manning et al. (2000), Scott et al. (2001) 
and Bu et al. (2003) for controlling the first dominant mode 
of flexible beams. Sethi and Song (2005) implemented the 
pole placement for controlling the first three modes of 
flexible beams by using a single sensor and a single actuator. 
In their experimental set up, system identification for the 
dynamics of the first three modes and model reduction 
techniques were employed to assist the control system 
design.   Sethi and Song (2006) then extended their work on 
pole placement control of vibration of beams to a smart 
model frame structure (a three-storey model for simulating 
civil structures from dynamic loading under severe winds and 
earthquakes). Their experimental results demonstrated the 
effectiveness of multimodal vibration control of the smart 
frame structure using the pole placement method. Kumar and 
Khan (2007) and Kumar (2010) designed controllers based 
on the adaptive and robust pole placement method, and 
implemented the controllers on an inverted L beam. They 
indicated the adaptive pole placement controllers were noise 
tolerant, but required high actuator voltages to maintain 
stability. They also showed the robust pole placement 
controllers required comparatively small amplitude of control 
voltages to maintain stability, but were noise sensitive.  

The key goals for the current paper are: 

(1) design of a pole placement controller for any 
vibrating structure 

(2) evaluation of the performance of the controller for 
controlling vibration of structures 

(3) investigation of the effect of pole location and the 

This paper has been approved for public release by the Chief of Maritime Platforms Division, DSTO. 



Proceedings of ACOUSTICS 2011 2-4 November 2011, Gold Coast, Australia 

 

Acoustics 2011 2 

2

effect of excitation type on structural response and 
control input required; and 

(4) investigation of the effect of signal noise on the 
performance of the controller. 

EXPERIMENTAL ARRANGEMENT AND 
RESULTS  

A flat steel plate with dimensions 1440 × 710 × 3 mm (area 
1 ) was tested. The plate was freely suspended from a 
heavy steel frame (Figure 1). Vibration response 
measurements were obtained using a Polytec PSV-400-3D 
scanning laser vibrometer. Only out-of-plane (z direction) 
data have been considered in this study. There were 135 
measurement points, as shown in Figure 2. Point 19, marked 
by the arrow and red dot in the figure, was excited by an 
electrodynamic shaker. The excitation force was measured 
using a Brüel & Kjær 8201 force transducer. The modal 
parameters (natural frequencies, damping, and mode shapes) 
were extracted using a non-linear least squares algorithm 
implemented in the ICATS v2003 suite of modal analysis 
software. 

m

         
Figure 1. Experimental steel plate. 

 
 

 
Figure 2. Arrangement of measurement points on the plate. 
●, primary excitation; ●, response measurement points for 
simulation. 

Table 1 lists measured natural frequencies and structural 
damping for the first ten non-rigid body modes. Figure 3 
shows the corresponding mode shapes for these first ten 
modes. The modes are determined for the experimental setup 
with the plate, suspended by two ropes, which is close to 
free-free-free-free but not quite. The rigid-body modes are 
then the plate swinging on the ropes, rather than free motion 
through space. The fundamental mode (mode 1) and its 
counterpart mode (mode 7) are characterised by two parallel 
nodal lines, and other modes are characterised by more 
complicate nodal lines for the plate. The swinging rigid-body 
modes together with the modes shown in Figure 3 indicate 

experiment.  These modal parameters were all calculated in 
the ICATS software based on the measured responses at all 
135 points on the plate.  For the control system simulation, 
the responses at only 5 of these points were considered.  
These points are marked with green dots in Figure 2. 

the behaviour of the free-free-free-free plate in the 

Table 1. Natural frequencies and structural damping 

Frequency 
Mode Natural Damping 

(Hz) 
(structural 
damping) 

1 15.4 9.1E-03 
2 23.2 1.1E-02 
3 37.6 1.0E-03 
4 44.8 2.0E-04 
5 61.2 1.1E-03 
6 70.1 2.0E-04 
7 72.0 1.1E-03 
8 73.2 6.0E-04 
9 107.0 5.0E-04 

10 118.1 3.0E-04 

 

Mode 1   Mode 2 

 

Mode 3   Mode 4 

 Excitation point 
Mode 5   Mode 6 

 

Mode 7   Mode 8 

 

Mode 9   Mode 10 

 

 
Figure 3. Measured mode shapes of the first ten modes.  
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STATE-SPACE REPRES AND POLE 

ce representation of a multiple degree-of-
freedom system of order n 

                                         (1a) 

and 
                                                 (1b)  

where  
tate vector 

stem inputs or total input 

 of m structural outputs  

A, B and C wi te (parameter) matrices. We 

                                               (2) 

where K is a ( quation 
 contro

                           (3) 

The solution of this equation is

                           (4) 

where  is the initial sta transient 

ENTATION 
PLACEMENT  

Consider a state spa
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ln×=B  input matrix 
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1×= my  output vector. 

ll be named sta
can choose the control signal to be  

 
Kxu −=  

nl× ) feedback control gain matrix. E
(2) shows the l signal is determined by the 
instantaneous state of the system. Substituting Equation (2) 
into Equation 1(a) gives 

 
).(()( tt BK)xAx −=&   

 given by  

 
)0()( )( xx BKA tet −=  

)0(x te. The stability and 
response characteristics are determined by the eigenvalues of 
matrix BKA −  (Ogata 1997). For 0)0( ≠x  and K chosen 
properly eoretically possible to )(tx  approach 0 
as t approaches infinity. The eigenvalues of ix BKA

, it is th  make 
matr −  

determine the new (desired) poles of the system. The gains K 
are chosen to increase the damping associated with each 
resonance, recalling that the poles are related to the damped 
natural frequencies of the system. 

Figure 4(a) shows a block diagram representation of the 

) check the controllability condition for the system; 

 

(3) ation matrix T that 
transforms the system state equation into the 
controllable canonical form (Ogata 1997); 

step 4 and the corresponding 
coefficients obtained in step 2, multiplied by the 

If the sy
replaced 
“place” u ky 1985) for multi-input 
systems and is recommended for single-input systems as 

state-space Equations (1) and Figure 4(b) shows a block 
diagram of the same system with a feedback control gain 
applied. For a single-input system, a procedure for 
calculating a pole placement controller was given by Ogata 
(1997) using known desired poles to determine the feedback 
control gain. This procedure involves the following five 
steps: 

(1

(2) determine the coefficients of the characteristic
polynomial for matrix A; 

determine the transform

(4) using the desired poles, write the desired 
characteristic polynomial and determine its 
coefficients; 

(5) the required state feedback gain vector is then 
determined from the difference of the coefficients 
obtained in 

inverse of the matrix T. 

stem is controllable, the above procedure can be 
by using a Matlab function “place”. Note that 
ses an algorithm (Kauts

well. 

 

(a) 

A

B C
xx& y

∫
u

++

 

(b) 

A

B C
xx& y

∫
u

-

K

++ +

 

Figure 4. Block diagrams for (a) the state-space 
representation; and (b) the control system using feedback 
gain. 

 FOR THE CURRENT SYSTEM 

a 
d 

rameters. The 
state-space model was implemented in Simulink. This 

e uncontrolled 
system), based on the experimental natural 

(2) 

 Assess the controllability of the system; 

 
DETERMINATION OF FEEDBACK CONTROL 
GAIN

The dynamic behaviour of the plate was modelled using 
state-space description with the parameter matrices calculate
from the experimentally determined modal pa

procedure involved the following four steps: 

(1) calculate poles and residues of a transfer function 
describing the dynamic properties of the plate (i.e. 
pole-residue representation of th

frequencies and modal damping, and the mode 
shapes; 

determine a state-space model of the uncontrolled 
system based on the uncontrolled poles and 
residues.

(3) calculate desired poles from the uncontrolled poles 
and desired damping ratio; and 
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atrices from the 
uncontrolled system. 

Some spe
following input system is assumed for 
the reason of simplicity. The equations below follow the 

(4) calculate the state feedback control gain using 
desired poles, and state m

cific steps will be described in the following. In the 
 discussions, a single-

approach described by Maia & Silva (1997). The transfer 
function at point i on the plate in pole residue form can be 
written as 

 

*

*

1
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j

ij
n

j j

ij
i

ps

r
ps

r
sh

−
+

−
=∑

=

            (5) 

where is the element of a ( ) residue matrix and 

is the element of a ( ) column vector of pole locations, s 
a le (r nd

ijr  nm× jp  

1×n
is the L place transform variab elated to frequency), a  
star denotes the complex conjugate.  

For an underdamped system, the poles at mode j can be 
written as 

 
21 ζωζω −+−= jjj ip                   (6) 

where jω  is the natural frequency and ζ  is the d
 and structural 

amping 
ratio. The expression relating damping ratio

gdampin  β  is 

 

2
βζ = .                                                  (7) 

Assuming eigenv idue 
at point i with a prim

  (8) 

he transfer function ing

together with the existing poles  obtained from Equation 
to

pa

bility can be tested 
by determining the rank of a controllability 

tained 
by substituting the natural frequency and desired damping 

e. However, the residues are different 
at each point (see Equation (8)). The responses at the m 

COMPLETE SYSTEM DESIGN VIA POLE 
LACEMENT CONTORL 

el used 
tion to the system is either a 

 Hz (the natural 

ectors Φ  are mass normalized, the res
ary excitation at point 0 is 

 
ijj0ijr ΦΦ= .                                         

T  is then obtained by substitut  ijr  

jp
(6) into Equation (5).  The transfer function is then used  
determine the state-space model. Transformation from a 
transfer function form to a state-s ce representation is easily 
done using functions provided in Matlab. 

A pole placement controller can only be implemented for a 
controllable system. The system controlla

matrix ][ 1BA|...|AB|B −n . If the rank of the controllability 
matrix is n, the system is stable and pole placement 
techniques can be applied to the system (Ogata 1997). 

Desired poles are determined by using the existing natural 
frequency and changing the damping. This can be ob

ratio into Equation (6). 

For plate responses measured at m points, the poles at each of 
the m points are the sam

points are calculated individually by determining m transfer 
functions (see Equation (5)). Thus, the total transfer function 

is a combination of the m transfer functions, which can be 
used to determine the resulting state-space model and the 
feedback control gain.  

 

P

Figure 5 shows a block diagram of the Simulink mod
in this study. The primary excita
unit step function or a sine function at 15.4
frequency at the first mode). The top part of the figure 
consists of the primary input directly exciting the structure to 
produce an uncontrolled output response. The lower part of 
the block diagram represents the controlled structure. The 
control system consists of a feedback loop implementing the 
control gain. The control gain is multiplied by the state vector 
to produce a control input. The total input u to the structure is 
then the difference of the primary input and the control input, 
which minimizes the structure’s response. The block diagram 
also includes display blocks to capture the input and output 
data from both the uncontrolled and controlled systems. The 
input and output data are compared for a number of cases 
discussed in the following section. 

 

Figure 5. Simulink model showing the complete system 
design via pole placement.  Both uncontrolled and controlled 
systems are shown in the one diagram.  The scope blocks 

SIMULATION RESULTS 

ulation is an extension of the work done by 
ply supported plate with the 
 as the current plate. They 

 for calculating desired poles at all modes. This 
is because for a second order system this damping ratio 

labelled “Inputs” and “Outputs” are simply for monitoring all 
the input and output signals respectively. 

 

The following sim
Pan and Forrest (2010) on a sim
same dimensions and properties
showed that using either a control actuator located at the 
centre of the  plate or four control actuators located near four 
corners of the plate could reduce vibration and sound 
radiation from the plate through an active control approach. 
Therefore, the plate responses at those locations will be 
determined for evaluating the performance of the controller 
in this paper. Referring to Figure 2, the results of plate 
responses at the centre (point 46) and four corners (points 1, 
14, 85 and 91) of the plate will be presented separately for 
comparing with future experimental results. The first ten non-
rigid body modes were included in the calculation of the 
state-space model and the poles at the first ten modes of the 
uncontrolled system were used to calculate the state feedback 
gain matrix. 

In all controlled cases shown below, the desired damping 
ratio was 0.7
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ection, the simulation results were obtained at the 
6(a) and (b) show the pole-zero 

espectively. Before control, all 

provides an overshoot less than 5%. Also, the maximum 
overshoot and the rise time conflict with each other (Ogata 
1997). In other words, both the maximum overshoot and the 
rise time cannot be made smaller simultaneously. This 
damping ratio and the resulting rise time are a compromise 
with each other (see the example given by Ogata (1997)). A 
multiple degree-of-freedom system can be thought of as a 
sum of second order systems that are defined over a limited 
frequency range, i.e. a sum of modes. Therefore, this 
damping ratio applied to all modes will be assumed to yield a 
desirable response for the multiple degree-of-freedom 
system. 

Central plate response 

In this s
centre of the plate. Figures 
maps before and after control r
the poles are located close to the imaginary axis, 
corresponding to the lightly-damped modes of the 
uncontrolled structure. After control, all the poles are moved 
to the left-half s-plane as a result of increasing the damping. 
The two different sets of pole locations shown in Figures 6(a) 
and 6(b) will result in different structural outputs which will 
be described below. Note that the zero locations are not 
changed after control. Also, the pole locations shown in the 
pole-zero maps are the same for any measuring point as 
mentioned previously. The gain matrix K is a vector in this 
case and the values of gain in it range from 1.27×103 to 
1.26×105 for this solution. 

Pole-Zero Map before control
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Im
ag

in
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y 
Ax
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Pole-Zero Map after control
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Figure 6. Pole-zero maps before and after control (a) before 
control; (b) after control. ×, poles; ○, zeros. 

 the response at 
e plate centre to the excitation before and after control. The 

input is force and the output is acceleration. Thus, the 

 

Figure 7 shows the transfer functions relating
th

reference level of the dB magnitude scale is 1 ms-2/N. By 
moving the poles to the left-half s-plane, the magnitude of the 
transfer function is reduced more than 30 dB at all the 
resonances except for the first resonance where a reduction of 
18 dB is obtained. This is because the uncontrolled damping 
ratio at the first resonance is larger than those at the other 
resonances. Thus, applying the same controlled damping 
ratio to all resonances we would expect less damping effect 
on the first resonance. The results in Figure 7 were generated 
by changing the sine input signal block shown in Figure 5 to 

a band-limited random input with a bandwidth of 200 Hz. 
The model was run for 20 seconds and input and output time 
series stored. The transfer functions were calculated as the 
ratio of the power spectral density (PSD) of the output 
divided by the PSD of the input, using 8 averages in each 
case.  

 

 

Figure 7. Transfer function at the plate centre before and 
after control. ─, before control; - - -, after control. 

odel in 
igure 5 with the state matrices and control gain calculated 

previously. Figures 8(a) and (b) show the controlled and 

 

The transient results were obtained by running the m
F

uncontrolled structural inputs and outputs due to the step 
excitation. Before control, all the poles (see Figure 6(a)) 
generate an oscillatory output with amplitude determined by 
the initial conditions (see black solid line in Figure 8(b)). The 
response of the controlled system is heavily damped and 
settles to a non-zero steady state value (see red dashed line in 
Figure 8(b)).  

 

 
 
Figure 8. Inputs and outputs at the plate centre due to step 

puts; (b) outputs; ─, before control; - - -, 

 and uncontrolled structural 
puts and outputs due to sine excitation at a frequency equal 

to that of the first mode. Two time ranges 0-10 seconds 

excitation (a) in
after control. 

 

Figure 9 shows the controlled
in

(Figures 9(a) and 9(b)) and 0-1 second (Figures 9(c) and 
9(d)) are presented. Figure 9(a) shows the controlled input 
signal relative to the primary input signal. Figure 9(b) shows 
that the uncontrolled system takes about six seconds to reach 
a steady state level. Note that if the sine excitation is off the 
resonance the uncontrolled system reaches the steady state 
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level much quicker. A significant reduction of the output is 
achieved by the controller and the settling time is reduced 
rapidly. More detailed transient results can be observed in 
Figures 9(c) and 9(d).  
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 Figure 9. Inputs and outputs at the plate centre due to sine 

excitation at the first mode (a) inputs plotted 0-10 seconds; 
(b) outputs plotted 0-10 seconds; (c) inputs plotted 0-1 

onse 

ion, the controlled and uncontrolled structural 
he plate due to different types of 

primary excitations will be presented. The pole locations are 

he output
g the desired pole 

locations, effectively increases damping to the system and 

second; (d) outputs plotted 0-1 second. ─, before control;  
- - -, after control. 
 

Corner plate resp

In this sect
outputs at four corners of t

the same as those shown in Figure 6. The structural inputs are 
the same as those shown in Figure 8(a) and Figure 9(c) for 
the step and sine excitations respectively. These results will 
not be repeated here. Due to the state-space model now 
including the four corner responses, the gains differ from the 
single output case. The values of gain in the gain matrix K 
now range from 21036.6 ×  to 6.32×104 to achieve the 
controlled poles shown in Figure 6(b). 

Figure 10 presents t s due to the step excitation. The 
feedback control gain, implementin

reduces the settling time at each corner. With control (red 
dashed line), different steady state values of each corner can 
be observed which are due to the residues of the controlled 
system and because the step excitation has a non-zero mean 
(DC) component. The steady state response in each corner 
due to sine excitation is reduced as shown in Figure 11 
below. Results shown in Figure 11 follow a similar trend to 
those at the plate centre as shown in Figure 9(d)   
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Figure 10. Structural outputs at the plate corners due to step 
excitation (a) outputs at point 1; (b) outputs at point 14;  (c) 
outputs at point 85; (d) outputs at point 91. ─, before control;  
- - -, after control. 
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Figure 11. Structural outputs at the plate corners due to sine 
excitation at the first mode (a) outputs at point 1; (b) outputs 
at point 14;  (c) outputs at point 85; (d) outputs at point 91. ─, 
before control; - - -, after control. 

The performance of the controller was also tested using a 
random excitation signal. As expected, the controller 
significantly damped the structural response but a larger 
feedback control signal was required. While the control 
signal for a sine excitation had a similar peak-to-peak level as 
the external excitation, the control signal for random 
excitation was about 1.5 times the excitation peak-to-peak 
level. Thus, the pole placement technique can be applied to 
structures excited by any primary source as the control law is 
the same for any primary excitation. However, the control 
signal required is dependent upon the excitation type. Note 
that the control actuator should not be located on the nodal 
lines of the modes to be controlled (Pan & Forrest 2010), as 
the location of the control actuator affects the control gain. 
An infinite control gain would be required if the control 
actuator is located on the nodal lines. In practice, one can 
move the control actuator experimentally to avoid being 
located on the nodal lines. 
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Effect of measurement noise on the performance of 
the controller 

In practice, it is common that measurement noise affects the 
signals in the error vector (error sensors) which reduces the 
performance of the controller. This situation was simulated 
by adding zero-mean random noise to the state vector 
(variables). A Simulink model including the measurement 
noise is shown in Figure 12. Figure 13 shows the results 
obtained by running Figure 12. The uncontrolled results were 
obtained previously. Figure 13(a) shows the controlled and 
uncontrolled outputs at the plate centre due to sine excitation 
with injected random noise having a standard deviation 

of the state vector. This is the threshold 
where the “controlled” output is still just less than the 
uncontrolled output. Figure 13(b) shows the result above the 
threshold, with the injected random noise set with 

 of the state vector. The results indicate 
the control system becomes unstable and the structural 
response increases when the measurement noise is above this 
threshold. This is because the components of the random 
signal that are negative with respect to the state vector at the 
output side of the structure give rise to positive feedback 
when multiplied by the gain in the control system.  Various 
constraints in the physical system, control system and 
hardware can give rise to perturbations like this random 
noise. These constraints prevent large feedback gains being 
properly implemented, e.g. actuators may move out of their 
linear operating range and ultimately not be able to supply 
enough force in any case.  

RMS××= −5104σ

RMS××= −5106σ

 

 

Figure 12. Simulink model including measurement noise 
added to the state variables.  

 

 
 
Figure 13. Structural outputs at the plate centre due to sine 
excitation at the first mode when random noise is present in 
the state variables (a) at the threshold of system stability; (b) 
with random noise above the threshold.  ─, before control;  
- - -, after control. 

ISSUES AND FUTURE WORK 

The major issues in implementing the control system via a 
pole placement controller are: 

(1) The feedback control gain matrix K is calculated 
from the state matrix of the uncontrolled system; in 
this case modelled using experimental data (natural 
frequencies, damping and eigenvectors). An 
accurate model of the structure is required for 
implementing a pole placement controller.  

(2) K is not unique for a given system but depends on 
the desired closed-loop pole locations selected. The 
selection of the desired pole locations has to be a 
compromise between the speed of the response of 
the error vector and the sensitivity to disturbance 
and measurement noises (Ogata 1997). 

(3) In a high-order problem, some choices of pole 
locations result in very large gains. The further a 
control system has to push a pole from its original 
position, the greater the required control input or 
‘effort’. If the control effort is too large, the control 
actuator will saturate. The actual system response 
may look nothing like the desired system response, 
and may even be unstable when this happens 
(Hansen & Snyder 1997). 

(4) The present pole placement approach specifies the 
first ten closed-loop poles. There is a cost 
associated with placing these closed-loop poles 
(Ogata 1997), because placing them requires 
successful measurements of all state variables (all 
elements in the state vector x) or else requires the 
inclusion of a state observer in the system to 
estimate the state variables. 

Therefore, there are several areas for future research. For 
overcoming all of the first three problems simultaneously, 
optimal control may be considered (Hansen & Snyder 1997). 
Rather than beginning with a set of desired pole locations, 
optimal control takes into account the control effort required 
to achieve the desired result with the control system. 

Decentralised adaptive pole placement control (El-Kashlan & 
Yousef 1993) could be used to overcome some of the issues 
with the third problem. In this scheme, multiple semi-
independent controllers are used, each controlling one or two 
poles. This allows the use of lower gains in each controller. 
Another approach overcoming the third problem is to place 
the closed-loop poles at certain fixed positions (Kumar 
2010). With this approach, the resulting structural response is 
near a particular value and only a limited control effort is 
required to maintain system stability. 

For overcoming the fourth problem, an approach to pole 
placement with output feedback instead of the state feedback 
is proposed. Rather than measuring all state variables, output 
feedback control only needs to measure outputs as the error 
vector which can be obtained by using accelerometers, for 
example. Thus, the output feedback approach would be 
expected to be a feasible way for implementing pole 
placement control in a real system. 

CONCLUSIONS  

The design of a pole placement controller to control vibration 
of a steel plate has been discussed. As the procedure is 
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general, it could be applied to design a controller for any 
vibrating structure once natural frequencies, damping and 
mode shapes are known. The performance of the controller is 
evaluated by simulation using a dynamic model of a plate 
estimated from experimental data. The controller reduces the 
vibration response of the structure by increasing damping of 
the system poles. The control technique can be applied to 
structures excited by any primary excitation; however, the 
control signal required to damp the structural vibration is 
dependent upon the excitation type and sensitive to noise 
added to the state vector.  

The authors would like to thank Mr Vinh Trinh for his 
support in providing the experimental data, and Dr Alex Cave 
for useful discussions. 
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