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ABSTRACT 
In active sonar, the echo from a target is the convolution of the source waveform with the impulse responses of the 
target and the propagation channel. The transmitted source waveform is generally known and replica-correlation is 
used to increase the signal gain. This process is also called pulse compression because for broadband pulses the re-
sulting correlation functions are impulse-like. The echo after replica-correlation may be regarded as equivalent to that 
received by transmitting the impulsive auto-correlation function of the source waveform. The echo energy is spread 
out in time due to different time-delays of the multipath propagation and from the scattering process from the target. 
Time spreading leads to a reduction in the peak power of the echo in comparison with that which would be obtained 
had all multipaths overlapped in time-delay. Therefore, in contrast to passive sonar where all energies from all sig-
nificant multipaths are included, the concept of transmission losses in the active sonar equation needs to be handled 
with care when performing sonar performance modelling. We show modelled examples of echo time spreading for a 
baseline case from an international benchmarking workshop. 

INTRODUCTION 

The performance of an active sonar system is often illustrated 
by the power (or energy) budget afforded by a separable form 
of the sonar equation, such as the following, 

SE = EL – [(NL – AGN) ⊕ RL] + MG – DT     (1) 

where SE is the signal excess, EL is the sound pressure levels 
of the echo, (NL – AGN) is the in-beam noise level, i.e., noise 
level NL in the receiver bandwidth reduced by the receiver 
array gain AGN against noise, RL is the in-beam reverbera-
tion level from scatterers on the source and receiver’s beam 
pattern, ⊕ represents intensity summation. MG is the gain in 
signal to noise ratio (SNR) from matched filtering. The detec-
tion threshold, DT, is the SNR required at the output of the 
matched filter to achieve a certain probability of detection 
and false alarm for given signal and noise statistics.  

The DT in Eq.(1) is defined at the output of the matched 
filter, which is the convention in Ainslie (2010),  Lurton 
(2002), Bradley (1996), and the Radar literature (Barton 
2005; DiFranco & Rubin 1968). When detection threshold is 
defined at the input to the temporal processor, as in Urick 
(1983), Burdic (1991), Waite (2002), and Etter (2003), the 
matched filtering gain is included in the detection threshold. 

Traditionally, the echo level is often written as (Urick 1983; 
Burdic 1991; Waite 2002; Etter 2003), 

EL = SL – TLS→T + TS – TLT→R  (2) 

where SL is the source power level, TLS→T is the one-way 
transmission loss from source to target, TS is the target 
strength, TLT→R is the one-way transmission loss from target 
to receiver. 

 

ECHO MODELLING ISSUES 

In a sound channel, the transmitted pulse generally splits into 
multipath arrivals with different propagation angles and 
travel times that ensonify the target, which scatters and re-
radiates each arrival to more multipath arrivals at the re-
ceiver. Hence the received echo is a multiple convolution of 
the transmitted source pulse with the following three impulse 
responses: (1) propagation from source to target; (2) target 
scattering; (3) propagation from target to receiver. 

Whilst Eqs.(1) and (2) are instructive to help understand the 
power (or energy) budget of the sonar process, rigorous mod-
elling of broadband coherent active sonar is more complex 
than computing the seemingly simple sonar equations be-
cause of the dependence of the sonar quantities on frequency, 
angle, and time. 

In general, due to the presence of multipath with different 
propagation angles, the EL can not be computed from sepa-
rable terms as in Eq.(2). Target scattering generally depends 
on incident and outward angles. Source beam patterns, 
propagation multipaths or multi-modes, and target scattering 
become coupled in angle domain and there is no separable 
equation to calculate EL from SL, TS, and TL. It is only 
when the target scattering cross section varies little across the 
angular domain of the significant multipaths, that the terms 
become separable (Ratilal et al 2002). In addition, effects of 
multiple scattering can be significant when the target is near 
an ocean boundary (Giddings & Shirron 2008; Hackman & 
Sammelmann 1988). Furthermore, in a multipath environ-
ment, the array signal gain also degrades from that computed 
for a single plane wave in free field (Zhang 2009). 

Another complication arises from the dependence of the so-
nar quantities on frequency. The source level, propagation, 
target strength, noise and reverberation, array beam patterns 
and array gain, generally vary with frequency. Integration 



 
2-4 November 2011, Gold Coast, Australia Proceedings of ACOUSTICS 2011 

 

 
2 Acoustics 2011 

 

with frequency is needed and the frequency dependence can 
only be ignored if the variation is small over the frequency 
band of interest. 

The third complication comes from the time dependence or 
transient nature of pulse propagation, which is the focus of 
this paper. 

Transmission Loss for Pulse Propagation 

Traditional transmission loss, such as that for passive sonar, 
is defined for a harmonic wave of a single frequency, where 
all multipath contributions are added together because the 
signal is treated as of infinite time extent (Urick 1983; Jensen 
et al 2000). We may call these harmonic transmission losses. 
Coherent or phased additions, where the complex pressures 
are added, reveal constructive and destructive interferences 
between different paths. Incoherent addition, where the inten-
sities are added, is often used to approximate the smoothing 
effects of averaging, e.g., over frequency, range, depth, (Har-
rison & Harrison 1995) or other statistical fluctuations. Inco-
herent addition can be over rays or modes where different 
types of phase information are discarded. 

For pulses, one may define sound levels and transmission 
losses in terms of total energy integrated in time or frequency 
(Ainslie 2010; Marshall 1996). For simplicity we call these 
total transmission loss. One may also define transmission 
losses in terms of difference in energy spectral density 
(Badiey et al 1997), which correspond to harmonic transmis-
sion losses at the different component frequencies. 

Peak pressures or intensity have also been used to represent 
sound levels (Madsen 2005) or to measure transmission 
losses (Hines et al 1997). We may call these peak transmis-
sion losses. For modelling the echo power level of an active 
sonar, after processing such as matched filtering, envelope 
detection, and averaging, what is relevant is the peak of the 
intensity sum of multipath arrivals within the sonar resolution 
cell. 

The distinction between total and peak transmission loss is 
important for short pulses and can be illustrated by the simple 
example of propagation in an isovelocity waveguide. Whilst 
the total transmission loss may behave as cylindrical or 
“three halves law” spreading depending on the reflectivity of 
the bottom (Weston 1971;Brekhovskikh & Lysanov 
2003;Harrison 2003), if the pulse is short enough so that all 
multipaths are separated, the peak transmission loss will be 
determined by the strongest direct path, leading to spherical 
spreading irrespective of bottom properties. 

Two-way versus One-way Losses 

It is often regarded as an indisputable fact in active sonar 
modelling that the two-way transmission loss is double the 
one-way loss. This is generally not true if losses are defined 
in terms of peak intensity. 

The two-way impulse response pressure time series is a con-
volution in the time domain of the outward and return one-
way impulse responses. For incoherent power summation, it 
can be shown that the intensity envelopes are also related by 
convolution (Harrison & Ainslie 2010). Generally the peak of 
a convolution is not a product of the peaks of the respective 
responses. Therefore peak transmission losses are not addi-
tive in dB. 

For example, if the one-way response has a Gaussian enve-
lope, the two-way response from convolution will also have a 
Gaussian envelope with its peak reduced by a factor of 2 , 
i.e., the extra loss is a fixed value of 1.5 dB. If the one-way 
response is an exponential decay function, the peak of the 
two-way response is reduced by 4.3 dB relative to the one-
way response (Weston 1965). 

Convolution in time is equivalent to multiplication in the 
frequency domain. So if the pulses are narrowband, transmis-
sion losses defined for harmonic waves should be additive in 
dB. 

To consider the relationship of one-way and two-way trans-
mission losses defined in terms of total energy, it can be 
shown using the Fubini theorem (Kudryavtsev, LD 2001) that 
the integral of a convolution equals the product of the inte-
grals of respective functions. Applying this property to the 
intensity impulse responses in time domain, e.g., Eq.(A3) of 
Harrison & Ainslie (2010), we conclude that transmission 
losses defined on total energy basis are additive in dB. 

The same discussion and principle should apply to convolu-
tion with target responses, i.e., peak target strength generally 
is not additive in dB with transmission loss, but target 
strength defined for harmonic waves and total energy should 
be additive in dB. 

Matched Filtering Gain and Correlation Loss 

Under the following idealisations: (1) echoes from all multi-
path arrive at the same time; (2) each multipath suffers no 
distortion during its propagation, the echo would collapse 
into a single, time-delayed perfect replica of the transmitted 
pulse with its amplitude associated with total transmission 
loss. The matched filtering gain will be 10log10(BT), where B 
is the bandwidth and T is the duration of the transmitted 
pulse (Barger 1994; Waite 2002; Lurton 2002).  

Multipath time spreading, time-varying, and dispersive prop-
erties of the channel introduce distortions to the pulse shape 
and consequently a correlation loss, CL (Ainslie 2010; Wes-
ton 1965) 

MG = 10log10(BT) – CL  (3) 

It is more intuitive to understand correlation loss due to mul-
tipath time spreading in terms of the propagation of equiva-
lent short pulses. 

Equivalent Short Pulse 

Matched filtering is equivalent to correlation with a scaled 
replica of the transmitted pulse. The output signal has a 
mainlobe whose effective duration is approximately the in-
verse of the signal bandwidth B and an amplitude that is pro-
portional to the signal energy. The usual case is that the pulse 
length after correlation (≈1/B) is much shorter than the origi-
nal pulse length (T), 1/B << T. Hence the process is also 
called pulse compression. The scaling factor does not affect 
the output SNR because it affects the signal and noise in the 
same way.  

From a modelling perspective, the scaling factor can be cho-
sen such that after pulse compression, the signal energy is 
conserved and the noise power remain unchanged. The signal 
power (and the SNR) is increased by the pulse compression 
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ratio defined as the ratio of the pulse lengths before and after 
compression, i.e., approximately T/(1/B) = BT.  

Because convolution and correlation processes are commut-
able, one may reverse the order of propagation with correla-
tion and consider the propagation of an equivalent pulse 
whose shape resembles the autocorrelation function of the 
original pulse and whose amplitude increased by the square 
root of the pulse compression ratio relative to the original 
pulse to maintain the same total transmitted energy. The 
noise level remains unchanged because the original pulse and 
its autocorrelation function have the same bandwidth. The 
reverberation level is also unchanged because it is propor-
tional to the transmitted pulse energy, that is, the reduced 
scattering area caused by the shorter duration balances the 
increased intensity. 

Multipath Time Spreading 

Each multipath in a sound channel ensonifies the target and 
arrives at the receiver at different times. If the transmitted 
pulse is sufficiently long such that all significant multipath 
arrivals overlap in time, the peak transmission loss will be 
essentially the same as the total transmission loss. Otherwise 
separation of significant multipath arrivals leads to a reduc-
tion in the intensity peak of the echo relative to that when all 
multipaths overlap. This reduction in echo intensity is called 
time spreading loss. 

Time spreading loss can be estimated by the ratio of echo 
energy in the resolution cell over the total energy of the echo. 

In summary, total transmission loss is the reduction in energy 
of the transmitted pulse due to geometric spreading, in-water 
absorption, and losses from boundaries, etc. Energy lost this 
way never reaches the receiver. Time spreading loss is the 
reduction in peak power from elongation of pulse due to mul-
tipath, target scattering, boundary interactions, and temporal 
fluctuations of the media. The time-stretched energy does 
reach the receiver, but the replica correlator is matched to the 
transmitted pulse, not the actual echo. The mismatch means 
that only a small portion of the available energy is processed 
in generating the peak of the correlation output. 

Modelling Methods 

Based on our discussion, the following methods can be used 
to model the peak echo level after correlation. 

1. At the fundamental level, the echo can be modelled by 
simulating time series and passing them through the signal 
processing chain. The simulated echo is produced by convo-
lution of impulse pressure responses or by Fourier synthesis 
of the product of frequency responses. This approach intrin-
sically accounts for transmission loss, time spreading losses, 
and processing gain. The temporal nature of pulse propaga-
tion is modelled and static concepts such as transmission loss 
and target strength do not come into play. This approach is 
accurate but also time consuming. In a way, this type of 
complexity is what an energy based approach such as the 
sonar equation is trying to avoid. 

2. The time-varying echo intensity level is modelled by con-
volving the intensity envelope of the equivalent short pulse 
with the impulse intensity responses of the two-way multi-
paths and target scattering. The peak of the echo intensity is 
then chosen to compute the SNR. Because the equivalent 

short pulse is used, this approach also automatically accounts 
for transmission loss, time spreading loss, and processing 
gain. 

3. The echo power level before correlation is computed from 
transmission losses and target strength based on total energy. 
The echo power level after correlation is then obtained by 
first adding the idealised processing gain for perfect replica 
and then corrected by the echo time spreading loss, which has 
to be estimated separately. 

A word of caution is in order about the importance of using 
the equivalent short pulse in method 2. Often transmitted 
source pulses have durations of the order of seconds, which 
are greater than typical time spread induced by propagation 
and target scattering. Hence most significant multipath arri-
vals overlap. Even if one uses a sonar model that is based on 
picking the peak of the intensity convolution as in method 2, 
the length of the source pulse means that the echo obtained is 
still equivalent to the total transmission loss approach. 

AN EXAMPLE ENVIRONMENT 

To illustrate the concepts, we consider a simple model de-
fined in the US Navy Office of Naval Research sponsored 
reverberation modelling workshop (ONR 2006; Perkins &  
Thorsos 2011) and subsequently used in scenarios for bench-
marking sonar performance models (Zampolli et al 2010). 

The water is 100 m deep with isovelocity of 1500 m/s, den-
sity of 1000 kg/m3, and frequency dependent absorption 
modelled by Eq. (1.34) in Jensen et al (2000). The seabed is 
assumed to be a sandy bottom with sound speed of 1700 m/s, 
density of 2000 kg/m3, and attenuation of 0.5 dB per wave-
length. 

Figure 1 shows the magnitude of the reflection coefficients at 
low grazing angles. The curve labelled “SB” (smooth bot-
tom) represents the magnitude of the reflection coefficients 
from a sandy bottom with a smooth water-sediment interface, 
ignoring the effects of bottom roughness. The curve was 
computed from equations in standard texts (e.g., Brek-
hovskikh 1980). For reflections from a homogeneous half-
space with a smooth water-bottom interface and bottom at-
tenuation proportional to the first power of frequency, the 
reflection coefficient is independent of frequency. 
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Figure 1. Magnitudes of the bottom and surface reflection 
coefficients at 3.5 kHz (SB – smooth bottom, TB – typical 
sandy bottom, RS - rough sea surface,). 
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The curve labelled “TB” is for a “typical sandy bottom” with 
a rough water-sediment interface described by one-
dimensional power-law roughness spectra of rms height of 
0.32 m and correlation length of 400 m (ONR 2006). Bubble 
effects were excluded. The curve labelled “RS” represents 
results for rough sea surfaces specified by Pierson-
Moskowitz spectra for fully developed seas with a wind 
speed of 10 m/s at a height of 19.5 m. The reflection coeffi-
cients from the rough surfaces and bottoms were taken from 
the modelling workshop (ONR 2006). Both the “TB” and 
“RS” curves were generated using the second order small 
slope approximation at 3500 Hz.  

ONE-WAY CHANNEL RESPONSE 

Angular Spectra 

To estimate the effective time spread of the channel, we first 
compute the envelope of the angular distribution of the eigen-
ray intensity. For this purpose, we treat the grazing angle as a 
continuous variable and we call this envelope the angular 
spectra. We then translate the dependence on grazing angle 
into dependence on travel time. 

At a particular range, there are four sets of multipaths that are 
characterised by their order of interactions with the bounda-
ries, each path being represented by an integral. When the 
water depth is much greater than the acoustic wavelength, 
which is true in our case, each integral can be approximated 
by the contribution from an eigenray emanating from an im-
age source introduced by the multiple boundary reflections 
(e.g., Brekhovskikh 1980). 

The four sets of eigenrays differ by their source and receiver 
depth offsets in their slant range calculations. Each eigenray 
in sets 1 and 4 undergoes the same number of bottom and 
surface reflections. The eigenrays in set 2 have one extra 
bottom reflection and the eigenrays in set 3 have one extra 
surface reflection. As examples, we consider the eigenrays in 
sets 1 and 4. The essence of the physics of propagation in 
other eigenray sets is similar. Furthermore, we consider the 
special but representative case of both source and receiver at 
mid-water depths. In such cases, the direct path has a grazing 
angle of zero and the travel paths of the eigenrays consist of 
integer number of cycles. 

At a range r, the path length of an eigenray with grazing an-
gle θ  is θcos/r  and its intensity )(θS can be written as, 
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Where A is a proportional constant, and the term in the first 
brackets is due to spherical spreading. The term in the second 
brackets is due to in-water absorption, α being the in-water 
absorption coefficient in neper/m. The remaining term is due 
to multiple bottom and surface reflections, where 

)(),( θθ sb VV  are the bottom and surface amplitude reflection 
coefficients respectively. The number of and the ray cycle 
distance θtan/2Hr , H being the water depth, as illus-
trated in Figure 2. 

c =

 

 

θ 

H 

θtan/2Hrc =  

Figure 2. Illustration of cycle distance for a ray with grazing 
angle θ in a waveguide with water depth H. 

We define the normalized angular spectra )(θnS as the angu-
lar distribution of the propagating energy normalized by the 
intensity of the direct ray, 

)()()(
),0(
),()( θθθθθ rasn fff

rS
rSS ==   (5) 

Where )(θsf is the contribution from geometric spreading, 

θθ 2cos)( =sf    (6) 

)(θaf is the contribution from in-water absorption, 

)2exp()( Lfa Δ−= αθ   (7) 

LΔ being the extra path length of a ray with grazing angle θ 
in comparison to that of the direct ray, 

)1cos/1( −=Δ θrL   (8) 

And )(θrf is the contribution from boundary reflections,  

)/tan()()()( Hr
sbr VVf θθθθ =   (9) 
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Figure 3. Comparison of the components of the normalized 
angular spectra for a frequency of 3.5 kHz and at a range of 
10 km due to different propagation mechanisms: geometric 
spreading, in-water absorption, and reflections from different 
combinations of boundaries (smooth bottom with smooth 
surface, typical rough sandy bottom with smooth surface, 
typical rough sandy bottom with rough surface). 

Figure 3 compares the components of the normalized angular 
spectra at a range of 10 km due to different propagation 
mechanisms. The line labelled “spreading” is from Eq.(6) and 
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the line labelled “absorption” is from Eq.(7). They represent 
the extra reduction in intensity from geometric spreading and 
in-water absorption due to the longer travel path for a ray 
with grazing angle θ in comparison to that of the direct ray. 
The dashed lines, from Eq.(9), represent effects of accumu-
lated reflection losses from different combination of bounda-
ries (smooth bottom with smooth surface, typical rough 
sandy bottom with smooth surface, typical rough sandy bot-
tom with rough surface).  

One can see from Fig.1 and Fig.2 that (1) boundary losses 
increase steeply with grazing angle and (2) the number of 
boundary reflections increases with grazing angle. The com-
bined effect is that energy propagating at higher grazing an-
gles is quickly stripped away. We also see that the effects of 
boundary losses dominate those of geometric spreading and 
in-water absorption. 

Effective Angles 

Figure 4 and 5 show the total angular spectra, i.e., Eq.(5), at 
various ranges without and with roughness-induced bounda-
ries losses. Because energy propagating at steeper grazing 
angles is continuously being stripped away by boundary re-
flections, we see that (1) as range increases, the beam of en-
ergy propagating around horizontal becomes narrower; and 
(2) greater boundary losses leads to narrower beams at the 
same range. 
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Figure 4. Normalized angular spectra at different ranges at 
3.5 kHz for a smooth seafloor with a smooth sea surface. 
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Figure 5. Normalized angular spectra at different ranges at 
3.5 kHz for a typically rough sandy bottom with a wind-
induced rough sea surface. 

Effective Time Spread 

Next we translate the dependence on grazing angle into de-
pendence on multipath arrival time. 

The extra time delay τ for a ray with grazing angle θ relative 
to the direct ray, is simply, from Eq.(8), 

)1cos/1)(/( −= θτ cr   (10) 

We use Eq.(10) to convert the angular spectra in Fig.4 and 5 
into dependence on time delay and the results are shown in 
Fig.6 and 7. 

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Delay time (milliseconds)

N
or

m
al

iz
ed

 in
te

ns
ity

 

 

5 km
10 km
20 km
exp

Figure 6. Envelope of multipath arrivals from one-way 
propagation at different ranges for a smooth seafloor with a 
smooth sea surface. The colored dashed lines represent the 
duration of unit rectangular pulses that have the same energy. 
The black dashed line is an exponential approximation with a 
decay constant of 160 ms. 
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Figure 7. Same as Fig.6 but for a typically rough sandy bot-
tom with a wind-induced rough surface. The black dashed 
line is an exponential approximation with a decay constant of 
4 ms. 

The color dashed lines in Figure 6 and 7 show the lengths of 
rectangular pulses that have the same energy as the decaying  
pulses shown by the solid lines of the same color. We may 
use these lengths as estimates of “effective time spread” in-
duced by one-way propagation. We can see that for the cases 
considered, the effective time spreads correspond to the time 
intervals when the intensities of the decaying pulses drop to 
about 0.4 ( 4 dB down) of their peak value. 

The black dashed lines in Fig. 6 and 7 are simple exponential 
fits to the colored lines based on visual inspection, 
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)/exp()( 0τττ −=I    (11) 

where the time decay constants 0τ are shown in the captions 
of Figs.6 to 7. We can see that the decay constants are close 
to the effective time spreads. 
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Figure 8. Normalized angular spectra and eigenray grazing 
angles at 10 km for a smooth seafloor with a smooth sea sur-
face. 
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Figure 9. Envelope and multipath arrivals from one-way 
propagation at 10 km for a smooth seafloor with a smooth sea 
surface. 

Figure 8 shows the normalized angular spectra and the eigen-
ray grazing angles at 10 km for a smooth seafloor with a 
smooth sea surface. The eigenray angles were computed from  

( rmHm /2arctan= )θ    (12) 

Figure 9 shows the envelope and eigenray arrivals in time 
domain by converting the results in Fig.8 using Eq.(10). 

MODELLING ECHO TIME SPREADING LOSS 

Analytical Bounds of Two-Way Response 

We provide two analytical approximations to the two-way 
intensity impulse response, which serve as upper and lower  
bounds to the echo peak in assessing the echo time spreading 
loss. 

The upper bound to the echo peak is provided by assuming 
the eigenrays are continuously distributed in grazing angle, 
which leads to a one-way intensity impulse response with an 

infinite peak (but still integrable with finite energy) and an 
exponential two-way intensity impulse response (Smith 1971; 
Weston 1989; Harrison & Nielsen 2007). The infinite peak is 
an artefact of regarding eigenrays as a continuum. In any 
case, the initial maximum response is finite and is that of the 
direct ray. From Figs. 8 and 9, we can see that the reason for 
the infinite peak is that eigenrays get denser in time at lower 
grazing angles. The exponential two-way impulse response 
has been used in predictions of SNR for test cases in bench-
marking sonar performance (Zhang & Miyamoto, 2010).  

The lower bound is provided by assuming that the eigenrays 
are uniformly distributed in time and using the exponential 
decay with the one-way effective time spreads obtained ear-
lier as the one-way intensity impulse response. This will 
over-estimate the time spread because the method gives more 
weighting to the late-arriving eigenrays. The exponential one-
way response leads to, upon convolution, a Rayleigh distrib-
uted two-way response. 

Fig.10 and 11 show the evolution of the intensity envelopes 
of the pulses for smooth and rough boundaries, respectively. 
As we are interested in the echo time spreading losses rela-
tive to total echo energy, all the pulses have been normalized 
to have unit energy. 

The darker blue line (barely visible in Fig.10 because of its 
short time duration) is a rectangular approximation to the 
compressed pulse for a waveform with bandwidth of 200 Hz. 
It has a time duration of 5 ms and an intensity level of L0 = 
23 dB re μPa2-s so that its energy is unity. The green and 
cyan curves are exponential and Rayleigh functions which 
represent the analytical upper and lower bounds of the two-
way impulse response. The red and magenta curves are ob-
tained by convolving the initial rectangular pulse with the 
impulse responses and represent the upper and lower bounds 
of the resulting echo.  

Time spreading loss can also be estimated from the ratio of 
the energy in the system resolution cell that contains the peak 
of the echo to the total energy of the echo. Hence as a crude 
approximation, we may predict the echo peak level using the 
following formula, 

]/)2[(log10 0100 RRp LL τττ +−=   (13) 

Where L0 = 23 dB re μPa2-s is the intensity level of the rec-
tangular pulse and 5=Rτ ms is its time resolution, 0τ is the 
effective one-way time spread estimated in Fig. 6 and 7, 
2 0τ is an approximation to the two-way time spread. It is 
easy to confirm that the echo peak levels predicted by 
Eq.(13) match closely those in Fig. 10 and 11 based on 
Rayleigh impulse response functions. 

The red curve can also be interpreted as the one-way pulse 
when the channel one-way impulse response is exponential. 
Comparison of its peak with the peak of the magenta curve in 
Fig.11 shows that when the time spreading losses are small, 
the two-way time spreading loss is approximately twice the 
one-way loss in dB. A similar comparison in Fig.10 shows 
that this is definitely not the case when the time spreading 
losses are large. 
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Fig.10. Evolution of pulse envelopes for smooth boundaries. 
The darker blue line (barely visible at 23 dB and zero time 
delay) is a rectangular pulse of 5 ms duration. The green and 
cyan curves are exponential and Rayleigh two-way impulse 
responses. The red and magenta curves are upper and lower 
bounds of the echo envelope. 
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Fig.11. Similar to Figure 10, with reflection losses from 
rough bottom and surface boundaries included. 

LIMITATIONS AND DISCUSSIONS 

Time Spreading Due to Other Factors 

In addition to multipath propagation, other factors also 
stretch and distort the echoes, for example, reflections from 
moving sea surfaces with air bubbles (Culver & Bradley 
2005); reflections from sea bottoms with rough interfaces, 
multi-layering and inhomogeneities (Vidmar & Knobles 
1989; McCammon 1990); temporal and spatial fluctuations in 
the water (Flatte 1983; Flatte et al 1987); and scattering from 
targets of complex structures with distributed scattering cen-
tres of various scattering processes and mechanisms (Urick 
1983: Fig.2.6; Hodges 2010: Fig.13.27). 

Post-detection Integration 

Sometimes post-detection integration is used to collect the 
echo energy split by the multi-paths to reduce the time 
spreading loss (Barger 1997). Post-detection integration re-
quires accurate prediction of the extent of time spread so that 
an optimum integration time can be chosen. The optimum 
integration length depends on the environment, the target, 
and the pulse waveform. If the integration time is too long, 
extra noise is introduced and the signal-to-noise ratio is re-
duced. If the integration time is too short, the noise is reduced 
but so is the signal energy. Post-detection integration is an 

incoherent process, when applied appropriately, introduces a 
gain of the form 5log10(BT) (Weston 1965;Waite 2002). The 
net effect is to essentially halve the time spreading loss (Wes-
ton 1965) in terms of detectability. 

Model-Based Matched Filtering 

Another technique to reduce time spreading loss is model-
based matched filtering where a predicted echo rather than 
the transmitted pulse is used as the replica to capture the split 
energy coherently (Hermand & Roderick 1993; Baggenstoss 
1994). Model-based matched filtering requires accurate pre-
diction of echo shape and involves correlation of the received 
echo with a modelled replica from the convolution of the 
transmitted pulse with the impulse response of the channel. 
To predict the echo shape, one would need high-fidelity 
modelling and sufficient information about the environment 
and the target. 

CONCLUDING REMARKS 

Angular and time spreading of multipath and the transient 
nature of pulse propagation complicates modelling of sonar 
echoes, even without considering the time-dispersive and 
angle-dependent nature of scattering from realistic targets. 

Modelling the performance of high-resolution pulses dictates 
thinking in terms of convolution of impulse responses and the 
concept of transmission losses needs to be handled with care.  
In particular, multipath time spreading leads to loss of peak 
echo power when significant multipath arrivals lie outside the 
peak resolution cell. 

Commutation of convolution and correlation means that one 
effective strategy is to model the transmission of a suitably 
scaled compressed pulse. We analysed the angular and time 
spread of multipaths for a baseline environment from an 
ONR workshop. Using analytical upper and lower bounds to 
the envelope of the impulse response, we estimated the echo 
time spreading loss for a typical pulse resolution. 

We conclude with a comment on the effects of multipath time 
spreading on the modelling of diffuse reverberation. Because 
the scatterers causing reverberation are generally extended in 
size, reverberation is continuous in time and energy spread 
out of one cell is still captured by the neighbouring time cells. 
Hence we expect total transmission loss can be used to model 
reverberation without loss of much accuracy, which should 
expedite the modelling of reverberation.  
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