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ABSTRACT 
In the oceanic waveguide with parameters varying in horizontal plane (for example bathymetry - in area of coastal 
wedge, slopes and canyons, or in area of varying water layer - in the presence of nonlinear internal waves or tempera-
ture fronts, or in presence of both these effects) there is significant horizontal refraction or redistribution of the sound 
field in horizontal plane. Due to waveguide dispersion (dependence of modal propagation constants on frequency) it 
is possible to observe different spatial and temporal variations of the sound signal. It can be manifested in non sta-
tionary interference pattern, arrival time variations, variations of spectra etc. These effects can be used to solve differ-
ent inverse problems especially by using horizontal and vertical line arrays.  

INTRODUCTION 

In the most publications, concerned with sound propagation 
in shallow water authors concentrated on the vertical variabil-
ity of the temperature field, and discussed a simple model of 
how that variability arises. This vertical structure is the most 
important feature of the shallow water column, as the water 
column and bottom are approximately horizontally stratified 
(comprised of vertically stacked layers) over the propagation 
scales of interest, which reach to about 50 km in shallow 
water. However, horizontal stratification is a broad-brush 
first approximation only, and in many shallow water scenari-
os there is appreciable sound speed variability in the horizon-
tal direction, as well as in the vertical. Perhaps the strongest 
horizontal variability in shallow water is due to shallow water 
fronts, bathimetry variations, mainly in area of coastal wedge 
and nonlinear internal waves. In given paper we consider just 
these three types of horizontal variability (stratification) 

 

TEMPERATURE FRONT 

  

Figure 1. Temperature front (Barents sea Polar front) 
 
Figure 1 shows the configuration of the Polar front in the 
Barents Sea [Jin et al, 1996]. The temperature variation is 
nonuniform in depth: as a rule, it is concentratedin the vicini-

ty of the thermocline. Aforementioned temperature variations 
are accompanied by a change in the sound speed profile, 
which is most pronounced across the front. In the vicinity of 
the thermocline, the sound speed drop across the front can 
reach 15–20 m/s within a distance of several hundreds of 
meters. Such a difference corresponds to a substantial hori-
zontal sound speed gradient, which persists over a rather 
large area. More detailed information on the temperature 
front is presented in Fig. 2: it shows a sequence of sound 
speed profiles in passing from one side of the temperature 
front to another in a region of the Barents Sea within a zone 
of about 500 m in length 
where the temperature variations are most pronounced 
[Jin et al, 1996, Lynch et al, 1996 ]. 

 
Figure 2. Sequence of the sound speed profiles in the vicinity 
of the temperature front. The nearest and farthest profiles 
correspond to the colder Arctic Current and the North- Atlan-
tic Current, respectively 
 
Under the influence of such a discontinuity, the oceanic 
medium becomes acoustically anisotropic, and a number of 
effects arise in the course of sound propagation through it. In 
particular, space–time fluctuations of the sound field due to 
the interaction of modes in the region where the acoustic path 
crossed the Polar front of the Barents Sea were considered in 
[Jin et al, 1996, Lynch et al, 1996 ].Another effect that can 
considerably change the sound field is the horizontal refrac-
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tion, which manifests itself when the acoustic path is approx-
imately parallel to the TF. To such a phenomenon, the ap-
proach of horizontal rays and vertical modes can be applied. 
Such a study can reveal a number of spatial and frequency–
time effects that, in principle, can be experimentally observed 
by using a vertical antenna array. In this sense, the influence 
of the temperature front on the sound field is similar to that of 
soliton- like internal waves (or internal solitons (IS)) 
[Katsnelson et al, 2011], although the horizontal gradients of 
the sound speed in the TF are 2–5 times lower than those in 
the IS, and the velocities of the TF are much smaller than 
those of the IS. 
Let us consider the space–frequency features of the sound 
field propagating in a shallow-water sound channel with a 
temperature front. The oceanic medium is represented as a 
three-dimensional underwater waveguide in the Cartesian 
coordinate system where the (X,Y)  plane coincides with the 
sea surface and the Z axis is directed vertically downwards. 
The waveguide is formed by the water layer Hz ≤≤0  with 
density ),()(),,( 0 zyzzyx δρρρ +=  and a sound speed 

profile ),()(),,( 0 zyczczyxc δ+= , where )(0 zρ  and  

)(0 zc correspond to the profiles of density and sound speed 
on one side of the TF  0<y  in our case, δc and δρ charac-
terize the variations of the acoustic parameters under the 
influence of the TF. The latter is considered to be plane and 
parallel to the X axis. The bottom is ssumed to be homogene-
ous, liquid, and absorbing with density 1ρ , sound speed 1c , 
and absorption coefficient α. Here, the TF is modeled in such 
a way that, on average, the temperature (and the sound speed 
as well) at y > 0 is higher than that at y < 0 (see Fig. 2). Cor-
respondingly, the horizontal rays leaving the source at y < 0 
will be refracted in the same direction (Fig. 3). In other 
words, our statement of the problem corresponds to the situa-
tion where, at the receiving array positioned in the zone of 
intersection of horizontal rays, a complicated structure will 
be observed as the result of interference of the direct horizon-
tal ray with a set of horizontal rays deflected by the tempera-
ture discontinuity and corresponding to different horizontal 
angles at the source and different vertical modes. The speci-
ficity of the horizontal refraction is that the horizontal rays 
corresponding to different frequencies and different vertical 
modes propagate along different trajectories, and, conse-
quently, the intensity of the sound field at the aforementioned 
reception point may depend on the frequency and the ordinal 
number of the detected mode 

 
Figure 3. Schematic diagram of the horizontal refraction in 
the region near the temperature front. The shaded area is the 
zone of probable enhancement of the sound field due to hori-
zontal refraction. The dashed strip approximately indicates 
the transition layer. 
Firs of all, one can estimate the distance from the source and 
the temperature front, or, in other words, the position of the 
zone where one can expect the intersection of the direct and 
refracted horizontal rays and, hence, the manifestations of the 
aforementioned phenomena. Specifically, such a zone that is 

closest to the source is determined by the maximum admissi-
ble departure angle β of the horizontal ray that returns to the 
region y< 0  after its refraction in the zone of the temperature 
front. In the simplest case, the estimate is as follows: 

c
c

H
ht δβ 2≈                                   (1) 

Where ht is the thickness of the thermocline. For the Barents 
Sea [Jin et al, 1996], H ~ 230 m,  ht ~ 70–90 m,  δc ~ 15–20 
m/s, and, hence, β ≈ 6–8 × 10–2 . This means that, if the 
source is at a distance of 600–800 m from the temperature 
front with a thickness of about 500 m, the effects of horizon-
tal refraction manifest themselves at the receiver that is at a 
distance of about 20 km along the temperature front. Let us 
now consider the features of the sound field in this region 

INTERNAL WAVES 
 
Intense internal waves (IWs) are known to cause substantial 
perturbation of the low-frequency sound field. The well-
known study [Rubinstein et al, 1991] reports on measuring 
the fluctuations of the sound field over a horizontal array in 
the presence of IWs with the propagation path passing at a 
small (about 10°) angle to the wave fronts of a train of in-
tense IWs moving along the coastline. It was experimentally 
established that the amplitude fluctuations of the sound field 
correlated with the fluctuations of the water layer influenced 
by IWs. The data of 
numerical simulation allow one to assume the adiabatic 
mechanism of interaction between the IWs and the sound 
field: the intensity variations are caused by local changes in 
the waveguide parameters. The tide-caused phase fluctua-
tions of the sound field at a vertical array were studied in 
[Andreev et al, 1996]. A detailed study of fluctuations of the 
sound field under the influence of IWs was also performed in 
the SWARM'95 experiment [Apel et al, 1997] for different 
orientations of the acoustic path with vertical receiving arrays 
used for mode filtering. Publications [Badiey et al, 2002, 
2005, 2007] devoted to analyzing the data of the SWARM'95 
experiment show that, when the acoustic path is approximate-
ly parallel to the wave front of the IW train, intensity fluctua-
tions can be rather substantial because of the 
influence of horizontal refraction. A theoretical analysis and 
estimation of intensity fluctuations were presented in [Badiey 
et al, 2007] in the framework of ray approximation in the 
horizontal plane. There, in terms of horizontal rays, the 
mechanism of intensity fluctuations was explained by chang-
es in the ray density (the cross-section of the ray tube). In this 
case, the estimates of intensity variations can be obtained by 
assuming the horizontal rays to be approximately straight 
with perturbations of the 
phase front being neglected. On the other hand, in the pres-
ence of an appreciable horizontal refraction, the objective of 
the studies consists in considering the fluctuations of the 
directions of sound propagation in the horizontal plane (the 
fluctuations of the phase front in a more general formulation), 
such fluctuations also taking place for the aforementioned 
orientation of the acoustic path. For instance, an experiment 
on measuring the fluctuations of the direction of sound prop-
agation in the horizontal plane was carried out in the Barents 
Sea [Shmelev et al, 1992]. There, a horizontal antenna array 
was used to study the fluctuations in the phase distribution 
with characteristic periods starting from several tens of 
minutes, which, according to the authors, correspond to the 
typical periods of IWs. 
In the present paper, we attempt to analyze the variations 
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of the sound-field phase front under the effect of a train of 
intense internal waves crossing the acoustic path and to esti-
mate the possibility of experimental observation of such vari-
ations. 
Illustration of influence om internal waves on sound propaga-
tion is shown in the Figure 3 where there is 3D shallow-water 
sound channel with IWs. The ocean medium is represented as 
an underwater waveguide in the XYZ coordinate system, 
where the XY plane coincides with the sea surface and the Z 
Axis is oriented vertically downwards. The waveguide is 
formed by a water layer 0 ≤ z ≤ H with a density ρ(z) and a 
sound speed profile c(x,y,z) =c0(z) +δc(x,y,z,T), where c0(z) 
corresponds to the equilibrium stratification of the layer and 
δc(x,y,z,T) characterizes the changes of the acoustic proper-
ties of the layer under the influence of IWs. The latter quanti-
ty depends on both coordinates and time T (we make a differ-
ence between the “slow” time T that characterizes the varia-
bility δc of the 
 

 
 
Figure 4. Statement of the problem. The XY coordinate sys-
tem is related to IWs, the X'Y' coordinate system is deter-
mined by the direction of the acoustic path, α is the angle 
between the path and the wave front of IWs, β is the angle 
between the path and the array, and γ is the angle of horizon-
tal refraction. At the left, the position of the IW envelope is 
shown at the instant T = 0. The (1) dotted and (2) solid curves 
show the wave front without and with IWs, respectively. 
 
Let us consider an IW train with an approximately rectangu-
lar wave front that is parallel to the X axis and with an enve-
lope depending on the y coordinate and with an amplitude ζ0. 
This train propagates along the Y axis with a speed v (Fig. 1). 
The sound source S is located at the origin of coordinates in 
the horizontal plane x = y = 0 at a depth z = z1. The transmit 
ted signal is received at the observation point R(x,y,z) by a 
horizontal array (usually, z = H). The initial position of the 
train envelope at T= 0 corresponds to that of the IW’s 
maximum at the source or to the zero shift of the train νT = 0 
(the envelope with amplitude ζ0 is shown in the left-hand part 
of Fig. 4). Because of slow propagation of the IW train, the 
characteristics of the sound field will depend on the position 
of the train, or on time T, in a parametric manner. For brevity, 
we do not write this dependence in an explicit form. 

COASTAL WEDGE  
In the ocean, coastal slope regions are of primary importance 
for both practical purposes and research, including acoustic 
studies. A typical coastal slope region has the form of a 
wedge with the angle betweenthe sea surface and the bottom 
reaching ~0.005–0.01rad; this region extends for several tens 
of kilometers(or more) from the coast to the shelf edge, 
where thesea depth is about 200–350 m. Beyond this line, the 
sea depth begins to increase steeply (the continentalslope). In 
the theoretical studies of sound propagation,the coastal slope 
is usually described by a wedge�shaped model region with a 
constant velocity of soundand with ideally or nonideally re-
flecting boundaries [Dean et al, 1993, Jensen et al, 1980, 

Pierce, 1982, Westwood, 1992]. The solution to the problem 
on the field in anideal wedge can be constructed by using, 
e.g., imaginary sources, in analogy with the well�known 
Pekeris model; in this case, the imaginary sources are posi-
tioned in a circle [Westwood, 1992, Dean et al, 1993]. In 
some papers the field in the wedge is constructed in a cylin-
drical coordinatesystem (the z axis coincides with the edge of 
thewedge) based on modes depending on angle ϑ in theverti-
cal plane. A somewhat different approach is possible in the 
case of a smooth dependence of the seadepth on the distance 
to the coast (a small slope), when the wedge-shaped region 
can be considered as awaveguide with varying depth and, in 
terms of the depth�dependent field expansion in modes, the 
field can be described in the adiabatic approximation (ignor-
ing the mode coupling). In the two-dimensionalversion of the 
problem, where the field only varies inthe vertical plane, one 
of the main features of soundpropagation up the slope is the 
appearance of the crit�ical cross section for a mode of a 
fixed number at afixed frequency with decreasing depth and 
the reflec�tion of this mode; or, the transformation of the 
modein a leaky one and, hence, its escape to the bottom at a 
certain distance from the edge, this distance being different 
for different modes and frequencies [Buckingham, 1987].The 
three-dimensional problem was considered instudies of the 
horizontal refraction of the acoustic fieldin a coastal slope 
region in both experimental (laboratory experiments [Tindle 
et al, 1987, Doolittle et al, 1988] and full-scale experimentsin 
a coastal slope region [Doolittle et al, 1988]) and theoretical 
investi�gations. In the latter, the field behavior wasdescribed 
in terms of vertical modes and horizontalrays  or numerically 
[Sturm, 2005] by a parabolic equation(see references in 
[Sturm, 2005]). For the ideal wedge model, the ray equations 
in the horizontal plane have analytic solutions  describing the 
position and shape ofrays and caustics in the form of hyper-
bolas. In thiscase, in a wedge with ideally reflecting surfaces, 
tworays (the direct ray and the reflected, or, refracted,one) 
arrive at each of the points of the horizontal plane, and the 
corresponding interference pattern isformed. We note that, 
for a more realistic model (anonideal bottom, a coordi-
nate�dependent sound velocity), the field pattern is more 
complicated, especially with allowance for the dependence of 
the refractive index of horizontal rays on frequency and ver-
ticalmode number. Sound propagation in the horizontal plane 
is similar to the propagation in an inhomogeneous dispersion 
medium with respective features for narrowband and broad-
band signals. Formally, a similar situation occurs in the vicin-
ity of the temperature front [Katsnelson et al, 2007. We note 
that analysis of the field structure can be used not only for the 
coastal wedge region itself, 

 
Figure 5.  Bathymetry and sound velocity profiles for the 
waveguide model under study. The dashed line shows the 
perturbed sound velocity profile under mesoscale perturba-
tion. 



21-23 November 2012, Fremantle, Australia Proceedings of Acoustics 2012 - Fremantle 

 

4 Australian Acoustical Society 

 
 
THEORY OF THE SOUND FIELD IN 
HORIZONTALLY STRATIFIED WAVEGUIDE  
 
The complex sound field amplitude ),,( tzrP  of a point sou-
characterized by spectrum S(ω) and positioned at a point with 
the coordinates ).,( sss zyx is sought in the form 

∑∫ −
∞

=
l

ti
ll dezrrPtzrP ωωψω ω);,(),(2),,(

0



               (2) 
 
Here, );,( ωψ zrl

  is the eigenfunction with the number l; it 
is detemined by the Sturm–Liouville problem and includes 
the dependence on r (or x, y) as a parameter; in addition, 
depends on frequency. The quantity ),( ωrPl

  which depends 
on the horizontal coordinates, the sound frequency, and the 
source coordinates, can be called the spectral mode ampli-
tude. 
We denote the corresponding eigenvalue (the longitudinal 
wavenumber) by ),( ωrql

 and the transverse ),( ωσ rl
  

For the value  ),( ωrPl  
neglecting the mode coupling we can 

get two�dimensional Helmholtz equation 
 

0),(),(),( 22 =+∇⊥ ωωω rPrqrP lll
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is the Laplace operator in the hori-

zontal plane. 
Instead of the eigenvalue ),( ωrql

 , which determines the 
space and time dependences of the wavenumber for sound 
propagation in the horizontal plane, we introduce the corre-
sponding mode refractive index 0/),(),( lll qrqrn ωω


=  

where  0
lq is the eigenvalue of the transverse Sturm–Liouville 

problem; this eigenvalue corresponds to the cross section at a 
certain fixed point, e.g., at the point of the source position. 
We note that, in the region lying between the source and the 
coast ( syy < ), the wavenumber is 0

ll qq < and 

( 1),( <ωrnl
 ). For a real situation, the latter index differs 

little from unity  ll nrn δω −=1),(  , 1<<lnδ   

Figures 6.7 shows the value of the increment for our models 
of temperature front and wedge as a function of the distance 
to front and to the edge of the wedge for different frequencies 
and mode numbers. One can see that, in the region y < ys, the 
increment increases with an increase in the mode number and 
with a decrease in frequency; i.e., the refractive index in-
creases with increasing frequency. 
The frequency dependence of the refractive index makes the 
two-dimensional propagation medium a dispersion one (Eq. 
(2)). For such a medium, the evolution of the sound signal in 
time is determined by Eq. (1). If the spectrum of the emitted 
signal is sufficiently narrow, we can ignore the frequency 
dependence (which is sufficiently smooth) of the eigenfunc-
tions within this spectrum; then, we factor out the eigen func-
tions from under the integral in Eq. (1) at the central frequen-
cy ω0 of the source spectrum. In this case, the signal ampli-
tude takes the form 
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� 
where the quantity ),( trPl

  can be interpreted as the pulse 
amplitude of the l-th mode. For a two-dimensional dispersion 
medium, we can write the wav equation 

0),(ˆ
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2

20
2 =

∂

∂
−∇⊥ trPM

tc
trP l

l
l



                  (5) 

Where where 00 / ll qc ω=  is  phase velocity of the l-th mode, M -
is nonlocal operator: 

 tdtruttruM
t
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 Eigen values can be expressed through dielecgric permittivity 
 

),()(),()(),( 202202 ωεωω rqrnqrq lllll
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==          (7) 
 
Solution of wave equation can be found in the form of ray 
optics:

  
 ),(),(),( tri
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letrAtrP
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And for phase function (eikonal) we can get time dependent 
ray eqations 
 

    0
)(
),()(

2

20
2 =⎟

⎠

⎞
⎜
⎝

⎛
∂
Θ∂

−Θ∇⊥ tc
r l

l

l
l

ωε


            (9)

 

Moving wave front is determined by expression 

consttrl =Θ ),(   
Examples of refraction index in horizontal plane for wedge 
and temperature front are shown in the figures 

 

 
 
Figure 6. Dependence of the refractive index of the horizon-
tal rays on the Y coordinate for some frequencies and mode 
numbers in the region of the temperature discontinuity. The 
dashed curve indicates the variation of temperature at some 
depth in the thermocline region across the temperature 
front 
 



Proceedings of Acoustics 2012 - Fremantle 21-23 November 2012, Fremantle, Australia 

 

Australian Acoustical Society 5 

 
Figure  7. Dependence of the refractive index increment on 
the distance to the edge of the wedge for different modes 
and frequencies (the values are indicated in the plot) 
 

 
 
Figure 8.   Ray pattern calculated by using the method of 
verti cal modes and horizontal rays with the corresponding 
temperature distribution at some depth (at the right)  in the 
vicinity of the temperature front for the first vertical mode at 
a frequency of 300 Hz.  
 
If we take all the values 0 < t < ∞, the corresponding curve 
will determine the spatial horizontal rays. Figure 8 shows 
examples of horizontal rays in area of temperature front. In 
the Figure we can see pattern of horizontal rays, in area of 
coastal wedge for a frequency of 100 Hz, which correspond 
to the first mode. In the plot, the multipath region can be 
distinguished. Its shape resembles a sector, so that, in what 
follows, we use the term “multipath sector” (MS). When the 
receiver is located in the MS, one should observe the inte 
ference of the direct and reflected fields of the corresponding 
modes if the overlapping of signals arriving over different ray 
paths takes place or if the signal doubling occurs with a ce 
tain time interval in the case of pulse arrival time measure 
ments. The interference pattern is rather complicated because 
of the presence of regions where only one mode (the first) 
propagates or only two modes propagate (e.g., the first and 
second modes), and so on. The lower boundary of the sector, 
i.e., the boundary closest to the coast, represents the caustics 
(envelope) for the horizontal rays corresponding to a given 
mode and a given frequency, and the upper (limiting) hori-
zontal ray indicates the MS boundary farthest from the coast. 
The positions of the boundaries can be estimated on the basis 
of a three_dimensional ray consideration with the use of the 
Brillouin (vertical) grazing angle βl for the lth mode. The 
upper limiting ray path in the horizontal plane, or the hori-
zontal launch angle of the boundary ray, which is denoted by 
(see Fig. 9a) and determines the aforementioned ray path, is 
governed by the parameters of the bottom or, more precisely, 
by the angle of total internal reflection from the bottom. 
As the ray propagates from the source, both the horizontal 
angle and the Brillouin angle of the given mode (the vertical 
grazing angle with respect to the bottom) βl vary (Fig. 9b). In 
other words, during propagation up the slope (the channel 
narrows), the angle decreases, whereas the vertical grazing 
angle βl, which depends on the local depth of the channel, 

increases and, at a certain instant, may become identical to 
the angle of total internal reflection from the bottom which 
depends on c1. In this case, the direct ray penetrates to the 
bottom and the reflected (or refracted) ray is absent. The 
corresponding horizontal ray launch angle (see Fig. 3a) is 
determined as follows. The local eigenvalue corresponding to 
the total internal reflection, or the related bottom grazing 
angle of the Brillouin ray belonging to the l th mode is de-
termined by the expression =where is the sea depth at the 
turning point. This yields the refractive index at the turning 
point for the horizontal boundary ray: = where k1 = ω/c1 and 
the horizontal angle at the turning point is zero. Then, is de-
termined by the relation = The corresponding boundary ray 
path is shown in Fig. 9a. Now, we estimate the coordinates of 
the ray turning point , which approximately coincides with 
the vertex of the MS under the assumption that the sound 
velocity in the wedge is constant. In this case, the horizontal 
ray paths and ray caustics have the form of hyperbolas [1, 4–
6], whose equations are obtained in an analytic form. Using 
these results, for the coordinates of the vertex of the hyperbo-
la corresponding to the boundary ray, we derive 
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For our bottom model (the parameters are given above), we 
can assume that, in the denominator of Eq. (10), kql ~

0 ; 

then, we have ~ 20~2~/~ 0
2
1

2
10 ykkkyxl −  km. We 

see that weakly depends on both mode number and frequen-
cy. As for , this coordinate exhibits a more pronounced de-
pendence on the mode number, as well as on frequency. For 
example, for the second mode at a frequency of 100 Hz, from 
Eq. (10) we obtain ~ 0.5y0 ~ 5 km. In general, the straight 
line determines the boundary beyond which the l th mode 
does not propagate (at the given frequency). Figure 4 shows 
the MSs for the first two modes and frequencies of 100 and 
500 Hz.  

 
Figure 9. (a) Horizontal ray pattern for the first vertical mode 
at a frequency of 100 Hz; the solid lines indicate the MS. 
(b) The vertical and horizontal angles for a three-dimensional 
ray. 
One can see that the numerically calculated position of the 
MS vertex approximately coincides with the coordinates 
determined above. If we assume that, for our wedge model, 
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the caustic approximately coincides with the asymptote of the 
corresponding hyperbola (the caustic for the case of a con-
stant velocity), the slope of this asymptote is 0tan lβ  i.e., its 

angle with the x axis is 0
lβ . This angle noticeably increases 

with increasing mode number. The asymptote of the “upper” 
horizontal boundary ray has the slope 

1

2
1

2

k
kk

dx
dy −

= which, in the framework of the simple 

model, is the same for different modes and frequencies and 
only depends on the sound velocities in water and in the bot-
tom. In the case under consideration, the aforementioned 
estimate yields a slope of ~0.53 or an angle o

l 30~χ , which 
approximately coincides with the numerical results represent-
ed in Figure  9a. In Fig. 9a, the direction of the lower” 
boundary is determined by the angle χmin, which in our case 
approximately coincides with ; for the first mode at a fre-
quency of 100 Hz, this angle is χmin ~ 5°–6°. The vertex angle 
of the sector is estimated as and decreases with the mode 
number. We note that, as the mode number increases and the 
frequency decreases, the increment of the horizontal refrac-
tive index increases and the MS shifts toward greater depths. 
In this case, the characteristic spatial dimensions of the re-
gion vary (the transverse size of the MS at a distance of ~30 
km makes about 2–4 km). As the frequency increases, the 
angle χmin decreases (tends to zero) and the lower boundary 
of the MS shifts toward the coast for all of the modes. From 
Fig. 4, where the MS boundaries are shown for frequencies of 
100 and 500 Hz, one can see that the shift is fairly large: for 
the second mode, the lower boundary at a frequency of 500 
Hz is 5–10 km nearer to the coast, as compared to the bound-
ary position at a frequency of 100 Hz. The eikonal (the 
phase) taken at a certain point of the horizontal plane is de-
termined by the phase velocity and the corresponding integral 
along the horizontal ray from the point of radiation to the 
point of reception (observation): 
 

∫=Θ
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ll dsyxqtM

0

),(),(                           (11) 

The characteristic features of the pulse arrival time 
are illustrated in Fig. 5, where, together with the horizontal 
ray pattern for the first and third modes at a frequency of 200 
Hz, one can see lines lying in the horizontal plane, which 
correspond to a constant arrival time t = 45 s for signals 
propagating along the respective ray paths. The regions are 
denoted as follows: (I) the shadow zone for all modes, (II) the 
multipath region for the first mode and the shadow zone for 
the third mode, (III) the multipath region for the first and 
third modes, and (IV) the region of only the direct ray paths 
of these modes. One can see that, in the multipath regions, for 
each of the modes, there are two curves tl(x, y) = const corre-
sponding to the direct and reflected signals. The signal prop-
agating over the direct ray path goes farther within a fixed 
time interval as compared to the ray arriving over the reflect-
ed ray path. In other words, for a fixed point in the multipath 
region, the direct signal usually arrives earlier than the re-
flected signal; the difference decreases with decreasing dis-
tance to the caustics where the direct and In our case, this 
quantity depends on frequency. The time of signal propaga-
tion over the ray path (which is an important observation 
characteristic) is determined by the integral along the ray 
path: 
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l
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0
)(
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ω

ω
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where )(ωgr
lv is the group velocity of the lth mode. 

The characteristic features of the pulse arrival time are illus-
trated in Fig. 10, where, together with the horizontal ray pat-
tern for the first and third modes at a frequency of 200 Hz, 
one can see lines lying in the horizontal plane, which corre-
spond to a constant arrival time t = 45 s for signals propagat-
ing along the respective ray paths. The regions are denoted as 
follows: (I) the shadow zone for all modes, (II) the multipath 
region for the first mode and the shadow zone for the third 
mode, (III) the multipath region for the first and third modes, 
and (IV) the region of only the direct ray paths of these 
modes. One can see that, in the multipath regions, for each of 
the modes, there are two curves tl(x, y) = const corresponding 
to the direct and reflected signals. The signal propagating 
over the direct ray path goes farther within a fixed time inter-
val as compared to the ray arriving over the reflected ray 
path. In other words, for a fixed point in the multipath region, 
the direct signal usually arrives earlier than the reflected sig-
nal; the difference decreases with decreasing distance to the 
caustics where the direct and reflected rays coincide. Com-
paring the arrival times at the reception point for different 
modes, we see that, in the absence of horizontal refraction 
(for the direct horizontal rays), a “conventional” order of 
mode arrivals is observed: the lower modes are usually char-
acterized by a higher group velocity, and their travel time is 
shorter. For the reflected signals in region III, a different 
order of mode arrivals takes place. This change in arrival 
order is related to the fact that, despite the higher group ve-
locity of mode 1, as compared to mode 3, the difference in 
the lengths of the respective ray paths is such that the order of 
arrival is changed. In particular (see Fig. 10), for the direct 
signal, the first mode arrives before the third mode (in re-
gions III and IV), whereas, for the reflected signals (region 
III), the third mode arrives before the first one. 
 

 
 
Figure 10. Multipath sector for the first two modes (the 
num_bers are indicated at the right) and for frequencies of 
100 (the solid line) and 500 Hz (the dashed lines) vertical 
modes. The frequency is 200 Hz. The lines lying in the hori-
zontal plane and corresponding to a signal arrival time of 45 s 
are indicated. The inset shows the interference pattern formed 
in the horizontal plane segment near the point indicated in the 
plot. 
 
 
Let us consider in more detail the signal arrival time at the 
observation point, which may fall within the MS. First of all 
rematk that arrival times can be different for different hori-
zontal rays, coming to the receiver. Typical values of arrival 
times are shown in the figure   for temperature front, experi-
mental observation of this effect was published in [Badiey et 
al, 2011] for moving forward front of internal waves. Next 
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we consider arrival times, as a function of frequency for dif-
ferent vertical modes (Fig.12). The corresponding pattern is 
called the frequency–time diagram and is often plotted in 
theoretical considerations and on the basis experimental data 
[Chen et al, 2003]. This pattern reveals the shapes of the 
dispersion curves for individual modes and is much used for 
solving various problems [Lopatka, 2010]. The position of 
the observation point used in our calculations is shown in 
Fig. 10 (its approximate coordinates are x = 50 kmy = 4.5 
km). From Fig. 12 one can see that, for frequencies where   
ω1 = 100 Hz, the receiver falls within the shadow zone for all 
of the modes. At the lower boundary of the MS shifts toward 
the x axis and the receiver falls within the caustic for the first 
mode; here, the direct and reflected rays coincide and the 
corresponding signals arrive simultaneously. With a further 
increase in frequency the lower 
 

 
Figure 11. Arrival times for horizontal rays reflected from 
temperature front 
 
 

 
Figure 12. Frequency–time curves for three modes. The 
numbers are indicated in the plot. 
 
boundary of the MS shifts further and falls within the MS for 
the first mode (still remaining in the shadow zone for the 
second mode); in this case, two signals are observed with the 
interval between the first mode arrivals over the direct and 
reflected ray paths increase ing with frequency (the character-
istic time between the direct and reflected signal arrivals is 
~0.5 s). This corresponds to zone II in Fig. 10. As the fre-
quency increases, the signal travel time decreases for the 
direct ray (the group velocity increases with frequency) and 
increases for the reflected ray (because of the predominant 
increase in the ray path length). When the frequency reaches 
the value ω = ω2 ≈ 250 Hz, the second mode appears at the 
observation point and the situation is reproduced. For a fixed 

mode number, as the frequency increases further, the obser-
vation point may fall outside the multipath region (we denote 
the corresponding frequency value as ) and, in this case, only 
one signal arrives at the observation point. Note that the spe-
cific values of and depend (in addition to the dependence on 
the waveguide parameters and the mode number) on the posi-
tion of the observation point in the horizontal plane. The 
situation where the observation point falls outside the MS is 
only possible when this point lies in a relatively narrow re-
gion near the upper boundary (see Fig. 9). Such a frequency–
time diagram can be plotted in experiment with the use of 
broadband signals (a frequency band of about 50–500 Hz). It 
is also possible to consider the spectral features of the signal 
and, in particular, the spectrum of the received signal as a 
function of the receiver position. These features are deter-
mined by the frequency dependence of the horizontal ray 
paths. 
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