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ABSTRACT 
 A model of formation, development, and acoustic properties of the bubble cloud resulting from an underwater ex-
plosion is presented. The model includes several parts: explosion globe dynamics, initial break-up of the explosion 
globe, turbulence created by the explosion globe fragmentation, and further break-up of the bubbles by the turbu-
lence. The time history of the bubble cloud properties is calculated under the assumption of the cloud being a collec-
tion of non-interacting bubbles. Model results are compared with the available experimental data. 

INTRODUCTION 

It is of interest for some defence applications to understand 
the dynamics and to model the acoustic properties of the 
bubble cloud remnant of the underwater explosion. There are 
not many papers published on the subject. We are only aware 
of one (Holt&Culver, 2011), in which the remnant bubble 
cloud is investigated experimentally by acoustic method. To 
the best of our knowledge, there were no attempts to develop 
a theoretical model of the remnant bubble cloud formation 
and dynamics. The present document reports the develop-
ment of such a model. We apply a physics-based approach 
and avoid complex and computationally demanding numeri-
cal simulations. Such an approach will undoubtedly require 
certain approximations and the introduction of some empiri-
cal parameters into the model. These will have to be adjusted 
from the comparison with the existing or future experimental 
data or high-fidelity numerical simulations. We, however, are 
not aware of any such accurate numerical simulations of this 
problem. Taking into account the complexity of the phe-
nomenon, it is unlikely that such simulations could be per-
formed in the near future. 

MODEL OUTLINE 

As a result of an underwater explosion (UNDEX), a gas 
globe is formed, which experiences several expansions and 
contractions during short time after the detonation. We will 
use the term "globe" for the initial gas bubble formed by the 
underwater explosion to distinguish it from the bubbles as 
product of the initial globe disintegration. During these oscil-
lations the explosion globe rises in water, especially quickly 
during contraction phases when the drag force is lower. After 
two to three oscillations the large explosion bubble disinte-
grates into a large number of smaller bubbles, which then rise 
towards the surface of water with various speeds depending 
on their size. The purpose of this model is to estimate the 
bubble size distribution, the bubble spatial distribution and 
the dynamics of their rise. The acoustic properties of the 
remnant bubble cloud can be easily derived from the known 
bubble size distribution. 

The steps of the currently suggested model are summarised 
below. The references to specific model elements will be 
given in the corresponding sections of the paper. 

- The oscillations and rise of the explosion globe are based on 
the models available in the literature, with slight modifica-
tions, of spherical bubble shape dynamics and motion. There 
are more sophisticated numerical models describing the 
UNDEX globe oscillation and rise, but for the purpose of this 
research the current, computationally efficient approach will 
suffice. 

- It is assumed that at the third minimum of the UNDEX 
globe oscillation, it disintegrates into smaller bubbles. The 
size distribution of the fragments is estimated from the 
growth rate of the modes of the Rayleigh-Taylor instability 
for spherical cavity. It is assumed that initial pressure of gas 
in the fragments is the same as in the explosion globe just 
before the break-up. Then the bubbles expand to bring the 
internal gas pressure into the balance with the ambient pres-
sure. The resulting bubble cloud size is estimated as being 
proportional to the total gas volume. The coefficient of pro-
portionality is treated as an empirical parameter in the current 
model. 

- The explosion globe potential energy at the minimum of its 
radius goes into the kinetic energy of the turbulent spot in the 
fluid. The time-space distribution of the turbulent kinetic 
energy is obtained by solving the corresponding equation in 
approximation of spherical symmetry.  

- The bubbles resulting from the initial fragmentation of the 
explosion globe are further broken-up by turbulence. To de-
scribe this, one of the bubble break-up models is used. It 
should be noted here that all of the bubble break-up models 
by turbulence are developed in the assumption of small gas 
volume fraction and isotropic nature of turbulence. In this 
problem, the gas volume fraction is high and the turbulence is 
not isotropic. However, in the absence of a better model, one 
of the existing models is applied with a note of addressing 
this problem in future. The unsteady equation of the bubble 
population balance is solved using the time-space distribution 
of the turbulence obtained in the previous step. 

- The rise of the bubbles to the surface is then calculated from 
the balance of the buoyancy and drag forces. The spatial and 
size distribution of the gas volume fraction is then used to 
estimate the acoustical properties of the gas bubble cloud. 
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OSCILLATIONS AND RISE OF THE 
EXPLOSION BUBBLE 

There exist sophisticated numerical models of the explosion 
globe rise and oscillations. Here, for the sake of UNDEX 
remnant bubble cloud model development, we need a rela-
tively simple, computationally efficient estimation of the 
bubble radius and pressure inside the bubble at the beginning 
of the explosion bubble break-up. In the current model we 
base our estimation on a relatively simple equation of a 
spherical bubble motion and oscillations. Later, these estima-
tions may be obtained from a more sophisticated numerical 
model.  

The models of the oscillations and motion of the explosion 
bubble, sometimes referred to as globe here to distinguish 
from the bubbles resulting from the explosion globe fragmen-
tation, date back to 1940s (Underwater Explosion Research, 
1950; Cole, 1948). The early models were based on the as-
sumption of incompressible flow and did not take into ac-
count the energy loss due to pressure wave radiation during 
the collapse-rebound stage of bubble oscillation. As a result 
they did not account for the damping of bubble shape oscilla-
tions observed in experiments. Recently a model has been 
published (Geers&Hunter, 2002), which accounts for the 
wave effect. The model is based on the doubly asymptotic 
approximation and combines relative simplicity based on the 
assumption of spherical shape of the explosion globe with the 
reasonable prediction of the globe oscillation damping. In our 
model of formation of the UNDEX remnant bubble cloud we 
employ this model of the explosion bubble oscillations with 
some modifications. Thus the radius of the spherical explo-
sion globe, , is described by the following equation: R
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 is the density of gas inside the bubble and 

surrounding liquid, respectively,  is the speed of sound 

in gas and liquid,  is the ambient pressure of surrounding 
fluid,  is the initial gas pressure inside the bubble. We do 

not reproduce here the functions  and  referring 
to Geers&Hunter (2002) (Equations 32 and 33). The second 
term on the right-hand side of the equation (1) is due to the 
added pressure on the bubble surface resulting from the bub-
ble motion (Hsiao et al., 2003). We include this term in addi-
tion to the model provided by Geers&Hunter (2002). 
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Initial conditions for equation (1) are obtained from combina-
tion of similitude relation for the far-field shock-wave pres-
sure profiles and the volume acceleration model 
(Geers&Hunter, 2002). The bubble translation model de-
scribed in the same paper does not, however, provide a satis-
factory result unless an artificial drag coefficient is intro-
duced. Therefore, we have chosen to use the following equa-
tion often applied to modelling of bubble motion 
(Hsiao&Pauley, 1999): 
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In this equation  is the velocity of the bubble, u  is the 
velocity of the surrounding fluid, 

bu
g  is the acceleration due to 

gravity, and C  is the drag coefficient. Here we use the 
Grace Drag model (Clift et al., 1978; ANSYS CFX-Solver, 
2010), which accounts for wide range of bubble Reynolds 
number and various regimes of bubble deformation. 

D

 
Figure 1. Explosion globe radius (top plot) and depth (bot-

tom plot).  

Here we will consider an example from the laboratory 
UNDEX experiment conducted at the Carderock Division of 
the Naval Surface Warfare Center (Harris et al., 2010). In this 
experiment 0.23 kg (0.5 lb) of pentolite explosive was deto-
nated at 2.29 m (7.5 feet) of depth. The result of applying the 
above model to this case is presented in Figure 1 together 
with the experimental results obtained by processing video 
taken during the experiment. It should be noted here that the 
above mentioned report does not specify the exact composi-
tion of explosive used in the experiment and there are several 
versions of the explosive called pentolite. In the model reali-
sation we used the physical parameters for pentolite available 
in the literature. More accurate data on the physical proper-
ties of the specific explosive used in the test may improve the 
agreement between the model and experimental data. Never-
theless, the current model gives much better agreement than 
the usual bubble oscillation models which do not take into 
account the energy loss due to shock wave.  

EXPLOSION GLOBE FRAGMENTATION 

We assume that the explosion globe break-up occurs at the 
third minimum as a result of instability of the bubble spheri-
cal shape. It is a simplification because in reality the frag-
mentation of the explosion globe occurs in steps at the sec-
ond, third, and even fourth minimum of the breathing modes, 
which could be seen from the video sequence (Harris et al., 
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2010). However we believe that compressing this process 
into one single act of fragmentation is a reasonable assump-
tion which significantly simplifies the model. The model 
improvement in this respect may be addressed in future work.  

Just before the explosion globe break-up its radius is  and 

the gas pressure inside the bubble . In the current model 

we obtain these values from the solution of equations in the 
previous section. Alternatively, they can be obtained from a 
more accurate numerical model of underwater explosion.  

*
0R

0gp

We estimate initial bubble size distribution from the modes 
of the Rayleigh-Taylor instability for the spherical bubble. 
The growth rate of the non-spherical distortions on the bub-
ble surface is proportional to the following value (Brennen, 
2002): 

( ) ( ) ( )( )[ 211 ++−Γ−= mmmmf           (3) 

where  and  is the order of a spherical har-
monic distortion. We postulate that each mode m  leads to 
bubbles of size  in the daughter bubble cloud 
and that the number of bubbles of this size is proportional to 
the function : 
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where  is the value of Γ  at . The normalisation 
coefficient  is determined from the balance of the gas vol-
ume: 
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We assume that straight after the break-up the gas in the 
daughter bubbles has the same pressure, , as the explo-

sion bubble just before break-up. Then the bubbles expand to 
reach the balance with the pressure in the surrounding fluid. 
We assume here that during globe break-up the gas tempera-
ture rapidly adjusts to the temperature of water and subse-
quent expansion of break-up products is isothermal. The new 
bubble size can be obtained from the following equation: 
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,  being 

the depth of  the bubble, and  the atmospheric pressure. 
This results in the following cubic equation for the new bub-
ble radius, 
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If the surface tension can be neglected, this equation simpli-
fies significantly: 
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however, with the modern computers solving the cubic equa-
tion does not affect the overall computation time noticeably. 
The new bubble size distribution is calculated as: 
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and the new total volume of the bubbles in the cloud is: 
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The radius of the bubble cloud can be estimated as follows: 
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Currently we consider Cα  as an empirical parameter. Obvi-
ously, 1>Cα .  

Continuing with the example from the previous section and 
assuming 5.1=Cα , we obtain the bubble size distribution 
shown in Figure 2. 

 

 
Figure 2. Estimated bubble size distribution after the initial 

break-up of the explosion bubble. 

TURBULENCE RESULTING FROM EXPLOSION 
BUBBLE BREAK-UP 

We assume that almost all potential energy of the explosion 
bubble before break-up transfers into the turbulent kinetic 
energy, which then gradually decays due to dissipation, 
breaking further the bubbles in the remnant bubble cloud. 
The potential energy of the compressed explosion globe is 
computed as the work performed against external pressure 
during globe adiabatic expansion from the compressed state 
to the state of equilibrium with the external pressure (Cole, 
1948): 
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Here ba ghpP ρ+=∞

bh
 is the ambient pressure at the bubble 

depth, . During adiabatic expansion the pressure inside the 
bubble is changing according to the following equation: 
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Obviously,  is obtained from equation (13) when 
. Integration of (12) will give the following equa-

tion for the bubble potential energy: 
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When bubble breaks its potential energy mainly goes into the 
kinetic energy of the fluid creating a turbulent spot with the 
total kinetic energy 

Π= KK β0 ,            (15) 

where 1<Kβ  accounts for energy loss due to change in sur-
face energy and acoustic radiation. In the current research we 
neglect these losses and assume 1≈Kβ . We assume also that 
the initial radius of the turbulent spot coincides with the ra-
dius of the bubble cloud, R~ . Thus the initial condition for the 
turbulent kinetic energy per unit mass is: 
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. The decay of the turbulent 

kinetic energy is described by the following equation (Wil-
cox, 1994): 
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For the turbulent parameters in this equation we use the fol-
lowing standard values: RlC k

~2,1,09.0 === σμ
. Equation 

(17) is solved numerically using the Crank-Nicolson finite 
difference method. The dissipation rate of the turbulent ki-
netic energy, which is used further in the model of the bubble 
break-up, is calculated according to the following equation: 

l
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Continuing with the example, Figure 3 shows the decay of 
the turbulent kinetic energy at the centre of the turbulent spot 
obtained from the numerical solution of equation (17). 

 
Figure 3. Decay of the turbulent kinetic energy at the centre 

of the turbulent spot. 

FURTHER BUBBLE BREAK-UP BY 
TURBULENCE 

The change of the bubble size distribution, n , due to bubble 
break-up by turbulence is described by the following equa-
tion (Lasheras et al., 2002): 
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The first term on the right-hand side of this equation de-
scribes the birth rate of bubbles of diameter ; the second 
term is the death rate of bubbles of this size. In this equation, 

D
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Dg  is the break-up frequency,   is the probability 
density function of the daughter bubbles resulting from the 
break-up of the mother bubble of size 0D ( )  the av-
erage number of daughter bubbles per one break-up event. 
Here we use the break-up frequency and daughter bubbles 
probability density function from (Martinez-Bazan et al., 
1999a, 1999b): 
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In the above equations ε  is the dissipation rate of the turbu-
lent kinetic energy,  and 

gK β  are empirical constants, 

( )3
2 1 DD −=

B

3/1  is the size of the second daughter bubble, 
and  is the normalisation factor. The following values for 
the empirical constants, 25.0≈gK  and 2.8=β , are sug-

gested by Martinez-Bazan et al. (1999a, 1999b). 

Applying the turbulent kinetic energy obtained in the previ-
ous section to the bubble cloud with the initial bubble size 
distribution from Figure 2 we obtain the final bubble size 
distribution in the bubble cloud shown in Figure 4. 
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Figure 4. Final bubble size distribution after break-up by 

turbulence. 

RISE OF THE BUBBLE CLOUD 

Dissipation of the turbulent kinetic energy in the turbulent 
spot caused by initial break-up of the explosion bubble oc-
curs relatively quickly. Therefore, we assume that in this time 
small bubbles in the bubble cloud do not move significantly 
from their initial positions. Therefore, we assume that the rise 
of the bubble cloud starts after the bubble break-up by turbu-
lence is finished. Such an approximation simplifies the prob-
lem considerably without, we believe, significant loss of 
accuracy. Another simplifying assumption we make is that 
the bubbles rise at their terminal velocity, U , obtained from 
the balance of buoyancy and drag force: 

( ) bDlbgl AUCgV 2

2
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Here bρ  is the density of the gas inside the bubble, 
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 is the bubble volume,  is the drag coefficient, 

and  is the bubble projected area. Here again we 
use the Grace Drag model described above. 

DC
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For each size in the bubble size distribution we calculate the 
bubble depth, , as a function of time from the following 
kinematic equation: 

thb

( )b
b hU

dt
dh

−= .            (23) 

The equation (22) and (23) are solved numerically. In this 
solution we take into account the change in the bubble vol-
ume, and as a result all other bubble parameters, due to 
changing pressure of the ambient fluid. 

Under the above assumptions all bubble trajectories will be 
vertical lines with the different variation of bubble depth with 
time depending on the initial bubble size. Mathematically, we 
can describe the bubble trajectories by the following equa-
tions in the coordinate system ( )zyx ,,  with yx,  being hori-
zontal coordinates and z  vertical: 

( ) ( )( )( )trzzyxzyx mbbb ,,,,,, 0
000= .          (24)  

While computing bubble trajectories for different bubble 
sizes we assume that they all originate from the centre of the 
bubble cloud. The trajectories are then simply translated into 

a relevant position of their starting point in the bubble cloud 
for subsequent computation of the volume fraction in the 
rising bubble cloud. In this assumption equation (24) can be 
written in the following form: 

( ) ( )( )( )trzfzyxzyx mCzbbb ,,,,,, 0
000 += ,         (25) 

where  is the z-coordinate of the initial bubble cloud cen-
tre.  

Cz

 
Figure 5. Logarithm of volume fraction at different time 

moments (from top down): 1, 5, and 20 sec from start of bub-
ble cloud rise. 

To calculate the volume fraction in the rising bubble cloud 
we divide the initial bubble cloud into many volume elements 
and originate bubble trajectories for all bubble sizes from 
each volume element. Each bubble trajectory thus associated 
with a certain gas volume. Obviously, for smooth solution a 
sufficient number of volume elements are required. In this 
example we use 100x100x100 volume elements for initial 
volume subdivision. Also a sufficient number of bubble size 
groups are neded to obtain a smooth solution along the verti-
cal coordinate. In this example 20 size groups are used. The 
spatial region above the initial bubble cloud is divided into 
volume elements as well and from analysis of interjections of 
bubble trajectories with these volume elements the volume 
fraction of the bubble cloud at a certain time is calculated. 
Figure 5 shows an example of the volume fraction in the 
rising bubble cloud at the different time moments.  
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Here we should note that for calculation of the volume frac-
tion and acoustical properties of the bubble cloud we do not 
use the whole final bubble size distribution (Figure 4). Some 
of the bubbles in this distribution are still large and will rise 
to the surface very quickly. In this research we are interested 
in the properties of the bubble cloud at the relatively long 
time after the detonation, on the order of several minutes. 
This means a bubble cloud consisting of small bubbles. 
Therefore, in our model we only consider the part of the final 
bubble size distribution with bubbles less than a certain size. 
In the example here we used the bubble diameter of 5 mm as 
the cut-off bubble size. 

Once the volume fraction of the bubble cloud is known for  
the different size bins, the backscattering cross section per 
unit volume  and the spatial attenuation rate bsS bα  due to 
bubbles are given by the following equations (Med-
win&Clay, 1998): 
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where  is the extinction cross section per unit volume. The 
differential scattering cross section of a single bubble 
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and the extinction cross section of a single bubble 
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where the total damping constant 

νδδδδ ++= tr            (29) 

is the sum of the reradiation term rδ , the thermal damping 
term tδ , and the viscous damping term νδ . The damping 
terms and the resonance frequency, , depend on the physi-
cal properties of the bubble gas and the ambient fluid as well 
as bubble depth. The corresponding equations are given in 
section 8.2 of Medwin&Clay (1998) and we do not reproduce 
them here.  

Rf

Example of the backscattering cross-section per unit volume 
is shown in Figure 6. 

To compare the model with available experimental data (Har-
ris et al., 2010), we compute the mean backscattering cross-
section per unit volume in a horizontal slice located at the 
depth of 0.9 m (three feet), or 1.37 m (4.5 feet) above the 
point of detonation. In the experiment the acoustic measure-
ments were taken at this horizontal slice with Reson 7125 
multibeam sonar. Example of sonar raw data is shown in 
Figure 7. The light coloured spot in the sonar data indicates 
the cross-section of the bubble cloud rising from the point of 
detonation.  

 

 
Figure 6. Backscattering cross-section per unit volume at 
different time moments (from top down): 1, 5, and 20 sec 

from start of bubble cloud rise. 

The backscattering cross-section per unit volume is computed 
from the raw sonar data, , as follows: S

VTLSLCGSSV 1010 log10log20 −+−+−= ,         (30) 

where  is the sonar source level in dB, SL
R RTL 10log402 += α  is the two-way transmission loss, C  

is the sonar calibration factor, V  is the insonified volume, 
and CGRR +CGG VG +=+= 100 2 log2 βα  is the sonar 
gain, consisting of variable and constant parts. From sonar 
data taken in the air it can be concluded that with high degree 
of accuracy 20≈β . Unfortunately, the sonar was not cali-
brated for this experiment and the calibration constant, C , is 
unknown. Here we attempted to calibrate sonar using data on 
the gas volume fraction and bubble size distribution for the 
bubble maker, which was also used in the UNDEX experi-
ment (Harris et al., 2010). The sonar data from the bubble 
maker jet was obtained by the same sonar. On the other hand, 
the data on the gas volume fraction and the bubble size dis-
tribution in the bubble maker jet was acquired in a different 
laboratory experiment using different measurement tech-
niques by Dynaflow, Inc. Comparing the volume fraction 
data obtained from the sonar data with the data provided by 
Dynaflow we calculated the calibration factor. The calcula-
tion of the calibration factor was performed in five different 
locations of the bubble maker jet. The difference between 
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maximum and minimum values of the calibration factor was 
18 dB. There are many factors which can contribute to the 
uncertainty in the value of the calibration factor with such a 
non-traditional approach to calibration. The most important 
among them is turbulent fluctuations of the bubble maker jet. 
Other factors include inaccuracy in the measurement of the 
volume fraction and the bubble size distribution. 

 
Figure 7. Example of the raw sonar data. 

 
Figure 8. Backscattering cross-section per unit volume calcu-
lated from sonar data in a horizontal slice through the bubble 

cloud. 

Using thus obtained calibration factor we processed a se-
quence of sonar pings in a horizontal slice through the bubble 
cloud. Example of the backscattering cross-section obtained 
from the processing of the sonar data, zoomed onto the bub-
ble cloud is shown in Figure 8. 

The black curve in Figure 9 shows the mean backscattering 
cross-section in the horizontal slice of the bubble cloud ob-
tained from processing 800 pings. The error bars on this 
curve indicate the uncertainty in the calibration factor. The 
red curve in this figure is obtained from the model. 

 
Figure 9. Backscattering cross-section at the horizontal slice 

of the rising bubble cloud. Depth of the slice location is 3 
feet. 

CONCLUSION 

In this paper we have described the development of the 
model of formation, dynamics and acoustic properties of the 
bubble cloud resulting from an underwater explosion. The 
overall model consists of several sub-models for different 
steps of the bubble cloud formation and dynamics. These 
steps include initial explosion globe oscillation and rise, its 
fragmentation into the smaller bubbles and further break-up 
of latter by the turbulence created by the explosion globe 
break-up. The time history of the bubble cloud volume frac-
tion and its acoustic properties is calculated under the as-
sumption that the bubbles in the cloud are not interacting 
with each other neither hydrodynamically nor acoustically.  
Comparison of the model with a laboratory experiment shows 
a reasonable agreement. However, the value of such compari-
son is somewhat diminished by the fact that the sonar used in 
the laboratory measurement was not properly calibrated, 
which introduced a large uncertainty in the experimental 
data. Further model improvement and validation will be ad-
dressed in future. 
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