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 ABSTRACT 

Effective control of propeller induced vibration (PIV) is crucial not only in reducing underwater sound radiation from 

submarine hull structures, but also in noise analysis and control of unmanned underwater vehicles. The fact that PIV 

transmits along the same shafting which normally sustains enormous thrust means that the traditional insertion of 

elastic mounts between the thrust bearing housing and hall structure is not feasible, since the thrust transmission sys-

tem will be softened. Thus active control (AC) and active & passive control (APC) techniques become attractive op-

tions for minimizing the dynamic PIV energy transmission into hull structures without globally softening the system.  

This paper is a study of the dynamics of the active-controlled system with different configurations for understanding 

the controllability of this self-contained system where the dynamic energy will always be confined within the system 

without dissipation. A robust nonlinear backstepping method is then employed to implement the control strategy to 

handle the inherent nonlinear dynamics of the system. A double-side Active Magnetic Bearing (AMB) is utilized as 

the actuator, and proper switch functions are introduced to achieve differentiable vector sum of the forces from the 

two sides of the AMB. The parameter uncertainties and the unknown input of the PIV present another challenge 

which is addressed by using parameter estimators without bringing substantial complexity to the nonlinear controller. 

The effect of different design constants on the controller's performance is also discussed in detail. Simulation results 

show that the nonlinear active controller is stable and robust in minimizing the dynamic PIV energy transmitted into 

the hull structure. The results summarized in this paper also provide a basis for further development of more sophisti-

cated active control systems for reducing PIV. 

 

INTRODUCTION 

Propeller induced vibration (PIV) is recognized to be the 

major source for sound radiation from submarines and similar 

structures at low frequencies. When submarines operate in 

deep water at low speed, the tonal component, mainly con-

tributed by propeller induced vibration transmitted into hull 

structures, is dominant in the sound radiation under those 

operational conditions (Merz et al, 2007).  

The dynamic excitation induced by a running propeller has 

received intense studies (Lewis, 1963). The asymmetry in the 

hull (Liu et al, 2010), protrusions of surfaces or shaft bearing 

struts result in a non-uniform wake field near the propeller, 

which then induces hydrodynamic excitations on the propel-

ler shaft (Pan et al, 2002). A key feature of the propeller in-

duced excitation is that it contains strong tonal components at 

the blade passing frequency (BPF) and its multiples.   

Control of PIV is a challenging task.  PIV transmits along the 

same shafting which normally sustains enormous thrust. Thus 

it is not feasible to insert elastic components into the trans-

mission path for vibration control purpose. Realised this, 

Goodwin proposed resonance changer (RC) which uses a 

massive oil reservoir to absorb the propeller shaft vibration 

(Goodwin, 1960). Application of classical tuned mass ab-

sorbers was conducted by some researchers as well (Ojak 

1984). However, the effectiveness of those methods is limited 

within narrow frequency band to which they are tuned.  

Active control (AC) and active & passive control (APC) 

techniques are the two other options to minimize the dynamic 

PIV energy transmitted into hull structures without globally 

softening the shafting. Lewis & Allaire (1986) proposed ac-

tive control for propeller induced oscillation. Baz et al (1988) 

utilized pneumatic servo-system to counteract the longitudi-

nal vibration of a shaft. Dylejko et al, (2007) proposed adap-

tive control with a series of passive RC. Those studies how-

ever did not put too much attention on the reacting dynamic 

force transmitted into the receiving structures, which is criti-

cal for a self-contained system like a submarine.  

This paper focuses on the pure active control where nonlinear 

backstepping control structures and active magnetic bearings 

are developed to address the dynamic energy received by the 

hull structures. The basis of this control structure is the sys-

tem dynamics which indicates the controllability of the plant. 

Since pure active control scheme introduces no dissipation 

mechanism, the dynamic energy will be confined within the 

system and might cause instabilities. It is therefore necessary 

to examine the dynamics and controllability. 

The control system includes a double-side active magnetic 

bearing (AMB) as an actuator. A special force distribution 

function is proposed to replace the switch function which is 

not differentiable. Also included in the system and analysis 

are the nonlinear propeller dynamics, thrust bearing oil film 

dynamics, the actuating dynamics, uncertainties of system 

parameters and unknown disturbances. One assumption used 

in this study is that when the propeller operates at a steady 

condition, the dominating tonal excitation is regarded as a 

time invariant stable excitation.  

Section 4 presents the dynamics of the AMB actuator and a 

differentiable distribution function. Section 5 summarizes the 

controller design, and addressed the parameter uncertainties, 

unknown disturbance, also assessed the impact of the oil film 

dynamics.  Section 6 gives the performance analysis with 
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different design constants. A summary of results and conclu-

sions are presented in section 7. 

 

SYSTEM MODELLING 

A typical underwater vessel propulsion system can be illus-

trated as the Figure 1 which consists of propeller, shafting, 

thrust bearings, coupling and driving engine.  

 

Figure 1 Typical underwater propulsion system 

The running propeller simultaneously generates dynamic 

force and static thrust, which transmit together along the shaft 

into the bearing house through the bearing oil film. The dy-

namic force then transmits from the bearing house into the 

hull structure through the bearing foundation. Figure 2 gives 

the system model with assumption that the hull structure is 

rigid. The motions of the shaft mass (Ms) and bearing house 

mass (Mh) are described by equation (1). 

 

Figure 2 Mass-spring model of the propulsion system 
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Where Fp and Fc are the PIV force and control force respec-

tively, Kt,Ct are the oil film stiffness and damping of thrust 

bearing, Kh,Ch are the stiffness and damping of bearing house 

and Ku,Cu are the un-modelled system damping and stiffness, 

including couplings, friction of radial bearing, hydrodynamic 

damping of the propeller and internal damping of shaft. Xs 

and Xh are the displacement of the shaft and bearing house. 

 Define the following state space variables, 
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(2) 

We can write (1) into the state space and output equations. 
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The dynamic force Fc generated by the AMB's interacts with 

the shaft will act on the bearing house to cancel the primary 

PIV excitation. The goal is to tune the control force Fc to cut 

off the dynamic energy flowing into the hull structure, i.e. to 

regulate the thrust bearing house response (x1, x2) to zero 

while at the same time stabilize the shaft response (x3, x4).  

 

ANALYSIS OF SYSTEM DYNAMICS 

Active control system will have the vibratory energy con-

fined in the system since there is no energy dissipation mech-

anism introduced. In this application, if the control was suc-

cessful, the dynamic energy will stop flowing into the hull 

structure; however, it will then flow into the shaft. Now the 

question is how it is going to affect the stability of the system?  

3.1 Zero dynamics 

The states of the shaft (x3, x4) are not observable from the 

output y under the control scheme. They are the hiding dy-

namics or zero dynamics which should be addressed in the 

stability analysis of the close loop system. Let's apply a feed-

back control to the plant, where k1, 2 are design constants. 
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(4) 

The close loop hiding dynamics (x3, x4) can be expressed as:  
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(5) 

When the output y→0, then x1→0, x2→0. Substitute it into 

the above equations, we have 
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(6) 

Since
41 42,  are both positive, based on linear control theory, 

the matrix is Hurwitz. Because Fp is a bounded input all the 

time, the states (x3, x4) are therefore bounded all the time. 

According to stability theories (Kristic et al, 1995), the sys-

tem is an ISS (Input to Output Stability) stable system. 

3.2 Shaft response under different system configurations 

Although the system is ISS stable, we are also interested in 

how the shaft response is going to change after the energy 

flows in. Whether it's going to increase or decrease, and to 

what extent or under what circumstance? Since this dynamics 

strongly depends on system configurations, we examined 

three different scenarios of the system with different structur-

al configurations. 

Scenario I: Is the shaft-thrust bearing sub-system a complex 

stiffness (|Kt+jωCt|) dominating or Mass (|-ω2Ms|) dominat-

ing system? From the energy point of view, the ratio of the 

oil film's complex stiffness |Kt+jωCt| to the shafting mass |-

ω2Ms| shows the percentage of energy transmitted into the 

bearing house and hull structure, and that trapped in the shaft. 

Scenario II: Is the complex stiffness of the thrust bearing 

foundation |Kh+jωCh| relatively stiff or relatively soft?               
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Scenario III: Is the un-modelled system complex stiffness 

|Ku+jωCu| relatively great or small? 

We use the transfer functions for the dynamics analysis. 
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(7) 

The shaft responses before and after control were simulated 

under the three configuration scenarios where the parameters 

vary from 0.01 to 100 times of their nominal configuration as 

listed in table 1, which is similar to the one from Lewis and 

Allaire (Lewis & Allaire, 1986).  

Table 1 Nominal parameters used for simulations  

Param-

eters 

Description Nominal 

value 

f 

PIV frequency, assume 

shaft revolution is 240rpm 

and 5blades propeller 

20 Hz 

Ms Mass of the shaft 2e4 kg 

Kt Oil film stiffness 1e9 N/m 

Ct Oil film damping 1e6 Ns/m 

Mh Mass of bearing house 1e4 kg 

Kh Bearing house stiffness 9e9 N/m 

Ch Bearing house damping  1e6 Ns/m 

Ku Un-modelled stiffness  1e6 N/m 

Cu Un-modelled damping 1e6 Ns/m 

Figure 3 is an example mapping plot showing the change of 

the shaft responses after the control under different configu-

ration scenario I & II. The change ratio is in dB, where the 

negative value means the shaft response decreases after the 

control, the positive value means increases after the control, 

and the zero value indicates no change of shaft response. The 

mapping is separated by the zero value curves into response 

increasing area and response decreasing area. 

 
Figure 3 Log ratio of shaft response after control to shaft 

response before control, under scenario I & scenario II. 

3.3 Observations and comments 

a) The plant is controllable; the system is an ISS (Input to 

Output Stability) stable system. 

b) The impact of the diverted energy on the shaft responses 

depends on the configurations of the system. For those cases 

fall in the increasing area, the increased response might hit 

the physical bound of the AMB air gap limit. 

c) There are possibilities that the shaft responses being atten-

uated as well after the control.  

 

AMB ACTUATOR 

Actuator is a critical part of the active control scheme. The 

capacity of the actuator determines the performance of the 

control system; on the other hand, the dynamics of the actua-

tor also greatly affect the design of the controller. Various 

types of conventional actuators like inertial, hydraulic and 

pneumatic ones, and non-conventional actuators like shape 

memory alloys, piezo-ceramics, mechano-chemical polymer 

have been widely used to control structures vibration and 

sound radiation (Hansen & Snyder 1997). 

To control the propeller induced vibration, there are several 

special requirements for actuating. First, the actuator should 

be able to apply forces between a rotating shaft and static 

bearing house. Second, the actuator should not introduce new 

path of transmitting reaction force into hull structures. Third, 

the actuator should be capable of generating relatively large 

forces with compact size. Due to these requirements, we 

proposed Active Magnetic Bearing (AMB) as the actuator in 

this research.  

4.1 Force-voltage model of a single-side AMB 

A double-side AMB consisting of two mechanically jointed 

single AMBs are proposed as Figure 4. Separately controlled 

AMB1 and AMB2 will only generate attractive force. 

 

Figure 4 Double AMB consists of two single AMBs 

For the single AMB on each side of the collar, the relations 

between electrical control input and the forces generated can 

be expressed as (Schweitzer et al, 1994). 
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(8) 

Where Xa is the displacement of AMB which is mounted onto 

the bearing house and thus we have Xa=Xh. µ0 is the permea-

bility of the air, N is the turns of AMB coil, Ag is the cross 

section area of flux path. Rq and Lq are the resistance and 

inductance of the coil, gq is the air gap and g0q is the initial air 

gap. iq and Vq are the control current and control voltage re-

spectively. 

The following physical restrictions apply in this study: 
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The control force of the double-side AMB will be the combi-

nation of the two single attractive forces generated by AMB1 

and AMB2, in the form of vector sum:  

1,2

c q

q

F F


 
                                       

(10) 

4.2 Force distribution model of the double-side AMB 

For the double-side AMB in Figure 4, the two attractive forc-

es generated are always opposite and tend to cancel each 

other to some degree. To maximize the capacity of the com-

bined control force Fc, the two single forces need to satisfy 

the following combination. Assume F2 is in positive direction.  
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This force distribution function is an ideal case of the force 

switching between the two single-side AMBs. To design the 

control voltage u1,2 later, we need to use the derivative of the 

control force Fc. Noticing that equation (11) is not differenti-

able, we proposed a replacement force distribution function 

as the following and illustrated in Figure 5: 
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Figure 5 Force distribution function for double-side AMB 
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CONTROLLER DESIGN 

The complete system model can be combined from the plant 

and the actuator as the following state space description 

equation (13), where g0 is the initial air gap of one AMB; 

Constant Ctgap is the total gap of the two sides. dL/dg is the 

derivative of the inductance to air gap which is assumed to be 

zero for simplification. u1,2 is the control voltage for the two 

single AMBs. 
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(13) 

System Characteristics 

The following issues characterize the model and need to be 

addressed, a) Nonlinearity of AMB dynamics and oil film 

dynamics; b) Parameters uncertainties. For a real plant, the 

dynamic properties Kt, Ct, Kh, Ch, Ku and Cu which corre-

spond to θ21, θ22, θ23, θ24, θ41 and θ42 in Equation (13) are all 

unknown; c) Unknown disturbance. The magnitude of pro-

peller induced vibration is very difficult to obtain in practice. 

5.1 Nonlinear backstepping controller 

To control the nonlinear dynamics we employed Backstep-

ping technique which is flexible and capable of robustly ac-

counting for fast time variations of modelling errors and ex-

ternal disturbances (Kristic et al, 1995). Equation (15)-(16) 

gives the expression of the nonlinear controller. The control-

ler works towards regulating the derivative of the following 

Lyapunov energy function (14) to negative. 
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Detailed results of the controller design and stability proof 

will be published separately. 
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(16) 

Together with the plant parameters as table 1, table2 listing 

AMB with capacity of generating up to 5% static thrust force 

was used for the simulations of the controller.  

Table 2 Parameters used for the nonlinear controller 

Param-

eters 
Description 

Nominal 

value 

N AMB coil turns 100 

Ag Cross section area of flux path 0.25 m2 

µ0 Permeability of air 4π×10-7 H/m 

g01 Initial air gap of AMB1 1e-3 m 

g02 Initial air gap of AMB2 1e-3 m 

R1 Resistance of AMB1 1 Ω 

R2 Resistance of AMB2 1 Ω 

L1 
Inductance of AMB1 

=(µ0AgN
2)/(2g01) 

H 

L2 
Inductance of AMB1 

=(µ0AgN
2)/(2g02) 

H 

γ0 
Design constant of the force 

distribution function 
0.1 

Fp Propeller excitation, 5% thrust 20sin(2πf) kN 

k1,2 Design constant k1=k2=350 N/A 

k3,4 Design constant k3=k4=200 N/A 

Figure 6 shows the system responses; Figure 7 shows the 

control currents of AMBs. Control is on at the 10th seconds. 

Figure 6 Bearing house response (x1, x2) and shaft response 

(x3, x4) under the nonlinear control; the controller is on at 10s 

Figure 7 The control current from each AMB 

Observations and comments 

a) After the control is applied, the bearing house response (x1, 

x2) converges to zero rapidly, while the shaft response in-

creases but is physically bounded. The force generated by a 

single-side AMB never reaches zero due to the introduction 

of the constant γ0 in the force distribution function. 

b) After a transient period, the control current from the two 

AMBs are almost the same, the peaks appear alternatively. 

5.2 Uncertainty of system parameters 

In section 5.1, the control design assumes all parameters are 

known which is not true in practice. The dynamic properties 

Kt, Ct, Kh, Ch, Ku and Cu which correspond to θ21, θ22, θ23, θ24, 

θ41 and θ42 in Equation (13) are also practically unknown.  

Define * * * * * *

21 22 23 24 41 42, , , , ,      as the estimations for the un-

knowns. A Lyapunov method based estimator is developed 

with the adaptive laws as the following: 

*

21 1 1 2 3 2

*

22 2 2 2 4 2

*

23 3 1 2

*

24 4 2 2 1 4

( )

( )

, ~  are the design constants

x z x z

x z x z

x z

x z

 

 

 

   

  

  

 

 

(17) 

The above estimations are however the over parameterization 

estimation structure.  They will only be used as the interim 

virtual control (Kristic et al, 1995).  

Based on the virtual control, we define new estimations as

21 22 23 24 41 42
ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,      . By regulating the derivative of the 

new Lyapunov function with time to negative, the adaptive 

laws for the system parameters are obtained as equation (18). 

The estimator was simulated with k1=k2=800; k3=k4=200; 

γ1=1e10; γ2=1e6; γ3=γ4=1e5; β1=1e7; β2=β3=β4=β5=β6=1e5, 

and initial values of *

21 1e4,  *

22 1e1,  *

23 5e5,  *

24 5e1, 

21 22 23 24 41 42
ˆ ˆ ˆ ˆ ˆ ˆ1e4, 1e1, 5e5, 5e1, 25.           Figure 8 

shows the system responses with the parameter estimator in 

presence. Figure 9 shows the convergence of the unknown 

parameters 21 22 23 24
ˆ ˆ ˆ ˆ, , ,   

.
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Figure 8 Bearing house response (x1, x2) and shaft response 

(x3, x4) under the nonlinear control with parameter estimators 

Figure 9 Performance of the estimator for 21 22 23 24
ˆ ˆ ˆ ˆ, , ,    ;

21 22
ˆ ˆ,  converged to true values,   control  goals achieved 

Observations and comments 

a) The over-parameterized estimator works successfully with 

the controller to regulate the bearing house response (x1, x2). 

b) The estimator has an obvious negative impact on the tran-

sient performance of the controller. 

c) Not all the unknowns converged to their true value due to 

inadequate persistent exciting condition. However, the dis-

crepancy of the converged constant and the true value does 

not affect the controller in achieving the goals.  

5.3 Unknown Disturbance 

In equations (15)-(16) for the controller u1, u2, the disturb-

ance Fp is normally regarded as unknown. The reason is that 

it is extremely difficult to obtain accurate theoretical model 

to describe propeller induced dynamic force. However, at 

steady operational condition, the tone dominated excitation at 

the BPF can be modelled as, where n is the shaft speed, Nb is 

the blade number, Ø0 is the initial phase, Cn is an amplitude 

constant and f(n)is a nonlinear amplitude function. 

0

2
( ) sin( )

60

b
p n

nN
F C f n t


   

               
(19) 

In this case, Cn f(n) can be regarded as a combined unknown 

constant. However, the unknown initial phase 
0  is very 

difficult to estimate since it is in the nonlinear time variable 

term. However for feedback control, we do not have to esti-

mate the disturbance. Nevertheless, using the second and the 

fourth equation from equation (3) the following can be ob-

tained: 

2 4 23 1 24 2 41 3 42 4( )p sF M rx x r x r x x x          

(20) 

Notice that the PIV is mainly tonal component whose fre-

quency is easily available. With equation (19), we have: 

2 2

2 1 1 4 3 3

2 2
,  

60 60

b bnN nN
x x x x x x

    
        

   
 

(21) 

Substitute equation (21) into equation (20), we have the 

steady state estimate of the propeller force based system 

states and shaft speed: 

2

23 1 24 2

2

41 3 42 4

2

60

2
)

60

b

p s
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r x r x
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x x
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(22) 

5.4 Oil film dynamics 

The dynamics of the oil film of the thrust bearings are very 

complicated. The stiffness and damping of the oil film are 

normally nonlinear functions of the thrust load and the oil 

film thickness. In this application, at a specific steady opera-

tional condition, the thrust load can be regarded as quasi-

constant. With regarding to the oil film thickness, the dimen-

sionless stiffness and damping (Storteig Eskild 1999) can be 

employed to roughly give the expression of the stiffness and 

damping in terms of oil film thickness as equation (23), 

where B, L are the thrust bearing geometry, U is the relative 

speed difference, h0 is the initial thickness under static thrust 
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load, µ is the fluid viscosity, xh and xs are the bearing house 

displacement and shaft displacement respectively; Also in the 

equation * 2 * 3,t t t tK K U CBL C BL   . 

2 * *

3 3 3

0

3 * *

3 3 3

0

( ( )

( (

, )

), )

t t t
t

h s

t t t
t

h s

K UBL K K
K

h h h f x x

C BL
C

h h h f x x

C C





  


  


 

(23) 

By using the definition of stiffness Kt  

0 (( , ))
t

h s

dF dF
K

dh d h f x x
 


,

 

(24) 

Equation (23) and integration, we have 

2

0 , )[ ] constant( h sF f xh x   

(25) 

Although we do not know the oil film thickness h0, we can 

estimate how much it is changed by the dynamic responses of 

the system. If the maximum dynamic load accounts for 5% of 

the static thrust loads, i.e. F varies from 95% to 105% of the 

static thrust load, the total oil film thickness will vary within 

(0.975-1.025) of the initial thickness h0, i.e. the dynamic 

responses cause maximum 2.5% change of h0 which is rela-

tively small. It is reasonable to treat the oil film thickness 

under steady operational condition as constants where the 

Lyapunov based estimations apply. 

Nevertheless, if there is a need to treat the thickness as a time 

varying item, the two expressions of equation (23) can be 

substituted into the system model of equation (13). The addi-

tion of nonlinearity can be coped with backstepping control 

structures. However, in this case, the challenging task is the 

estimation of the initial thickness    staying in the term of
3

0( ))( ,h sh f x x . It is typically tedious nonlinear parameter 

estimation without guaranteed convergence. 

 

PERFORMANCE ANALYSIS 

The performance of the controller strongly depends on the 

design constants k1~k4. With different choices of those con-

stants, we investigated their impact on the transient settle 

time and overshoot of the controller.  

6.1 Impact on the bearing house response (x1, x2) 

Figure 10 clearly illustrates the effect of controller design 

constants on bearing house response. The constant k1~k4 were 

set to different values between 60 and 6000. With all the 

cases, the responses can quickly converge to zero without 

substantially great overshoot. However, it is obvious that the 

greater the constants are, the faster the convergence is and the 

smaller the overshoot is. Greater constants at the same time 

also mean greater control efforts.  

The simulations also found when the constants are smaller 

than 60, the response experiences a large overshoot during 

transient which will be over the physical mechanical limit of 

the AMB air gap. 

 

Figure 10 The transient bearing house response under the 

same control structure with different constants k1-k4  

6.2 Impact on the shaft response (x3, x4) 

Shaft response (x3, x4) is the zero dynamics of the system, 

which is equivalently pole-zero cancellation for a linear plant. 

The impacts of design constants on them are more complex. 

As an example, we present the results of the case where k1=k2 

varying from 60 to 6000 and k3 = k4 varying from 60 to 6000. 

It is reasonable to set k1=k2 and k3=k4 during this application 

since simulations indicate the design constants k1 and k2 for 

the first two steps can be swapped without obvious impact on 

the controller performance, and k3 and k4 are the two con-

stants for the two identical AMBs in step three. All the results 

were plotted as contours with Figure 11 and Figure 12 given 

as the examples of transient settle time and transient over-

shoot of shaft response.  

Observations and comments 

a) Figure 11 shows that at small k1(k2) =(60-150) and small 

k3(k4)=(60-95) area, transient periods of shaft response are 

very short, the settle times are normally less than 1 second.  

b) It can be seen from Figure 12 that in the area with k1(k2) 

=(60-95) and k3(k4)=(95-950), transient overshoots are large 

with peak values of more than 15 times of shaft response 

before control. In high k1(k2) area, overshoot ratio is normally 

less than 10. 

 
Figure 11 Contour map of transient settle time for shaft 

response with k1=k2=(60~6000) & k3=k4= (60~6000) 
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Figure 12 Contour map of transient overshoot for shaft re-

sponse with k1=k2=(60~6000) & k3=k4= (60~6000) 

6.3 Impact of constant γ0  

γ0 is the small constant in the force distribution function of 

the AMBs, its value has impact on the control efforts re-

quired. Figure 13 gives the control voltage required at differ-

ent γ0 (gama0). Obviously at the switching point, small γ0 

requires much higher capacity from the control system.  

Figure 13 Control voltages required with different value of 

γ0 to achieve the control goal  

 

CONCLUSIONS  

The comprehensive nonlinear active controller and parameter 

estimators proposed in this study are stable and robust in 

minimizing the transmission of propeller induced vibration 

into the hull structures. This paper summarizes the results of 

system dynamics, actuator design, controller design, stability 

analysis and performance analysis. 

The system is controllable where dynamic energy can be 

diverted from thrust bearing house to the shaft. To what ex-

tent the shaft response will increase depends on the system 

configuration. There are possibilities that the shaft responses 

will be attenuated as well after the control.   

With proper AMB force distribution function proposed, the 

nonlinear controller successfully regulated the bearing house 

responses (x1, x2) to zero.  The controlled system is an ISS 

stable system. The control input is subject to the choice of 

constant γ0 in the distribution function.  

The estimator is an over-parameterized structure. The adap-

tive laws work effectively with the nonlinear controller for 

regulating bearing house responses (x1, x2) when parameters 

uncertainties in presence. Not all unknowns converged to the 

true value due to inadequate persistent exciting conditions; 

however, the discrepancy does not prevent the controller 

from achieving the control goals.  

The performance of the nonlinear controller with different 

design constants was discussed in detail. The impact of dif-

ferent constant choices on the transient settle time, transient 

overshoot of the bearing house response (x1, x2) is straight-

forward that higher values result in better performance. How-

ever, the impacts on those of the shaft response (x3, x4) are 

more complicated. The simulation results show that there are 

optimal combinations of design constants existing where the 

controller can reach its best performances. 
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