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Abstract

This paper presents a design of boundary controllers implemented at the top end for global stabilization of a marine riser in
three dimensional space under environmental loadings. Based on the energy approach, nonlinear partial differential equa-
tions of motion including bending-bending and longitudinal-bending couplings for the risers are derived. These couplings
cause mutual effects between the three independent directions in the riser’s motions and make it difficult to minimize its
vibrations. The Lyapunov direct method is employed to design the boundary controller. It is shown that the proposed bound-
ary controllers can effectively reduce the riser’s vibration. Stability analysis of the closed-loop system is performed using
the Lyapunov direct method. Numerical simulations illustrate the results.

Introduction
In offshore petroleum production, marine risers are crucial in
transporting petroleum products from wellheads to floating
rigs, containing drill strings and carrying mud in drilling
operations. The marine riser is subject to environmental
loading (waves, wind, and ocean currents), vortex induced
vibrations and rig drifts, tension the from rig heave motion.
These phenomena can reduce risers’ lifespan and lead to an in-
terruption of offshore operations in some cases. Furthermore,
the riser’s slender body due to the high length-to-diameter
ratio make its controlling and maintaining a challenging
engineering task.

For the dynamic analysis purpose, the marine riser is consid-
ered as a distributed system which is modelled by a set of
partial differential equations (PDE) and boundary conditions
(Niedzwecki and Liagre, 2003). Dynamical systems governed
by PDEs is difficult to control and receive a lot of attention.
The most classical control strategy to the distributed systems
was based on modal analysis (Balas, 1978; Cavallo and
De Maria, 1999; Fung and Liao, 1995). The modal analysis
was used to derive a truncated model of the given system.
Only some critical modes of the infinite dimensional and
distributed parameter systems were observed and controlled.
However, the control quality is greatly affected by observation
and control spill-over due to residual (uncontrolled) modes.
In addition, the requirement of arranging distributed actuators
and sensors poses many difficulties in bringing the modal
analysis-based control into practice. It might be problematic
to deploy distributed devices in some cases, such as when
controlling a deep-water riser.

In order to overcome aforementioned drawbacks of modal
analysis approach, a number of control methods are devel-
oped to deal with the original PDE systems of the infinite
dimensional systems instead of their truncated model. In (Ge
et al., 2001), the variable structure control was employed
for regulating a flexible beam. The control design process
was directly based on PDE governed equations of motion.
However, it is difficult to generalize the design procedure to

other flexible systems. An elegant boundary control design
can be found in (Krstic et al., 2006a,b, 2007), the authors
successfully established an integral transformation to convert a
beam system into a target system whose dynamical responses
are known. The main aim of this transformation were to find a
proper gain kernel and then perform an inverse transformation,
which can be a very complicated task due to the complexities
of the given systems. Based on Lyapunov’s direct method,
various boundary controllers have been proposed for flexible
string-like and beam-like systems. Boundary control with dif-
ferent string models is developed in (Shahruz and Narasimha,
1997; Shahruz and Kurmaji, 1997; Shahruz and Krishna,
1996; Kim and Jung, 2011), it is shown that with simple
boundary feedbacks, exponential stability can be achieved.
In (Fard and Sagatun, 2001; Queiroz et al., 2000), boundary
control are used for stabilizing string and beam systems. Due
to the systematic approach and the ease of implementation
in practice, applications of boundary control in marine riser
vibration suppression have received increasing attention. In
(Do and Pan, 2008; How et al., 2009; Ge et al., 2010; He et al.,
2011), boundary controllers were proposed for controlling
vibration of marine risers based on Lyapunov direct method.
In (Do and Pan, 2008), riser-actuator dynamics were taken
into account, whereas, in (He et al., 2011) a marine riser with
vessel dynamics were considered. An interesting work on
controlling marine risers was presented in (Do and Pan, 2009),
where a boundary controller for a coupled system consisting
of a three-dimensional riser and boundary actuators was
developed. The riser model is suitable for a class of flexible
risers since the riser is modeled as a rod-type system and not a
beam-type system. In the aforementioned references, coupled
dynamics such as bending-bending and longitudinal-bending
effects were not entirely considered, the riser motions were
restricted in one plane. The ignorance of coupling can
directly deteriorate the performance of the controlled system.
Therefore, it is necessary to include couplings in the riser
dynamics in the control design process.

In this paper, a global stabilization problem for three dimen-
sional flexible marine risers under environmental disturbances
is investigated. Motion of the riser is described by a set
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of PDEs and boundary conditions derived by the energy ap-
proach. The riser dynamics possess high nonlinearities due to
system couplings. The couplings show the direct effects be-
tween motions in three directions, and lead to a more complex
control design process than the one carried out in (Do and Pan,
2008). Based on Lyapunov’s direct method, a boundary con-
troller at the top end of the riser is designed. The proof of
existence, uniqueness, and convergence of the solutions of the
closed-loop system is provided. The proposed boundary con-
troller in this paper guarantees that when there are no environ-
mental disturbances, the riser is globally exponentially stabi-
lized at its equilibrium position and that when the disturbances
are presented, the riser is stabilized at the neighborhood of its
equilibrium position.

Mathematical model

Figure 1: Riser coordinates.

The equations of motion of the riser derived in this section are
subject to the following assumption:
Assumption 1

1. The riser can be modeled as a beam like structure because
of its high length-to-diameter ratio.

2. Plane sections remain plane after deformation, i.e. warp-
ing is neglected.

3. The riser is locally stiff, i.e. cross-sections do not deform
and the Poisson effect is neglected.

4. The riser material is homogeneous, isotropic and linearly
elastic, i.e. it obeys Hookes’s law.

5. Torsional and distributed moments induced by environ-
mental disturbances are neglected.

6. The riser deforms in three dimensional space.

7. Ball joints are placed at the both ends of the riser, i.e.
there is no bending at the both ends.

8. Environmental disturbances are bounded.

Remark 0.1 Items (1-4) imply that the riser will be modeled
as a Bernoulli beam rather than a Timoshenko beam, and that
the riser’s extension is small. Bernoulli-Euler models are ad-
equate for modeling the low-frequency responses of beams.
Item (5) indicates that fluid/gas transportation risers, rather
than drilling risers, are considered and that moments induced
by asymmetrically relative flow due to vortex shedding are ig-
nored. Item (7) and (8) always hold in practice.

The kinetic energy of the riser is given by

T =
m0

2

∫ L

0

[(∂u(z, t)

∂t

)2
+
(∂v(z, t)

∂t

)2
+
(∂w(z, t)

∂t

)2]dz, (1)

where u(z, t), v(z, t) are transverse displacements in the X
and Y directions, respectively, and w(z, t) is longitudinal dis-
placement in the Z direction. L is the length of the riser,
m0 = ρA is the oscillating mass of the riser per unit length,
A is the riser’s cross section area, ρ is the mass density of the
riser. It is assumed that the riser under consideration is subject
to a constant tension P0. The potential energy of the riser can
be expressed as follows

P =
EI

2

∫ L

0

[(∂2u(z, t)

∂z2
)2

+
(∂2v(z, t)

∂z2
)2]dz

+
(∂v(z, t)

∂z

)2]dz+
EA

2

∫ L

0

×
[∂w(z, t)

∂z

+
1

2

(∂u(z, t)

∂z

)2
+

1

2

(∂v(z, t)

∂z

)2]2dz, (2)

where E is the Young’s modulus, I is the second moment of
the riser’s cross section area. The first part in the potential
energy expression quantifies bending, the second part is due to
tension force and the third term is strain energy of the riser.
The work done by environmental disturbances acting on the
riser is given by

Wf =

∫ L

0

fu(z, t)u(z, t)dz +

∫ L

0

fv(z, t)v(z, t)dz

+

∫ L

0

fw(z, t)w(z, t)dz, (3)

where fu(z, t), fv(z, t) and fw(z, t) are the hydrodynamics
forces acting on the riser in X , Y and Z directions, respec-
tively. The work done by structure damping is represented as

Wd = −d1
∫ L

0

ut(z, t)u(z, t)dz − d2
∫ L

0

vt(z, t)v(z, t)dz

− d3
∫ L

0

wt(z, t)w(z, t)dz, (4)

where d1, d2 and d3 are the damping coefficients in X , Y and
Z directions. The work done by active boundary actuators is

Wm=Uu(L,t)u(L,t)+Uv(L,t)v(L,t)+Uw(L,t)w(L,t), (5)

where Uu(L, t), Uv(L, t) and Uw(L, t) are the boundary con-
trol forces. The total work done on the system is presented
as

W=

∫ L

0

fu(z, t)u(z, t)dz +

∫ L

0

fv(z, t)v(z, t)dz

+

∫ L

0

fw(z, t)w(z, t)dz − d1
∫ L

0

ut(z, t)u(z, t)dz

− d2
∫ L

0

vt(z, t)v(z, t)dz − d3
∫ L

0

wt(z, t)w(z, t)dz

+Uu(L,t)u(L,t)+Uv(L,t)v(L,t)+Uw(L,t)w(L,t). (6)
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The extended Hamilton’s principle is given by

∫ t2

t1

δ(T − P +W )dt = 0. (7)

From this point onward, the arguments (z, t) is omitted when-
ever it is not confusing. For the riser under consideration, ball
joints placed at both ends imply that there is no bending at both
ends, see Figure 1. In addition, the lower end is fixed. With
aforementioned configuration, expanding (7) results in the fol-
lowing equations of motion

−m0utt − EIuzzzz + P0uzz +
3EA

2
u2
zuzz + EAwzzuz

+ EAwzuzz +
EA

2
uzzv

2
z + EAvzvzzuz − d1ut + fu = 0,

−m0vtt − EIvzzzz + P0vzz +
3EA

2
v2zvzz + EAwzzvz

+ EAwzvzz +
EA

2
vzzu

2
z + EAuzuzzvz − d1vt + fv = 0,

−m0wtt−EAwzz+EAuzuzz+EAvzvzz−d3wt+fw=0,

− EIuzzz(L, t) + P0uz(L, t) +
EA

2
u3
z(L, t)

+ EAwz(L, t)uz(L, t) +
EA

2
uz(L, t)v

2
z(L, t) = Uu(L, t),

− EIvzzz(L, t) + P0vz(L, t) +
EA

2
v3z(L, t)

+ EAwz(L, t)vz(L, t) +
EA

2
vz(L, t)u

2
z(L, t) = Uv(L, t),

EAwz(L, t) +
EA

2
u2
z(L, t) +

EA

2
v2z(L, t) = Uw(L, t),

uzz(L, t) = vzz(L, t) = uzz(0, t) = vzz(0, t) = 0,

u(0, t) = v(0, t) = w(0, t) = 0, (8)

where the following notations ∂(•)
∂z

= (•)z , ∂
2(•)
∂z2

= (•)zz ,
∂3(•)
∂z3

= (•)zzz , ∂4(•)
∂z4

= (•)zzzz , ∂(•)
∂t

= (•)t, and
∂2(•)
∂t2

= (•)tt have been used.

Boundary control design

Subject to Assumption 1, design the boundary control forces
Uu(L, t), Uv(L, t), and Uw(L, t) from information at the top
end of the riser for the riser system (8) to stabilize the riser at
the initial state, and

1. in the case where disturbances fu, fv , and fw are ig-
nored, |u(z, t)|, |v(z, t)|, |w(z, t)|,

∫ L
0
uz(z, t)dz,∫ L

0
vz(z, t)ds,

∫ L
0
wz(z, t)dz,

∫ L
0
ut(z, t)dz,∫ L

0
vt(z, t)dz,

∫ L
0
wt(z, t)dz,

∫ L
0
uzzdz, and

∫ L
0
vzzdz

exponentially converge to zero ∀z ∈ [0, L] and ∀t ≥ t0,

2. in the case where disturbances fu, fv , and fw are
present, |u(z, t)|, |v(z, t)|, |w(z, t)|,

∫ L
0
uz(z, t)dz,∫ L

0
vz(z, t)ds,

∫ L
0
ut(z, t)dz,

∫ L
0
wz(z, t)dz,∫ L

0
vt(z, t)dz,

∫ L
0
wt(z, t)dz,

∫ L
0
uzzdz, and

∫ L
0
vzzdz

exponentially converge to positive constants ∀z ∈ [0, L]
and ∀t ≥ t0.

Consider the following Lyapunov candidate function

V =
m0

2

∫ L

0

(u2
t + v2t + w2

t )dz +
P0

2

∫ L

0

(u2
z + v2z)dz

+
EA

2

∫ L

0

w2
zdz +

EA

2

∫ L

0

(
wz +

u2
z

2
+
v2z
2

)2dz

+
EI

2

∫ L

0

(u2
zz + v2zz)dz + ρ1

∫ L

0

uutdz

+ρ2

∫ L

0

vvtdz+ρ3

∫ L

0

wwtdz+
(
k1+

k2ρ1
m0

)
u2(L)

+
(
k3 +

k4ρ2
m0

)
v2(L) +

(
k5 +

k6ρ3
m0

)
w2(L). (9)

A calculation shows that

V ≥

(
m0

2
− ρ1
γ1

)∫ L

0

u2
tdz +

(
m0

2
− ρ2
γ2

)∫ L

0

v2t dz

+

(
m0

2
− ρ3
γ3

)∫ L

0

w2
t dz +

(
P0

2
− 4L2γ1ρ1

)∫ L

0

u2
zdz

+

(
P0

2
−4L2γ2ρ2

)∫ L

0

v2zdz+

(
P0

2
−4L2γ3ρ3

)∫ L

0

w2
zdz

+
EA

2

∫ L

0

(
wz +

u2
z

2
+
v2z
2

)2dz +
EI

2

∫ L

0

(
u2
zz + v2zz

)
dz

+
1

2

(
k1 +

k2ρ1
m0

)
u2(L) +

1

2

(
k3 +

k4ρ2
m0

)
v2(L)

+
(
k5 +

k6ρ3
m0

)
w2(L), (10)

and

V ≤

(
m0

2
+
ρ1
γ1

)∫ L

0

u2
tdz +

(
m0

2
+
ρ2
γ2

)∫ L

0

v2t dz

+

(
m0

2
+
ρ3
γ3

)∫ L

0

w2
t dz +

(
P0

2
+ 4L2γ1ρ1

)∫ L

0

u2
zdz

+

(
P0

2
+4L2γ2ρ2

)∫ L

0

v2zdz+

(
P0

2
+4L2γ3ρ3

)∫ L

0

w2
zdz

+
EA

2

∫ L

0

(
wz +

u2
z

2
+
v2z
2

)2dz +
EI

2

∫ L

0

(
u2
zz + v2zz

)
dz

+
1

2

(
k1 +

k2ρ1
m0

)
u2(L) +

1

2

(
k3 +

k4ρ2
m0

)
v2(L)

+
(
k5 +

k6ρ3
m0

)
w2(L). (11)

We select ρ1, ρ2, ρ3, γ1, γ2, and γ3 such that:

m0

2
− ρ1
γ1

= c1,
m0

2
− ρ2
γ2

= c2,
m0

2
− ρ3
γ3

= c3,

P0

2
− 4L2γ1ρ1 = c4,

P0

2
− 4L2γ2ρ2 = c5,

P0

2
− 4L2γ3ρ3 = c6. (12)

where ci, for i = 1 . . . 6, are strictly positive constants. Equa-
tion (12) shows that the Lyapunov candidate V is a proper
function of

∫ L
0
u2
tdz,

∫ L
0
v2t dz,

∫ L
0
w2
t dz,

∫ L
0
u2
zdz,

∫ L
0
v2zdz,∫ L

0
w2
zdz,

∫ L
0
u2
zzdz, and

∫ L
0
v2zzdz. Differentiating (9) along

the solutions of the equations of motion (8) results in

V̇ = ∆1 + ∆2 + ∆3 + ∆4 + ∆5 + ∆6 + ∆7, (13)
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where

∆1 =

∫ L

0

ut
(
− EIuzzzz+P0uzz+

3EA

2
u2
zuzz+EAwzzuz

+EAwzuzz+
EA

2
uzzv

2
z+EAvzvzzuz−d1ut+fu

)
dz,

(14)

∆2 =

∫ L

0

vt
(
− EIvzzzz+P0vzz+

3EA

2
v2zvzz+EAwzzvz

+EAwzvzz+
EA

2
vzzu

2
z+EAuzuzzvz−d2vt+fv

)
dz,

(15)

∆3 =

∫ L

0

wt
(
EAwzz + EAuzuzz + EAvzvzz − d3wt

+ fw
)
dz, (16)

∆4 =
P0

2

∫ L

0

(u2
z + v2z)dz +

EA

2

∫ L

0

(
wz +

u2
z

2
+
v2z
2

)2dz

+
EI

2

∫ L

0

(u2
zz + v2zz)dz +

(
k1 +

k2ρ1
m0

)
u2(L)

+
(
k3 +

k4ρ2
m0

)
v2(L) +

(
k5 +

k6ρ3
m0

)
w2(L), (17)

∆5 = ρ1

∫ L

0

u2
tdz +

ρ1
m0

∫ L

0

u
(
− EIuzzzz + P0uzz

+
3EA

2
u2
zuzz + EAwzzuz + EAwzuzz

+
EA

2
uzzv

2
z + EAvzvzzuz − d1ut + fu

)
dz, (18)

∆6 = ρ2

∫ L

0

v2t dz +
ρ2
m0

∫ L

0

v
(
− EIvzzzz + P0vzz

+
3EA

2
v2zvzz + EAwzzvz + EAwzvzz

+
EA

2
vzzu

2
z + EAuzuzzvz − d2vt + fv

)
dz, (19)

∆7 = ρ3

∫ L

0

w2
t dz +

ρ3
m0

∫ L

0

w
(
EAwzz

+ EAuzUzz + EAvzvzz − d3wt + fw
)
dz. (20)

Integrating (14), (15), (16), (18), (19), and (20) by parts then
substituting the result into (13) and using boundary conditions

specified in (8) give

V̇ =
(
ut(L) +

ρ1
m0

u(L)
)(
− EIuzzz(L) + P0uz(L)

+
EA

2
u3
z(L) + EAwz(L)uz(L) +

EA

2
uz(L)v2z(L)

)
+
(
vt(L) +

ρ2
m0

v(L)
)(
− EIvzzz(L) + P0vz(L)

+
EA

2
v3z(L) + EAwz(L)vz(L) +

EA

2
vz(L)v2z(L)

)
+
(
wt(L) +

ρ3
m0

w(L)
)(
EAwz(L) +

EA

2
u2
z(L)

+
EA

2
v2z(L)

)
−
(
d1 − ρ1

)∫ L

0

u2
tdz −

(
d2 − ρ2

)∫ L

0

v2t dz

−
(
d3 − ρ3

)∫ L

0

w2
t dz − ρ1EI

m0

∫ L

0

u2
zzdz − ρ2EI

m0

∫ L

0

v2zzdz

− ρ1P0

m0

∫ L

0

u2
zdz − ρ2P0

m0

∫ L

0

v2zdz − ρ1EA

2m0

∫ L

0

u4
zdz

− ρ2EA

2m0

∫ L

0

v4zdz − EA

m0

(
ρ1 +

ρ3
2

)∫ L

0

u2
zwzdz

− EA

2m0
(ρ1 + ρ2)

∫ L

0

u2
zv

2
zdz − EA

m0

(
ρ2 +

ρ3
2

)∫ L

0

v2zwzdz

− ρ1d1
m0

∫ L

0

uutdz +
ρ1
m0

∫ L

0

ufudz − ρ2d2
m0

∫ L

0

vvtdz

+
ρ2
m0

∫ L

0

vfvdz − ρ3EA

m0

∫ L

0

w2
zdz − ρ3d3

m0

∫ L

0

wwtdz

+

∫ L

0

vtfvdz +

∫ L

0

utfudz +

∫ L

0

wtfwdz +
ρ3
m0

∫ L

0

wfwdz

+
(
k1 +

k2ρ1
m0

)
u(L)ut(L) +

(
k3 +

k4ρ2
m0

)
v(L)vt(L)

+
(
k5 +

k6ρ3
m0

)
w(L)wt(L). (21)

Since −EIuzzz(L, t) + P0uz(L, t) + EA
2
u3
z(L, t) +

EAwz(L, t)uz(L, t) + EA
2
uz(L, t)v

2
z(L, t) = Uu(L, t),

−EIvzzz(L, t) + P0vz(L, t) + EA
2
v3z(L, t) +

EAwz(L, t)vz(L, t) + EA
2
vz(L, t)u

2
z(L, t) = Uv(L, t), and

EAwz(L, t) + EA
2
u2
z(L, t) + EA

2
v2z(L, t) = Uw(L, t), the

boundary control can be selected as follows,

Uu =− k1u(L)− k2ut(L), (22)

Uv =− k3v(L)− k4vt(L), (23)

Uw =− k5w(L)− k6wt(L), (24)

where coefficients ki, for i = 1 . . . 6, are strictly positive con-
stants. Substituting the controls (22), (23), and (24) into (21)
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gives

V̇ ≤ −k1ρ1
m0

u2(L)− k2u2
t (L)− k3ρ2

m0
v2(L)− k4v2t (L)

− k5ρ3
m0

w2(L)− k6w2
t (L)−

(
d1 − ρ1 −

d1ρ1
γ4m0

)∫ L

0

u2
tdz

−
(
d2−ρ2−

d2ρ2
γ5m0

)∫ L

0

v2t dz−
(
d3−ρ3−

d3ρ3
γ6m0

)∫ L

0

w2
t dz

− ρ1EI
m0

∫ L

0

u2
zzdz− ρ2EI

m0

∫ L

0

v2zzdz−
(ρ1P0

m0
− 4L2d1ρ1γ4

m0

)
×
∫ L

0

u2
zdz−

(ρ2P0

m0
− 4L2d2ρ2γ5

m0

)∫ L

0

v2zdz−
(ρ3EA
m0

− 4L2d3ρ3γ6
m0

)
×
∫ L

0

w2
zdz− ρ1EA

2m0

∫ L

0

u4
zdz− ρ2EA

2m0

∫ L

0

v4zdz−EA
m0

(
ρ1+

ρ3
2

)
×
∫ L

0

u2wzdz− EA

2m0
(ρ1+ρ2)

∫ L

0

u2
zv

2
zdz−EA

m0

(
ρ2 +

ρ3
2

)
×
∫ L

0

v2zwzdz− ρ1d1
m0

∫ L

0

uutdz+
ρ1
m0

∫ L

0

ufudz− ρ2d2
m0

∫ L

0

vvtdz

+
ρ2
m0

∫ L

0

vfvdz − ρ3d3
m0

∫ L

0

wwtdz +

∫ L

0

vtfvdz +

∫ L

0

utfudz

+

∫ L

0

wtfwdz +
ρ3
m0

∫ L

0

wfwdz. (25)

From (25), the designed parameters are selected such that

d1 − ρ1 −
d1ρ1
γ4m0

= c7, d2 − ρ2 −
d2ρ2
γ5m0

= c8,

d3 − ρ3 −
d3ρ3
γ5m0

= c9,
ρ1P0

m0
− 4L2d1ρ1γ4

m0
= c10,

ρ2P0

m0
− 4L2d2ρ2γ5

m0
=c11,

ρ3P0

m0
− 4L2d3ρ3γ6

m0
=c12, (26)

where c1, for i = 7 . . . 11, are strictly positive constants. Us-
ing the upper bound of V specified in (11), (25) can be ex-
pressed as

V̇ ≤− k1ρ1
m0

u2(L)− k2u2
t (L)− k3ρ2

m0
v2(L)− k4v2t (L)

− k5ρ3
m0

w2(L)− k6w2
t (L)− cV +

ρ1
m0

∫ L

0

ufudz

+
ρ2
m0

∫ L

0

vfvdz +

∫ L

0

vtfvdz +

∫ L

0

utfudz

+

∫ L

0

wtfwdz +
ρ3
m0

∫ L

0

wfwdz, (27)

where

c =
min

{
c7, c8, c9, c10, c11, c12, β1, β2

}
max

{
m0
2

+ ρ1
γ1
, m0

2
+ ρ2

γ2
, m0

2
+ ρ3

γ3
, , β2

} , (28)

where

β1 =
{ρ1EI
m0

,
ρ2EI

m0
,
ρ1EA

m0
,
ρ2EA

m0
,
EA

2m0
(ρ1 + ρ2)

}
,

β1=
{EA
m0

(ρ1 +
ρ3
2

),
EA

m0
(ρ2 +

ρ3
2

), k1
ρ1
m0

, k3
ρ2
m0

, k5
ρ3
m0

}
,

β3 =
{P0

2
+ 4L2γ1ρ1,

P0

2
+ 4L2γ2ρ2,

EA

2
,
EI

2

}
,

β4=
{1

2
(k1 +

k2ρ1
m0

),
1

2
(k3 +

k4ρ2
m0

),
1

2
(k5 +

k6ρ3
m0

).

(29)

The main outcome of this paper is stated in the following
theorem whose proof is omitted due to space limitation, see
(Nguyen et al., 2012) for the proof.

Theorem 0.1 Under Assumption 1, the control inputsUu,Uv ,
and Uw given in (22), (23), and (24) solve the control objective
provided that the design constants ρ1, ρ2, and ρ3 are chosen
such that the conditions specified in (12) and (26) hold. In
particular, the solutions of the closed-loop system consisting
of (8), (22), (23), and (24) exist and are unique. Moreover,
when the external distributed disturbances fu, fv , and fw are
zero, all the terms |u(z, t)|, |v(z, t)|, |w(z, t)|,

∫ L
0
uz(z, t)dz,∫ L

0
vz(z, t)ds,

∫ L
0
wz(z, t)ds,

∫ L
0
ut(z, t)dz,

∫ L
0
vt(z, t)dz,∫ L

0
wt(z, t)dz,

∫ L
0
uzzdz, and

∫ L
0
vzzdz exponentially con-

verge to zero ∀z ∈ [0, L] and ∀t ≥ t0, and when the exter-
nal distributed disturbances fu, fv , and fw are different from
zero but bounded, all the terms |u(z, t)|, |v(z, t)|, |w(z, t)|,∫ L
0
uz(z, t)dz,

∫ L
0
vz(z, t)ds,

∫ L
0
wz(z, t)ds,

∫ L
0
ut(z, t)dz,∫ L

0
vt(z, t)dz,

∫ L
0
wt(z, t)dz, and

∫ L
0
uzzdz exponentially

converge to some small positive constants ∀z ∈ [0, L] and
∀t ≥ t0.

Numerical simulation
The effectiveness of the proposed control is illustrated through
numerical simulations. The parameters of the marine riser sys-
tem taken from (Do and Pan, 2008) are given in Table 1.

Table 1: The marine riser system parameters.

Nomenclature Description Value
L Length 1000 m
D Diameter 0.2 m
ρ Density 8200kg/m3

E Young’s modulus 2× 108kg/m2

P0 Tension 1.1× 104N
d1 X-direction damping 40s/m2

d2 Y -direction damping 40s/m2

d3 Z-direction damping 20s/m2

The distributed disturbances are given as

fu = CM
ρwπD

2u1t(z, t)

4
+ CD

ρwD

2

√
8

π
σu(z, t)u1(z, t),

(30)

fv = CM
ρwπD

2u2t(z, t)

4
+ CD

ρwD

2

√
8

π
σv(z, t)u2(z, t),

(31)

fw =
−0.1z

L
, (32)

where ρw = 1024kg/m3 is the water density, CD = 1.2 is the
drag coefficient, and σu(z, t) and σv(z, t) are the root-mean-
square of the water particle velocities in the X and Y direc-
tions, respectively. The water particle velocities in the X and
Y directions are u1(z, t) = 0.5z

L
m/s and u2(z, t) = z

L
m/s, re-

spectively. The control gains are selected to be k1 = k2 =
k3 = k4 = k5 = k6 = 320. The initial conditions
at t0 = 0 are u(z, t0) = v(z, t0) = 0 = w(z, t0) and
ut(z, t0) = vt(z, t0) = wt(z, t0) = 0. Simulations are car-
ried out over 400 seconds without control (k1 = k2 = k3 =
k4 = k5 = k6 = 0) and with the proposed control.

The transverse displacements in uncontrolled and controlled
cases are plotted in Figures 2, and 3, respectively. Figure 3
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(a)

(b)

(c)

Figure 2: The riser’s displacements with control: (a)
u(z, t), (b) v(z, t), and (c) w(z, t).

(a)

(b)

(c)

Figure 3: The riser’s displacements without control: (a)
u(z, t), (b) v(z, t), and (c) w(z, t).
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(a)

(b)

(c)

Figure 4: Control forces: (a) Uu(L, t) (b) Uv(L, t), and
(c) Uw(L, t).

shows that transverse and longitudinal displacements are re-
duced significantly when the proposed control is applied. From
the numerical simulations, it can be observed that when the
system is fully controlled, transverse displacements in both the
X and Y directions are effectively reduced. Figure 4 indicates
that control forces are in an implementable range in practice.

Conclusion
The equations of motion which indicate strong nonlinear cou-
plings for a marine riser system in three dimensions were de-
rived using the extended Hamilton’s principle. Subsequently,
the Lyapunov direct method was employed to design the
boundary controller applied at the top end of the riser. The
designed controller’s ability to stabilize the riser at its equilib-
rium position was proved analytically and illustrated numeri-
cally. The main contributions of this paper are the introduction
of the Lyapunov function candidate (9) and the riser model in
three dimensions with nonlinear couplings (8). An extension
of this work is to include torsion to the riser dynamics.
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