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ABSTRACT 

 

Fields of snapping shrimp produce a great number of impulsive snapping sounds throughout the world’s tropical and 

sub-tropical shallow water regions. Snaps from snapping shrimp appear as short spikes in timeseries obtained from 

hydrophone measurements. Clustering of the spikes in the timeseries can occur on at least three different time scales 

corresponding to three spatio-temporal mechanisms. The mechanism for clustering on short time scales is multipath 

propagation, because a single snap from a shrimp evolves into a cluster of snap signals at the hydrophone. Mecha-

nisms for clustering on medium and long time scales remain intriguing and inconclusive. This paper investigates di-

urnal snap-rate variations and their effect on clustering over long time scales. Simulation of spike timeseries made 

use of the Cox-Ingersoll-Ross driven doubly stochastic Poisson process with diurnal variation introduced by varying 

one model parameter. Fano-factor analysis of the simulation results showed that diurnal variations have a profound 

effect on clustering of snapping shrimp snaps on long time scales. 

INTRODUCTION 

Clustering of the snaps from snapping shrimp remains an 

intriguing and unresolved problem in underwater acoustics. 

Snapping shrimp noise can have a significant impact on sonar 

and underwater acoustic applications, so understanding when 

and why these snaps are likely to occur is important. Sonar 

and underwater telemetry systems can make use of unique 

perspectives and greater understanding of shrimp noise to 

improve signal processing (Chitre et al. 2006, Mallawaarach-

chi et al. 2008) while other applications make use of the  

shrimp noise for ambient noise imaging (Buckingham et al. 

1992, Kuselan et al. 2011) and acoustic inversion (Chitre 

2010).   

Clustering in snapping shrimp noise has long been observed 

(Johnson et al. 1947, Cato & Bell 1992) and possible mecha-

nisms that explain the cause of clustering have been proposed 

including increased activity due to foraging and feeding 

(Johnson et al. 1947), response to tactile stimulus (Schmitz & 

Herberholtz 1998) and territorial defence (Toth & Duffy 

2005). There has been speculation that the shrimp may be 

communicating with each other, although it has been difficult 

to prove. Cato & Bell (1992) report that higher level pulses 

seem to occur in bursts and suggest that shrimp may snap in 

response to other nearby snaps to enhance survival in the 

presence of an aggressor. Potter & Koay (2000) investigated 

spatial clustering and temporal chorus and found spatial ani-

sotropy of ±3 dB but no evidence for temporal chorus. Legg 

(2010) analysed the snaps received at a single hydrophone as 

a counting process and found temporal clustering on at least 

three different time scales. Short time clustering (less than a 

second) was caused by multipath propagation. A Cox-

Ingersoll-Ross driven doubly stochastic Poisson process (CIR 

driven DSPP) was used to model medium time clustering 

(one second to two hundred seconds) but was not linked to 

any causal mechanism. Long-time clustering (greater than 

two hundred seconds) was discovered while conducting an 

experiment to investigate an asymptote predicted by the CIR 

driven DSPP model.  

One very important question regarding the clustering of snaps 

on long time scales is if the temporal point process has a 

fractal nature. Fractal characteristics can be identified 

through a power law increase in the Fano-factor time curve 

for long counting times (Teich & Lowen, 1994).    

This study investigates diurnal variation as a candidate mech-

anism for clustering on long time scales. There are three 

questions that require answers: 

 Does diurnal variation in snapping have any effect on 

the Fano-factor time curve? 

 What characteristics might we expect from a diurnal 

varying process (does it have a fractal nature)? 

 How long does real shrimp noise need to be observed to 

allow these features to be recognised?  

These three questions are particularly important for the moti-

vation and design of future experiments, observation studies 

and potential signal processing methods. Motivations for 

measurements over long periods and analysis of very large 

data sets need to be strong since these activities can be logis-

tically difficult and computationally expensive. Distinguish-

ing any fractal features in a diurnal varying process is of 

fundamental importance for signal processing applications. 

The paper is organised in the following way: a theory section 

provides a brief review of diurnal variation of snapping 

shrimp noise then introduces a point process model and the 

Fano-factor time curve analysis technique. Theory is fol-

lowed by a simulation section that details the methods, codes 

and model parameters used to provide a set of simulated data. 

The simulated data is subjected to analysis and the results 

presented, followed by a short discussion. Conclusions are 

drawn from the simulation study to answer the three ques-

tions that have been raised.  
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THEORY 

Diurnal variations 

Diurnal variations in the noise levels produced by fields of 

snapping shrimp are well known. Johnson et al. (1947) report 

a small diurnal variation with night time levels 2 dB to 5 dB 

higher than during the day and a slight peak shortly after 

sunset and before sunrise. They speculate that the increased 

noise levels are due to increased activity of shrimp at these 

times. In a related publication Everest et al. (1948) present 

diurnal change in wide band shrimp noise from four different 

locations: San Diego yacht harbour, Scripps Institution of 

Oceanography, Kaneohe Bay and Midway Island. They also 

report higher noise levels at night (by as much as 6 dB) and 

peaks after sunset and before sunrise. Radford et al. (2008) 

report significant diurnal variation in shrimp noise from ob-

servations at a shallow water reef in north-eastern New Zea-

land. 

Cato & Bell (1992) report a contrasting result from the Timor 

Sea where overall variations over very long periods were 

about 10 dB but no consistent diurnal variation in noise levels 

were observed. Lammers et al. (2008) also report slightly 

different results from observations in Kaneohe Bay, with 

diurnal peaks centred on sunset and sunrise and the daytime 

noise levels consistently higher than night time levels. Sub-

sequent observations from a Waikiki Marine Life Conserva-

tion District report (the more frequently observed) lower 

daytime levels than night levels and sharp increases at sunrise 

and sunset.  

In Legg (2010) the snapping rate (rather than noise level) was 

observed over a 24 hour period from a wharf near Rocking-

ham in Western Australia. The snapping rate followed a simi-

lar pattern to noise levels with higher snap rate at night and 

peaks just after sunset and just before sunrise. The template 

diurnal function used in this paper was based on a piecewise 

approximation of the snap rate trend observed at that site. 

The CIR driven DSPP model 

If shrimp snaps occurred purely at random (in time) without 

any influence, or interactions such as response to other 

shrimp, then the snap event times would be consistent with a 

temporal homogeneous Poisson process with fixed rate λ 

independent of time (Cox & Lewis 1966). However, the 

snaps from snapping shrimp are not consistent with a homo-

geneous Poisson process; there are influences that affect 

when the shrimp snap (Cato & Bell 1992, Tóth & Duffy 

2005). 

A Poisson process that is influenced by a time dependent 

mechanism will have a rate parameter λ that varies with time; 

λ becomes λ(t). Allowing λ to vary with time opens up the 

possibility for many Poisson process variants. One such vari-

ant occurs when λ(t) is itself a random process and this leads 

to what is called a doubly-stochastic Poisson or Cox process 

(Cox & Lewis, 1966).  

The doubly stochastic Poisson process was originally used to 

model stops of a loom (in textile assembly) because of break-

ages in the weft threads (Cox 1955) and has subsequently 

been used to model many processes in physics, biology, neu-

roscience and finance (see for example Snyder & Miller, 

1991). The random process that controls the rate λ(t) is re-

ferred to as the driving process or the information process 

because it is the quantity that conveys useful information 

(Snyder & Miller, 1991). For the Cox-Ingersoll-Ross driven 

doubly-stochastic Poisson process (CIR driven DSPP) the 

driving process is a Cox-Ingersoll-Ross process.  

The Cox-Ingersoll-Ross (CIR) process was developed to 

study the term structure of interest rates (Cox et al. 1985). It 

is a generalisation of the squared Ornstein-Uhlenbeck (OU) 

process (LePage et al. 2006) characterised by the stochastic 

differential equation of Equation (1), where a, b and σ are 

parameters, Xt is a random variable, dXt is an incremental 

change in the random variable with incremental change in 

time dt, and dWt is a differential Wiener process. 
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A solution to Equation (1) is the non-central χ2 distribution. 

Equation (2) shows the non-central χ2 probability density 

function P(x) adapted from Weisstein 2012, with degree of 

freedom φ and non-centrality parameter ζ. Equations (3) and 

(4) show, respectively, expressions for the degree of freedom 

and non-centrality parameter for a CIR driven DSPP with 

parameters a, b and σ. Note that for this process the non-

centrality parameter ζ (t) is a function of time but the degree 

of freedom φ is not. In(x) is a modified Bessel function of the 

first kind.  The value xo that appears in Equation (4) is an 

initial value of x (chosen to be CIR parameter b). 
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The time-dependent covariance of the stationary process ρ(t) 

is given in Equation (5). This covariance function can be 

used to give a theoretical expression for the Fano-factor time 

curve (Equation (6)). Each of the CIR parameters can be 

loosely described in terms of the rate. Parameter b is in some 

sense an average or expected rate, parameter a controls the 

dependence between samples (evidenced by an exp(-at) term 

in the covariance function) and σ controls the level of varia-

bility of the rate.  
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The CIR process has been shown to provide a good model for 

clustering of snapping shrimp noise over medium counting 

times (between 1 and 200 seconds) albeit without a physical 

or biological mechanism (Legg 2010). It is likely that the 

model has sufficient degree of freedom and generality to 

model many processes that display clustering but have nu-

merous external influences. Furthermore, it is one of only a 

few driving models for the doubly-stochastic Poisson process 

that has an analytic solution for the Fano-factor time curve. 

This fact, combined with the property that negative rates 

cannot occur, make the CIR process an attractive model. 

The CIR driven DSPP model will be used as the foundation 

for all of the processes presented in this paper, with diurnal 

influences introduced by varying the CIR process model 

parameter b. For a detailed description of the CIR driven 

DSPP model see LePage et al. (2006).  
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Fano-factor analysis 

Fano-factor analysis is one technique in a spectrum of analy-

sis techniques available for investigating point processes. 

Other techniques include inter-event interval histogram anal-

ysis (Weiss 1966), higher order interval analysis (Perkel et al. 

1967), serial correlation coefficients (Cox & Lewis 1966), 

rescaled range (Lowen et al. 2001) and spectral techniques 

(Bartlett 1963). Fano-factor analysis is appropriate for tem-

poral processes that have importance in the order of the 

events, or when only a count of the number of events is 

available, and if important information exists for time scales 

much greater than the average inter-event time (Turcott et al. 

1994). Fano-factor analysis of the counting process is par-

ticularly useful because the results maintain the same time 

reference as the point process, whereas techniques based on 

intervals have a deformed time reference (Lowen et al. 2001).  

The theoretical Fano-factor time curve for a CIR driven 

DSPP model is given in Equation (6), where w is counting 

time and σ and a are parameters of the CIR process. As w→∞ 

the Fano-factor time curve for this process has a finite as-

ymptote at 1+ (σ/a)2. This finite asymptote is an important 

feature that can be used to help distinguish the CIR driven 

DSPP process from other processes. 
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Fano-factor values less than one reflect a process that is sub-

Poisson (having increased regularity) and values greater than 

one indicate a super-Poisson process (having increased clus-

tering). The CIR driven DSPP is a super-Poisson model and 

will generate Fano-factor values greater than one. Fractal 

processes display a power law relationship between the Fano-

factor and counting time that can be approximated by Equa-

tion (7) with counting time w, a scaling factor wo and fractal 

exponent αF (Lowen & Teich 1996). This representation is 

valid for 0< αF <1 (Lowen et al. 2001). 
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A measure of significance is required for the Fano-factor 

time curve because normal variations of the sampling distri-

butions can be quite large and are dependent on counting 

time. χ2 approximations useful for deviations from a homo-

geneous Poisson process (Hoel 1943, Selby 1965, Eden & 

Kramer 2010) do not apply to a test for deviation from a CIR 

driven DSPP model. Alternative methods such as shuffling 

(random permuting) (Lowen & Teich 1992) can produce 

guide levels to pseudo-test for deviations from a homogene-

ous Poisson process but again these techniques cannot be 

used to test for deviations from a CIR driven DSPP. The only 

remaining option for setting guide levels for the expected 

variability of the Fano-factor for a CIR driven DSPP process 

is to use a Monte Carlo approach. In this paper Monte Carlo 

guide levels are produced using ten independent realisations 

of the CIR driven DSPP process used as a control and set 

guide levels at two standard deviations beyond the mean 

(assuming a normal approximation). Deviations observed for 

a diurnal varying process (shown in later figures) are large 

enough to justify the use of Monte Carlo guide levels.  

SIMULATION 

Simulations were conducted using MATLAB with the signal 

processing and statistics toolboxes. Random numbers were 

drawn from a CIR random number generator and a Poisson 

random number generator.  

CIR random numbers were generated using the cirpath.m 

matlab code (Shvorob 2007). The cirpath code is based on 

the method described in Glasserman (2004) but uses 

ncx2rnd.m (from the matlab statistics-toolbox) to generate 

random numbers from a non-central χ2 distribution. The cir-

path code requires an input time vector t and input CIR pa-

rameters a,b,s and r0, and returns a single sample path from a 

Cox-Ingersoll-Ross process. Parameters a,b and  s corre-

spond with parameters a,b and σ from the theory, and r0 is the 

initial value of the process at time t0 corresponding with x0 in 

Equation (4).  

Poisson random numbers were generated using the 

poissrnd.m matlab function. The random number genera-

tor requires only one input parameter λ (the rate) and outputs 

one Poisson random number for each input λ. This method of 

generating Poisson random numbers assumes a small incre-

mental time homogeneity. For each time increment, the pro-

cess is assumed locally homogeneous with constant rate 

equal to the value of λ from the driving process for that par-

ticular instant in time. The assumption is valid provided the 

time increment is small compared with important clustering 

times. A series of these Poisson random numbers provide the 

counts that represent an observation of the process and these 

are the primary simulation output. 

To achieve the objectives the following activities and simula-

tions were performed: 

 Simulate persistent snapping, with no diurnal variations, 

to use as a control 

 Define and compute diurnal variation functions 

 Simulate diurnal variations by changing parameters of 

the persistent snapping process 

Each of these simulations is described in the following sec-

tions. 

Persistent snapping (control) process 

Persistent snapping was modelled as a CIR driven DSPP with 

clustering times expected between 1 and 60 seconds and 

average snap rate of 20 snaps per second. To simulate using 

this model the CIR parameter values chosen were a=0.6, 

b=20 and σ=3. These parameter choices reflect an environ-

ment of vigorous snapping, such as near a wharf or pier, 

where on average 20 snaps are close enough to a hydrophone 

to exceed a fixed pressure amplitude threshold.  

Ten independent realisations of the persistent process were 

simulated. Each simulation was of 31 day duration and used a 

small time homogeneity interval of 0.1 seconds, giving a total 

of 26784000 Poisson random numbers. These random num-

bers were then counted into one second bins giving a total of 

2678400 count values as the basic counting process. These 

ten realisations were used to compute Monte Carlo guide 

levels; estimates of normal levels of variability of the pro-

cess.  

A Fano-factor time curve was produced using the control 

data sets and is shown in Figure 1. The curves show the mean 

Fano-factor (solid black line), upper and lower guide levels 

set at two standard deviations beyond the mean Fano-factor 

(grey lines) and a theoretical curve evaluating Equation (6) 

with the parameters used for the simulation (dashed red line 

in agreement with the mean level).  
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Figure 1: Fano-factor time curve (solid black line) derived 

from ten independent realisations of the persistent snapping 

process (CIR driven DSPP). This data set provides the con-

trol for no diurnal influence on the process. Guide levels 

using the Monte Carlo method (grey lines) were set at plus 

and minus 2 standard deviations beyond the mean. A theoret-

ical curve for the CIR driven DSPP (red dashed line) is in 

good agreement with the mean Fano-factor. 

Diurnal variation functions 

Diurnal variations were introduced by a time dependent scal-

ing function applied to the average value of the driving func-

tion. For a CIR driving function the average value, in the 

limit of infinite counting time, is equal to the parameter b. 

Given a scaling function m(t) the modified value of b at time 

t is  ̂( )    ( ). The effect of using this multiplier on the 

CIR parameter b is to change the degree-of-freedom of the 

non-central χ2distribution of rate as a function of time; it does 

not change the non-centrality parameter (which is also a 

function of time). 

A realistic diurnal function was constructed using a piecewise 

function followed by interpolation resampling and various 

(possibly random) adjustments. 26 initial values were chosen 

to roughly follow the average snap rate observed over a full 

day of measured data from Legg (2010). These 26 values 

give the basic structure of diurnal variations that were then 

resampled at the rate required for the simulations (ten times 

per second).  

 

Figure 2: Piecewise (solid line) and resampled (dotted line) 

diurnal functions, or multipliers, for one day. These template 

forms are modified in various ways to allow day-to-day vari-

ations over the course of a month.  

Shown in Figure 2 is a plot of the 26 point piecewise function 

(solid line) used for the simulations and includes a curve of 

resampled data (dotted line) that provides a template of varia-

tions over a single day. This plot shows only the diurnal func-

tion without any variations.  

The form of the template diurnal function was adjusted in 

several ways to allow changes in the diurnal multiplier from 

day to day over the course of one month. The following ad-

justments were made: 

 Random change of start time 

 Addition of (independent Gaussian) random noise 

 Random permutation of the order of sections in the 

piecewise function (destroying most, but not all, of the 

diurnal pattern). 

Using these adjustments and combinations of adjustments 

gave the following diurnal function set: 

 FR - Constant multiplier with no variation from day to 

day (same as the control data) 

 DD - Diurnal multiplier with no variation from day to 

day (an exact replica of the diurnal function is used for 

each day) 

 DDDO -Diurnal multiplier with random start time off-

sets (the diurnal function is randomly time shifted each 

day) 

 SSDO - Shuffled diurnal multiplier with random start 

time offsets (each day uses a new randomly permuted 

diurnal multiplier and a new time shift) 

 RRDO – Diurnal multiplier with independent Gaussian 

noise added and random start time offsets (each day has 

a different set of random noise added and a new time 

shift)  

 SRDO – Shuffled diurnal multiplier with random noise 

and random offset (a combination of all variations ap-

plied to each new day). 

A consequence of the variation structure is that many differ-

ent scenarios can be simulated and their effect on the Fano-

factor time curve investigated with reference to long time 

clustering. This freedom allows for testing of the known 

structure of the shrimp noise against any arbitrary changes 

that may occur over the period of one day and with variations 

from day to day. The characteristic features of a daytime, a 

night-time and two peak time regions are retained by some 

but not all of the variations listed above.  

Diurnal varying process 

The diurnal process was simulated as a medium time process 

with time varying parameter b, controlled by the diurnal mul-

tiplier. Diurnal multiplier values were chosen to simulate low 

snap rates during the “daytime” and higher snapping rates 

during the “night-time”. The terms “daytime” and “night-

time” are used loosely here to represent different periods 

during a single (24-hour) day. A choice of higher snapping 

rate during the night-time compared with the daytime reflects 

a typical pattern for many locations (Radford et al. 2008) 

although the reverse has been observed (Lammers et al. 

2008).  

Given the CIR driving process modified by the diurnal multi-

plier function, the series of counts were generated assuming 

incremental time homogeneity. For each time increment, the 

process was assumed locally homogeneous with constant rate 

equal to the value of λ from the CIR process for that particu-

lar instant in time. The assumption is valid provided the time 

increment is small compared with important clustering times. 
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This assumption can be tested through comparison of simu-

lated data with the expected theoretical curve for a CIR driv-

en DSPP process. For long time clustering (in this case for 

counting times greater than 200 seconds), the effect of the 

incremental time homogeneity is considered negligible pro-

vided the time increments are a fraction of a second.  

Simulation data was produced by generating one Poisson 

random number for each time interval using the λ generated 

by the (modified) CIR process for that particular time. The 

diurnal process was generated using parameter values a=0.6, 

b= ̂( ), σ =3 and r0= ̂( ), where   ̂( ) is the starting value 

for b at time t=0. These parameter values are identical to 

those used for the control with the exception of b. 

RESULTS 

Description of the analysis and plots 

Results from each of the simulations were subjected to a 

Fano-factor analysis and plotting routine. The plotting routine 

produced figures with two sub-plots, one on the left and one 

on the right. The left sub-plot was used to display an overlay 

of the diurnal function as a function of time (in seconds) on 

linear-linear scales for the duration of one day. Each subse-

quent day is overlayed. The right sub-plot shows the Fano-

factor as a function of counting time (in seconds) on log-log 

scales. Normally the Fano-factor would be plotted on a linear 

scale but the effect of diurnal variation in subsequent figures 

is so large that the guide levels could not be resolved without 

using a logarithmic scale. A dashed black line was used on 

each of the Fano-factor time curve plots to show the 0.95 

quantile level. This quantile level was chosen as the nominal 

peak level of the Fano-factor time curve and the point at 

which each of the curves started to return back toward the 

CIR driven DSPP asymptote. An estimate of the peak count-

ing time (the counting time at which the Fano-factor reaches 

the peak value) was computed as the midpoint between the 

first increasing transition through the 0.95 quantile level and 

the last decreasing transition through the same quantile level. 

Simulation results 

Figure 3 shows the results from simulation FR, having a 

fixed rate for the entire month of simulated data. The diurnal 

function is just a single multiplier value of 12× with no varia-

tions. The right sub-plot shows a Fano-factor time curve for 

this data (black solid line) along with guide levels from the 

control (grey lines). The shape of the curve follows the guide 

levels indicating that data are consistent with a CIR driven 

DSPP (the expected result). Although the 0.95 quantile line 

has been plotted on this figure it does not relate to a peak. 

The DD simulation data was the first to use a diurnal varia-

tion. In this data the diurnal function was repeated for every 

day in the month as seen in the left sub-plot in Figure 4 (the 

overlays lie exactly over each other). The diurnal function is 

a replica of the resampled piecewise diurnal function shown 

in Figure 2 displaying the characteristic double peak with a 

peak level near 25× and normal daytime level around 7×. The 

effect of this diurnal variation on the Fano-factor time curve 

is dramatic and extremely significant with respect to the 

guide levels. The curve rises with power law characteristic 

from 65 s (1.08 minutes) to 6524 s (1.81 hours). This power 

law section of the curve describes a straight line on the log-

log plot corresponding with a fractal exponent of 0.97. Fol-

lowing the power law increase the Fano-factor value peaks at 

43308 when the counting time is 30155 s (8.38 hours) then 

turns back toward the CIR driven DSPP asymptote. A ringing 

effect can be seen following the peak; with pseudo-nulls 

occurring at 87160 s (24.21 hours), 174469 s (48.46 hours) 

and 262428 s (72.90 hours). A distinct transient anomaly in 

the Fano-factor curve can be seen at counting time 43101 s 

(11.97 hours) corresponding with one half of a day. 

 
Figure 3: FR (fixed rate) simulation results showing the 

diurnal function (left sub-plot) and Fano-factor time curve 

(right sub-plot). This simulation used a fixed value for the 

diurnal function (no variations) and as expected the Fano-

factor time curve shown in the right sub-plot (black solid 

line) is bounded by the guide levels (grey lines). 

 

 
Figure 4: DD (diurnal varying) simulation results showing 

the diurnal function (left sub-plot) and Fano-factor time curve 

(right sub-plot). The diurnal function varied through the day 

but was not changed from day to day. The effect of diurnal 

variation is reflected in a large deviation of the Fano-factor 

time curve (black solid line) from the control (grey lines).  

The DDDO simulation introduced a random offset to the start 

time of the diurnal function from day to day. The random 

offset can be seen as a spread of the diurnal functions in the 

overlay (left sub-plot) in Figure 5. Inspection of the Fano-

factor time curve shows results similar to the DD simulation. 

A Fano-factor peak of 46970 occurs at a counting time of 

28948 s (8.04 hours). The curve follows a power-law be-

tween 78 s (1.3 minutes) and 6074 s (1.69 hours) with fractal 

exponent 0.97. Pseudo-nulls are also present at 86275 s 

(23.97 hours), 172697 s (47.97 hours) and 259763 s (72.16 

hours) although they are not as pronounced as the nulls in the 

DD data. 
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Figure 5: DDDO (random time offset) simulation results 

showing the diurnal function overlay (left sub-plot) and 

Fano-factor time curve (right sub-plot). Fano-factors (solid 

black line) are shown with guide levels (grey lines) and peak 

level (black dashed line). 

The SSDO simulations introduced shuffling of the diurnal 

function for each day prior to the resampling. This level of 

change to the diurnal function results in loss of the character-

istic dual peaks. Day to day changes display much more vari-

ation in the overlay (left sub-plot) on Figure 6. The Fano-

factor results shown in the right sub-plot of Figure 6 retain 

the characteristic power-law curve that now occurs at lower 

counting times between 38 s (0.63 minutes) and 2449 s (0.68 

hours) and has a slightly lower fractal exponent of 0.94. The 

Fano-factor peak is reduced to 9127 and occurs at a counting 

time of 14911 s (4.14 hours). Pseudo-nulls exist at counting 

times 86275 s (23.97 hours), 172697 s (47.97 hours) and 

257126 s (71.42 hours) although they are not obvious.  

 
Figure 6: SSDO (shuffled) simulation results showing the 

diurnal function overlay (left sub-plot) and Fano-factor time 

curve (right sub-plot). The Fano-factor sub-plot contains 

guide levels (grey lines) and a peak level (black dashed line).  

The RRDO simulation used random noise to change the diur-

nal function both before and after the resampling operation. 

Results are shown in Figure 7. The result is a spread of the 

diurnal function from day to day and distinct changes in the 

form on small scales. The form of the function over each day 

retains the characteristic double peak expected of snapping 

shrimp noise. The Fano-factor results for this simulation are 

consistent with the DD and DDDO simulations. A Fano-

factor peak of 40531 occurs at a counting time of 30464 s 

(8.46 hours) following a power-law rise with fractal exponent 

0.97. The power-law curve occurs between counting times 83 

s (1.38 minutes) and 5951 s (1.65 hours). This simulation 

also has prominent pseudo-nulls at counting times 86275 s 

(23.97 hours), 172697 s (47.97 hours) and 254515 s (70.70 

hours) 

 
Figure 7: RRDO (random noise) simulation results showing 

the diurnal function overlay (left sub-plot) and Fano-factor 

time curve (right sub-plot). The Fano-factor sub-plot contains 

guide levels (grey lines) and a peak level (black dashed line).  

The last simulation in the series (SRDO) used a combination 

of all variations that had been used previously. The piecewise 

diurnal function was shuffled and random noise added prior 

to resampling. After resampling a random start time offset 

was applied and more random noise added. The resulting 

overlay for a month of day to day changes is shown in the left 

sub-plot of Figure 8. The Fano-factor time curve displays a 

strong power-law region with fractal exponent 0.95 and a 

Fano-factor peak of 8203 at a counting time of 8771 s (2.44 

hours). There was less structure for counting times greater 

than the peak counting time and no prominent pseudo-nulls. 

Close inspection revealed a pseudo-null near the first ex-

pected cycle time (24 hours) however the pseudo-null was 

not more prominent than the surrounding noise and could 

easily have occurred by chance. A null-like feature occurs at 

a counting time of 201266 s (55.91 hours). This null-like 

feature does not relate to any obvious cycle time in the pro-

cess, reinforcing that these features can occur by chance. 

 
Figure 8: SRDO (combination) simulation results showing 

the diurnal function (left sub-plot) and Fano-factor time curve 

(right sub-plot). The Fano-factor time curve (black solid line) 

deviates from the control (grey lines) up to the Fano-factor 

peak (black dashed line). The diurnal function was changed 

using a combination of all previous randomizing schemes. 

 

2 4 6 8

x 10
4

0

5

10

15

20

25

30

Time (s)

D
iu

rn
a
l 
fu

n
c
ti
o
n

10
0

10
5

10
0

10
1

10
2

10
3

10
4

10
5

F
a

n
o

-f
a

c
to

r

Counting time (s)

2 4 6 8

x 10
4

0

5

10

15

20

25

30

Time (s)

D
iu

rn
a
l 
fu

n
c
ti
o
n

10
0

10
5

10
0

10
1

10
2

10
3

10
4

10
5

F
a

n
o

-f
a

c
to

r

Counting time (s)

2 4 6 8

x 10
4

0

5

10

15

20

25

30

35

40

45

Time (s)

D
iu

rn
a
l 
fu

n
c
ti
o
n

10
0

10
5

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

F
a

n
o

-f
a

c
to

r

Counting time (s)

2 4 6 8

x 10
4

0

5

10

15

20

25

30

35

40

45

Time (s)

D
iu

rn
a
l 
fu

n
c
ti
o
n

10
0

10
5

10
0

10
1

10
2

10
3

10
4

F
a

n
o

-f
a

c
to

r

Counting time (s)



Proceedings of Acoustics 2012 - Fremantle 21-23 November 2012, Fremantle, Australia 

 

Australian Acoustical Society 7 

Fano-factor time curve results for selected simulation results 

are shown in Figure 9 on a semi-logarithmic plot. This plot 

shows the location of the 24-hour and 48-hour pseudo-null 

features. Also visible in the figure is an anomaly at approxi-

mately 12 hours. These features appear to a greater or lesser 

extent depending on the type of randomisation applied to the 

template diurnal function. The exact repeating function (DD) 

showed quite smooth results with deep pseudo-nulls. Adding 

a random time offset (DDDO) introduced some additional 

noise and reduced the depth of the pseudo-nulls. Shuffling 

the piecewise diurnal function (SSDO and SRDO) destroyed 

most of the structure; however pseudo-nulls still appear. 

 

Figure 9: Fano-factor time curves for each of the simulation 

plotted on a semi-logarithmic scale. The pseudo-null features 

can be clearly seen (but the preceding power-law curve can-

not) due to the linear time scale. The 24-hour and 48 hour 

pseudo-nulls have been annotated along with an anomaly that 

appears on the DD and DDDO curves around 12 hours.  

DISCUSSION 

A series of simulations were conducted to investigate the 

effect of diurnal variation on clustering of snapping shrimp 

snaps, particularly for long time scales. Fano-factor analysis 

was used as a measure of clustering and the Fano-factor time 

curve was computed and interpreted for a range of counting 

times and for each set of simulated data. Simulated data was 

produced to represent one month of continuous snapping 

observation. 

A CIR driven DSPP model was used as a control and to pro-

vide a model for the normal snapping without any diurnal 

variations. This model precluded the use of guide levels from 

χ2 approximation and shuffle techniques, requiring the use of 

less satisfactory Monte Carlo guide levels. Monte Carlo 

guide levels are extremely approximate and cannot be used if 

the deviations are not persuasively large. Fortunately the 

deviations caused by the introduction of diurnal variations 

were so large that their significance was not in doubt.  Diur-

nal variations were introduced using a diurnal multiplier 

function applied to the CIR parameter b. A series of simula-

tions were conducted to investigate how various randomising 

schemes affected the Fano-factor time curve for large count-

ing times. Randomising schemes were used to offset the daily 

start time, shuffle the order of level changes in the daily cy-

cle, add random noise or combinations of these.  

The overall result was very persistent; all forms of diurnal 

variation produced significant deviation of the Fano-factor 

time curve from the control in the positive (clustering) direc-

tion. Furthermore, each Fano-factor curve had a power-law 

section for a specific counting time interval prior to a peak. 

The peak was followed by a region that contained additional 

structure depending on the cyclic information in the process 

and the choice of diurnal randomisation. Non shuffled ran-

domisation schemes displayed a series of pseudo-nulls that 

coincided (within a fraction of an hour) with integer multi-

ples of 24 hours, which was the characteristic cycle time. 

Shuffled randomisation schemes tended to reduce or elimi-

nate this cyclic information. The location of pseudo-nulls 

remained relatively constant despite some large changes in 

location and strength of the power-law curve and Fano-factor 

peak. 

The simulation results have provided answers to the im-

portant questions that were posed in the introduction. These 

questions are reiterated and accompanied by an answer in the 

following paragraphs. 

Does diurnal variation in snapping have any effect on the 

Fano-factor time curve? Diurnal variations do affect the 

Fano-factor time curve in the super-Poisson (clustering) 

sense for long counting times, and the effect can be very 

strong. 

What characteristics might we expect from a diurnal varying 

process (does it have a fractal nature)? Several characteristics 

may be observed including a region of power-law behaviour 

indicating some fractal nature. However, the power-law 

curve does not continue for all counting times (as would be 

expected for a truly fractal process). For large counting times 

the power-law curve transitions to a peak and then progresses 

through a series of pseudo-nulls that are related to important 

cycle times in the process. 

How long does real shrimp noise need to be observed to al-

low these features to be recognised? The month (31 days) of 

simulated data allowed the power-law region to be observed 

along with three pseudo-nulls related to a 24 hour cycle time. 

If three pseudo-nulls are sufficient to establish the existence 

of the cycle time then (at least) one month of data is needed. 

If only one pseudo-null is desired then the duration could be 

reduced to ten days, however the result would not be conclu-

sive. 

CONCLUSIONS 

Diurnal variations have a profound effect on the Fano-factor 

time curve at long counting times. For all of the scenarios 

investigated, the Fano-factor time curve had a strong power 

law rise and peak followed by additional structure, including 

pseudo-nulls, related to important cycle times in the process. 

It is anticipated that Fano-factor analysis of real shrimp noise 

will show similar structure, and the results presented will 

enhance our ability to interpret long time clustering charac-

teristics of real snapping shrimp noise. 

One month of data was sufficient to observe a region of pow-

er-law behaviour in the Fano-factor time curve followed by a 

peak and several features related to important cyclic time 

scales in the process. However, one month of data was not 

sufficient to observe asymptotic behaviour and therefore 

other questions, such as a return to the CIR driven DSPP 

asymptote, remain open. Further understanding of the cyclic 

and non-cyclic features for counting times greater than the 

peak counting time is required. The next step will be to simu-

late over many months or possibly years in an attempt to 

observe the asymptotic behaviour of the simulated process, 

however the measurement and analysis of real shrimp noise 

over such time scales will be very difficult. 
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