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ABSTRACT 
The problem of providing an audible separation of mixed sound sources is important for a number of applications, in-
cluding speech recognition, noise reduction in communication channels, re-mixing of recorded music, and using envi-
ronmental sound in musical compositions and film scores, as well as applications in environmental noise control.  
Many approaches to the problem have been investigated, each with application in a specific area.  This paper presents 
a novel approach that would have application where: a) high-quality reproduction is desired with minimum artifacts; 
b) measurement using a multiple-microphone array is possible; and c) real-time performance is not required.  As such 
it would apply particularly to audio-oriented applications, but may also have application in environmental noise.  The 
technique involves a constrained least-squares decomposition of spectrogram values recorded at multiple micro-
phones, together with an optional adaptive filtering step.  Performance of the algorithm is described for simulated 
mixtures, and compared with published data for other techniques.  It compares well with other systems, particularly 
in terms of rejection of audible artifacts. 

INTRODUCTION 

Problems involving the separation of mixed sound sources 
arise in a number of areas, including: 
• speech recognition in the presence of other talkers (e.g. 

Saruwatari et al 2003); 
• reducing interference in communication channels (e.g. 

Cho & Krishnamurthy 2003) ; 
• environmental noise monitoring (e.g. Bullen 2003); 
• de-noising of recorded speech or music (e.g. Ellis & 

Weiss 2006); 
• re-mixing of recorded music (e.g. Woodruff, Pardo & 

Dannenberg 2006); and 
• using environmental sounds for music composition, film 

sound-tracks and other purposes. 

Vincent, Fevotte and Gribonval (2003) distinguish between 
“audio quality oriented” applications, in which the object is 
to produce an audible re-creation of a source, and “signifi-
cance oriented” applications in which the object is the extrac-
tion of certain features of the sound.  The latter would include 
speech recognition, where the object is not to listen to the 
reconstructed speech but to determine what words are being 
said, and environmental monitoring, in which the object is 
generally to determine the level of the sound.  This distinc-
tion will clearly affect the approach taken to the separation 
problem. 

The extent of available information also has a major impact 
on the approach taken.  Applications in which only a mono-
phonic or stereo signal is available (e.g. Diamantaras, Petro-
pulu & Chen 2000) will be handled very differently from 
applications where it can be assumed that multiple spatially-
separated transducers are used for recording. 

Different approaches are also generated by the use of differ-
ent (assumed) properties of the sources.  In particular: 

 

• the assumption that sources are non-Gaussian and have 
no mutual information leads to techniques based on 
Independent Component Analysis (ICA - see Comonand 
& Juten, 2010); 

• the assumption that sources are non-stationary and 
potentially Gaussian leads to techniques based on Non-
Negative Matrix Factorization (NMF - see Ozerov & 
Fevotte 2010 for a recent example of this technique); 
and 

• the assumption that sound from different sources arrives 
at the measurement position from different directions 
leads to techniques based on beamforming (e.g. Hur et 
al 2011). 

A recent summary of approaches to the source separation 
problem is found in Comonand and Jutten (2010). 

In addition, hybrid approaches have been investigated, exam-
ples being Sauruwatari et al (2003) and Wang, Ding & Yin 
(2011), in which beamforming and ICA are combined. 

This paper considers a class of applications defined by the 
following characteristics. 
• They are “audio quality oriented”, and intended for re-

mixing or re-using recorded sound.  This has 
consequences in terms of toleration of distortion in the 
separated signals.  Whereas interference from other 
sources (accurately reproduced) may limit the usability 
of the system, audible artifacts may render it completely 
unusable. 

• Multiple microphones can be used in the recording.  
This effectively means the application applies to 
material that has been specifically recorded with a view 
to later separation.  In fact, for cases considered in this 
paper the number of microphones is assumed to be at 
least as great as the number of sources to be extracted. 

The separation techniques used in this paper are based on the 
direction of arrival of sound.  This choice is made largely on 
the basis that direction-of-arrival approaches tend to achieve 
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a lower ratio of artifacts to interference than ICA or NMF 
approaches.  However, the techniques differ from the tradi-
tional beamforming approach, and are based on a constrained 
least-squares fit to the complex spectrograms recorded at 
each microphone. 

The orientation of the work described is toward separation of 
sound that is recorded externally, and for this application 
reverberation is not significant, but the presence of numerous 
interfering sources is very significant.  This orientation drives 
the evaluation procedures adopted, although a comparison 
with other techniques is made in the context of reverberant 
environments. 

SEPARATION ALGORITHMS 

Problem Formulation 

The sound pressure measured at M microphones can be rep-
resented as M real-valued signals x(t) = (x1(t), x2(t), …, 
xM(t))T.  These are to be expressed as a liner mixture of N 
source signals s(t) = (s1(t), s2(t), …, sN(t))T, which may be 
differentially filtered before reaching the microphones, plus 
additive noise.  In a room, the filters will represent the room 
impulse response between each source and each microphone.  
For anechoically-recorded sound, the filters will represent 
pure delays. 

Hence 
x = a * s + u (1) 

where a is an unknown M x N matrix of filters, * represents 
convolution with the matrix elements, and u is an unknown 
M x 1 vector of noise signals which are independent of each 
other and of the source signals. 

In a physically realistic measurement there will be multiple 
noise sources contributing to x, some of which will be identi-
fiable and/or of interest, while others are not.  s can be con-
sidered to represent the N sources that are of interest, while u 
includes sound from all other sources, which will generally 
be much more numerous.  In this way, an underdetermined 
problem (N > M) can be re-cast as an over-determined prob-
lem (N < M) with a significant noise component. 

In addition, where reverberation is present this can often be 
satisfactorily modelled as direct sound plus a noise-like re-
verberant component that is independent of the direct signal. 
If this reverberation is also included in u, the problem can be 
reduced to the case where all filters in a are pure delays. 

Taking a Short-Term Fourier Transform (STFT) of (1) trans-
forms the convolutive filters in a into complex multiplica-
tions in the frequency domain: 

 
Xk(ω) = A(ω) Sk(ω) + Uk(ω) (2) 

where X, A, S and U represent the (complex) discrete Fourier 
transforms of x, a, s and u respectively, ω = 2πf where f is 
the frequency of a bin, and k indexes the sample frame.  If 
the filters in a are pure delays, then 

 
Aij(ω) = exp(-jω tij) (3) 

(j = √-1).  Here tij is the delay for signal j between the origin 
of co-ordinates (where signal j is defined) and microphone i.  
Hence 

tij = - mi . dj / c (4) 

where mi is the vector from the origin to microphone i, dj is a 
unit vector in the direction of source j, and c is the speed of 
sound. 

Separation with Known Direction of Arrival 

If the number of sources, N, and the direction of each source, 
dj, are assumed to be known, then A(ω) is known and (2) 
requires selecting Sk(ω) and Uk(ω) for each ω to partition 
Xk(ω) between A(ω)Sk(ω) and Uk(ω). 

(From this point we remove the explicit dependency on k and 
ω, but understand that all variables refer to a single time-
frequency point in a STFT.) 

One option to provide the separation in (2) is to minimize U 
in the least-squares sense (i.e. minimise UHU), so that S is 
given by the standard regression formula 

 
S = (AHA)-1 AH X (5) 

where H represents hermitian transpose.  

However, the matrix AHA will often be ill-conditioned, par-
ticularly at low frequencies where all elements of A are close 
to 1, or where two sources are on almost opposite sides of the 
origin so that d1 ~ - d2.  This leads to unstable solutions in-
cluding out-of-phase sources with very high power. 

A common way to avoid such ill-conditioned matrices, and in 
general to increase the smoothness of least-squares solutions, 
is to replace (5) with 

 
S = (AHA + λI)-1 AH X (6) 

where λ is a constant, usually taken to be small, and I is the 
NxN identity matrix.  This is sometimes known as Tikhonov 
regularisation (Press et al, 2007). 

Using the notation SHS = ||S||, solving (6) is equivalent to 
solving (2) with the additional constraint that ||S|| = α where 
α is a pre-determined constant - that is, a quadratically con-
strained least-squares fit to the data.  As λ increases, the size 
of the solution, ||S||, decreases from its unconstrained value (λ 
= 0). 

A physically motivated choice for α is the constraint that at 
each time-frequency point, the total power in all sources 
should not exceed the mean power measured by the micro-
phones - 

||S|| <= (1/M) ||X||  (7) 

Solutions of (6) can be found, using efficient procedures, 
with values of λ increasing from zero until (7) is satisfied.  
This then gives a vector S of complex-valued Fourier co-
efficients at a specific time-frequency point. The procedure is 
repeated at all frequency points and in all sample frames, and 
each source signal is reconstructed from the co-efficients by 
inverse transformation and overlap-add between frames. 

Determination of Direction of Arrival 

For a given number of sources in given directions, the pro-
cedure above estimates the complex-valued STFT coeffici-
ents 

€ 

Xk (ω)  at each microphone, for each time-frequency 
point.  If these estimates are labelled 

€ 

ˆ X k (ω) , the overall 
goodness of fit can be estimated by 
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€ 

C1 = || Xk (ω) − ˆ X k (ω ) ||
ω ,k
∑  (8) 

To avoid biasing the result toward time-frequency points with 
high power, the estimate can be normalized: 

 

€ 

C2 = || Xk (ω) − ˆ X k (ω ) || / || Xk (ω) ||
ω ,k
∑  (9) 

C2 can be taken as a cost function and minimized over the 
space of numbers of sources and arrival directions, using any 
appropriate minimisation technique.  If it is possible that 
sources could be moving, then the sum over sample frames k 
should be limited to an appropriate time scale.  In the simula-
tions below, although sources are not moving, source direc-
tions are estimated independently in each 1-second “chunk”. 

To reduce the time and complexity of this calculation, the 
simplification is made in the remainder of this paper that all 
sources lie in a plane, which can be identified with the hori-
zontal.  This will generally be true for externally-recorded 
sound, and often also for internally-recorded sound.  Hence 
the arrival direction can be described by a single angle. 

Even with this simplification, minimisation of C2 using 
values of 

€ 

ˆ X k (ω)  calculated at all time-frequency points 
would be very computationally expensive.  However, it is not 
necessary to calculate at all points – trials indicate that a rela-
tively small number of frequency points can be used to dis-
tinguish between arrival directions.  In simulations below, 
eight frequency points are used from each STFT – that is, the 
summation in (9) is restricted to eight values of ω.  If there is 
a priori knowledge of the likely frequency content of sour-
ces, the frequencies used can be chosen correspondingly, to 
improve noise rejection. 

In simulations below, the number of sources to be found in 
each 1-second sample is determined by the user.   It corres-
ponds to the number of simultaneous sources that are con-
sidered interesting and/or that can be successfully detected.  
For the simulations described below, good angle determina-
tion appears to be possible for up to about 4 simultaneous 
sources. 

A standard Nelder-Mead simplex algorithm is used to mini-
mise C2 over possible arrival directions for a given number of 
sources. 

Finding Connected Sources 

Once a set of source angles has been identified for each 1-
second “chunk” of data, these can be joined to form “con-
nected sources” spanning longer time periods.  The algorithm 
for this process is based on a “link strength” defined between 
each source angle and every other source angle in all chunks.  
The link strength is based on: 
• the difference between the source angles in the two 

chunks; 
• the time difference between chunks (in simulations, it is 

always zero for chunks separated by more than 2 secs); 
and 

• the similarity between the recovered spectra at the two 
source angles. 

The algorithm is similar to standard edge-detection algor-
ithms used in image processing, and proceeds as follows (see 
Figure 1). 

 
1. Select the pair of un-linked sources with the highest link 

strength (provided it is greater than some starting 
criterion). 

2. Join the right-hand source to the source on the right with 
the highest link strength, and repeat, until the link 
strength is below a stopping criterion or the end of the 
data is reached.   Similarly for the source on the left. 

3. Repeat from 1. 
 
 
 

 
 
 
 
 
Figure 1 Illustation of selection of sources in each chunk (in 

this case four) and joining to form connected sources 
 

A set of points that has been linked across chunks in this way 
is referred to as a “connected source”.  Figure 1 shows nine 
connected sources formed from separations performed in 
nine chunks, with four source angles detected per chunk.  
Connected sources may have slowly-changing directions and 
may or may not span the time range of the data.   A cubic 
spline fit to the source angles in a connected source (allowing 
for wrapping at 360 degrees) then provides an estimated 
source angle at any time. 

Now, for each sample frame in the original data, the source 
angles for active connected sources can be used in the pro-
cedure described above to estimate STFT coefficients at each 
frequency.  Hence, estimated source signals can be recon-
structed via inverse transformation and overlap-add. 

 

Post-Separation Filtering 

It is possible to include an adaptive filter after the separation 
process above, to further reduce the residual noise compo-
nent.  This is based on including an additional source in the 
final separation, located as far as possible in angle from any 
of the detected sources.  This is intended to represent a pure 
noise component. 

The filter reduces the level of detected sources at time-
frequency points where the “source” level is similar to that in 
the “noise” component, and leaves it unchanged where the 
“source” level is much higher.  In practice the filter is a 200-
lag FIR filter with continuously-varying coefficients based on 
levels averaged over bark intervals and over several frames.  
An attempt is made to locate large changes in the coefficients 
at transients in the signal, to reduce audible “pumping”. 

Because this filter is non-linear, it inevitably increases the 
level of target distortion in the reproduced signal, while re-
ducing the interference from noise.  The optimal trade-off 
between these will depend on the signal-to-noise ratio in the 
original, and on the purpose of the separation. 
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TEST PROCEDURES 

Test Signals and Orientation 

Test signals consisted of up to four “foreground” sound sour-
ces: 
• Male voice; 
• Female voice; 
• Jackhammers; and 
• Bus, 

while “background” sounds were traffic noise or noise from a 
crowded café.  

All files were 44,100 Hz, 16 bit, mono with 10 seconds dur-
ation.  Foreground sources were scaled in level, assigned an 
arrival angle and delayed appropriately for each microphone 
position in an assumed array. 

For “background” sources, 30 independent samples from the 
same file were assigned to 30 random angles, rendered at 
each microphone position and added, giving an approxima-
tion to a diffuse noise field.  Because results were sometimes 
dependent on the “background” angles selected, in each 
simulation five separate runs were performed with different 
random angles assigned to the 30 “background” signals. 
Quoted results represent mean values over these five runs. 

Microphone configurations tested were horizontal circular 
arrays of 5, 10 and 20 microphones, with radius 5, 10 and 50 
cm. 

The simulated total signals at all microphones were passed to 
the separation algorithm described above.  Four source angles 
were sought in each 1-second “chunk”, and these were then 
joined as described above to form connected sources.  STFTs 
used 8192-sample frames with 50% overlap. 

In all cases except as specifically noted below, the separation 
procedure spontaneously produced connected sources at 
angles within 5° of each of the actual sources, for at least part 
of the 10 secs duration of the signal.  These connected sour-
ces were considered to be estimates of the relevant actual 
sources. Where no source was found for part of the time, the 
estimated source signal was set to zero in that period. 

Evaluation  

Evaluation of results was performed using software described 
in Emiya et al (2011).  That paper describes a number of 
subjective and objective methods for rating the quality of 
audio source separation.  Evaluations in the present paper are 
based on the objective parameters defined in Emiya et al.  
These are derived using the difference between the (known) 
true target signal and the reconstructed signal.  The ratio of 
signal power to the power in this difference is the Signal to 
Distortion Ratio (SDR).  The difference is then partitioned 
into: 
• a component associated with delayed versions of the 

target (“target distortion”); 
• a component associated with other known signals 

(“interference”); and 
• the remaining difference (“artifacts”). 
 
The relative importance of each of these is described by a 
power ratio, as described in Emiya et al. 

In the simulation tests described here, each of the “fore-
ground” sources in turn was assigned as the target signal.  
The other foreground sources and the total “background” 

signal, evaluated at the origin, were all considered as interfer-
ing sources.  The artifacts component represents distortion 
introduced by the decomposition process itself. 

TEST RESULTS 

“Baseline” Tests 

The “baseline” test orientation consisted of five microphones 
in a circular array 0.1m in radius.  The four “foreground” 
sources were positioned at angles of 36° (male voice), 127° 
(female voice), 202° (jackhammer) and 284° (bus).  The total 
(unweighted Leq) levels of all sources were equal.  Figure 2 
shows the time-waveform of each source.  Background noise 
was traffic, and the total background level was +10dB, 0dB 
or -10dB relative to the four source levels. 

 

 
Figure 2 Time waveforms of test signals - female voice, 

male voice, jackhammer and bus 

 

Figure 3 shows the SDR for each of the recovered sources 
(without post-separation filtering).  Where the microphone 
signal is dominated by background (10dB higher than the 
source levels), each of the sources can be recovered with an 
SDR of about -3dB.  Where background is 10dB below the 
source levels, the SDR for the recovered sources is better 
than 10dB.   

 

 
Figure 3 Signal / Distortion ratios for each of the recovered 

sources in a mixture of four sources and background  

 

SDRs are quite similar for each of the test sources.  They are 
slightly lower for the jackhammer source, due to the fact that 
its level varies significantly over the 10 sec interval, and in 
some runs the source was not detected for part of the time. 
(Note that in one of the five runs at -10 dB, the bus source 
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was not detected at all.  SDRs for this case are averaged over 
the remaining runs.) 

Figure 4 shows the individual components of the total distor-
tion.  Notably, the largest component is from interference, 
rather than target distortion or artifacts.  This is significant 
for applications where the object is to reproduce the recorded 
source accurately, and some “bleed” of other sound (accu-
rately reproduced) may be acceptable. 

 

 
Figure 4 Components of the signal/distortion ratios shown in 

Figure 1 (average over all sources)  

 

Figure 5 shows a comparison between SDRs with and with-
out the post-separation filtering step described above.  Filter-
ing has the effect of improving the SDR by about 4dB in 
high-background situations, but reduces it by about 2dB in 
low-background situations.  This is because filtering im-
proves the rejection of interference, but at the expense of 
target distortion. 

 

 
Figure 5 Signal/distortion ratios with and without a post-

filtering step (average over all sources)  

 

Changing the Number of Detected Sources 

Figure 6 shows the performance when fewer than four sour-
ces are present in the mixture, with all sources at 0dB re the 
background.  Surprisingly, with fewer sources to detect, the 
overall detection performance does not improve, and if any-
thing appears to slightly decrease.  However, with fewer 
sources the levels of target distortion and artifacts appear to 
reduce. 

 

 

 
Figure 6 Signal/distortion ratio for separation when fewer 

sources are present in the mixture (average over all sources in 
the mixture)  

 

Changing Number of Microphones 

Again surprisingly, Figure 7 indicates there is no improve-
ment in separation when more microphones are added to the 
0.1m radius circle.  (The tests shown used four sources with 
background at 0dB re the sources.)  This is in contrast to 
beam-forming techniques in which adding further transducers 
increases performance.  However, with beam-forming a 
much larger number of microphones than the minimum of 
five used here is required to produce acceptable sensitivity. 

It should be noted that the above results use simulated sig-
nals, and hence do not include errors due to imprecision in 
microphone locations and other hardware-specific sources.  
When these are included, it is likely that performance would 
improve somewhat as the number of microphones increases. 

 

 
Figure 7 Signal/distortion ratio for separation with different 

numbers of microphones (average over all sources)  

 

Changing The Size of Microphone Array 

Figure 8 shows the effect of changing the radius of the circle 
of five microphones (with four sources, background at 0dB 
relative to sources).  Reducing the radius below 0.1m has 
very little effect, while increasing it to 0.5m results in signifi-
cantly reduced SDR, as well as a proportional increase in 
target distortion. 
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Figure 8 Signal/distortion ratio for separation with different 

radii of the microphone array (average over all sources)  

 

Changing the Spectrum of Background Noise 

The traffic background noise used in the above testing has a 
spectrum similar to the bus source, but significantly lower in 
frequency than the other sources.  Figure 9 shows the separa-
tion performance when noise from a café is used as the back-
ground, at various levels re the four sources, with and without 
a post-filtering step.  It is clear that performance with the café 
background is lower than with the traffic background, by 
about 2dB. 

 

 
Figure 9 Total signal/distortion ratio with cafe background 

noise vs traffic (average over all sources)  

 

Comparison With Other Results 

Of the large number of source separation studies performed 
over the last ten years, few have considered the class of prob-
lems considered in this paper.  In addition, many have used 
incompatible units in reporting results.  For example, “signal 
to noise ratio” is often quoted in terms of a ratio of spectral 
powers, ignoring phase distortion. 

The most comparable data set to these results is a section of 
the 2011 Signal Separation Evaluation Campaign (SiSEC 
2011), described in Araki et al (2012).  (A similar campaign 
was conducted in 2010, but in that case the available data are 
not sufficient to perform a full comparison with results using 
the present techniques.)  The campaign involved several 
teams attempting to separate sources from a number of types 
of mixture, with the results reported using software very 
similar to that used in the above analysis.  The most relevant 
of these is a set of recordings of speech in real-world envi-
ronments – a café, a subway and a square.  Unfortunately, 

results are available only for stereo recordings, so the tech-
niques described above can find at most two distinct sources 
in addition to a general background.  For recordings in the 
square, there are a number of other distinct sources – vehi-
cles, other people, etc., and this means that with only two 
microphones the above techniques do not always find the 
speech source.  For the other two environments, however, the 
reverberant background means that the speech can be clearly 
separated. 

Figure 10 shows a comparison of the SDR found using con-
strained least-squares decomposition with results reported 
from the three study teams undertaking this task.  Two of 
these used variants of ICA (described in Nesta and Matas-
soni, 2011) while the third used a form of sparse matrix de-
composition related to NMF (described in Ma et al, 2010).  
As expected, the reverberant environment of the subway 
makes separation more difficult for all techniques.  Neverthe-
less it is clear that the overall SDR for the constrained least-
squares analysis is similar to the other techniques. 

 

 
Figure 10  Total signal/distortion ratio for separation of a 

single speech source from recorded background 

 

 
Figure 11  Components of the signal/distortion ratio for 
separation of a single speech source from recorded back-

ground - cafe 

However, Figure 11 shows a breakdown of the sources of 
distortion (for the café scenario).  While the other techniques 
produce significant levels of both target distortion and arti-
facts, constrained least-squares produces significantly less of 
these effects, with distortion being largely due to interfer-
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ence.  As noted above, in some applications this difference 
would be quite significant. 

 

CONCLUSION 

A novel technique is proposed for separation of sound sour-
ces in circumstances where the quality of the separated audio 
is critical.  It involves the use of multiple microphones - at 
least one microphone per source of interest – and sources 
must be at a specific angle to the measurement point.  Any 
other sources, as well as reverberation, are considered as 
distributed “background” noise. 

The proposed technique involves a constrained least-squares 
fit to each set of the complex time-frequency values in the 
recorded spectrograms.  Details of the performance of the 
technique under various conditions are described in the body 
of this paper. 

Although direct comparison with other techniques is so far 
limited, the constrained least-squares method appears to pro-
vide a similar overall signal-to-distortion ratio to other state-
of-the-art techniques, but with significantly lower levels of 
target distortion and artifacts. 

The technique could have application in audio recording and 
post-processing, as well as identification of recorded speech 
and environmental sounds. 
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