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ABSTRACT
As part of research into the effect of underwater noise on the communication between an under-ice Autonomous Underwater
Vehicle (AUV) and it’s stationary launch vessel (the Aurora Australis), fast multipole boundary element method (FMBEM)
acoustic modeling was conducted. In particular, a steel damping plate with a complex 3-dimensional structure was modeled
(using up to 1.6 x 105 boundary elements) and the effect of sound scattering from a pinger near the ship was determined at
the receiver hydrophone, which was in close proximity to the damping plate. The direct incident field from the pinger was
modeled as a plane wave at a number of incidence angles (to account for the depths to which the hydrophone was lowered)
and over a range of frequencies up to the pinger frequency of 10kHz. This paper presents these results and discusses some
of the interesting effects observed at the ‘non-unique’ frequencies when using the different methods available to provide
stability to the numerical solution. Thus far, the modeling conducted for the damping plate has treated the object as rigid.
The FMBEM code being developed at CMST now has the capability to model fully coupled fluid-structure interactions and
some initial results from treating the damping plate as elastic are also presented.

INTRODUCTION

Polar under ice Autonomous Underwater Vehicle (AUV) deploy-
ment is a high risk operation. This is due to the remoteness of
the experiment location, the limitations the ice cover places on
AUV emergency surfacing strategy and the effects of the ice
canopy on underwater communications. In ship based operations
the ship acts as a listening station for status and emergency
signals from the AUV during a mission. The use of this ship as a
listening station means that the communication channel is further
compromised by the interference of ship noise. To determine
the effects of using the Australian Antarctic Division’s vessel
the Aurora Australis as an AUV deployment platform a series of
noise experiments were carried out on location in the sea ice in 2010.

The recording setup for these experiments consisted of an omni
directional hydrophone lowered to depths of as much as 380m
below the ship with noise recordings made at different depths. A
calibrated 10kHz sound source was used to simulate the ship noise
at the upper limit of the full ship noise range (1-10kHz). During this
experiment the hydrophone was placed somewhere between 4 and
20cm below a steel damping plate and weighting structure, used to
stabilise the hydrophone.

One aspect of the experimental error analysis investigated was to
determine what effect near field scattering from the damping plate
had in the local region where the hydrophone was hung from the
plate. This was achieved by numerically modeling the scattered
acoustic field from the plate using a fast multipole boundary
element method (FMBEM). The sound source was modeled as a

10kHz plane wave at different incidence angles corresponding to
the various hydrophone depths and the calculated total acoustic
field in the region of interest was compared to the incident field
(i.e. the field in the absence of the structure) at the same points to
determine a relative error bound due to near field scattering from the
plate into the receiver. The numerical modeling was then extended
to include a number of frequencies over the ship noise profile and
different orientations, to observe the variation in the near field as
the damping plate was rotated about the vertical axis.

The FMBEM is essentially the amalgamation of two methods: the
boundary element method (BEM), which is the numerical imple-
mentation of the governing boundary integral equation (BIE) for
the problem being solved (Wrobel 2002), and the fast multipole
method (FMM), which provides a substantial reduction in the al-
gorithmic complexity and memory requirements of the BEM (Coif-
man, Rokhlin, and Wandzura 1993). The BEM is a common choice
for modeling fluid regions exterior to a finite object as the problem
must only be solved on the boundary surface and there is no compu-
tational penalty associated with modeling infinite domains (Jensen
et al. 2000). This method is implemented by discretising the surface
into a number of elements, forming a system of equations relating
the boundary integral at each of these elements and simultaneously
solving the resulting matrix equation at each element with appro-
priate boundary conditions. The BEM may also be used to model
a problem interior to a boundary surface (again restricting all un-
knowns to the surface), but a more common choice is the finite ele-
ment method, which allows material properties to vary per element
(Chen 2005) at the expense of discretising the entire enclosed vol-
ume of interest (Zienkiewicz and Taylor 2000).
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The main disadvantages of the BEM are that the coefficient matrices
resulting from the surface discretisation are dense, complex and
non-symmetric (Xiao and Chen 2007), as apposed to the sparse,
real and banded matrices resulting from the finite element method
(Reddy 2004) and that the method yields non-unique solutions for
the exterior problem at certain frequencies (Kirkup 1998). This
non-uniqueness is a result of the numerical discretisation of the
boundary surface into a coefficient matrix (describing the interaction
between each and every pair of elements) which will be singular
for certain eigenfrequencies and this has been shown to be the case
for all of the possible acoustic boundary conditions (Neumann,
Dirichlet and Robin) (Wu 2000). These characteristic frequencies
always correspond to those for the interior Dirichlet problem
(Marburg and Wu 2008), where they have a physical significance
for the interior enclosed boundary surface. Common solution
methods applied to the exterior BEM to ensure a unique solution at
all frequencies are the CHIEF method, which includes additional
zero-pressure points inside the surface (Schenck 1968) and solves
the resulting over-determined system of equations (Amini, Harris,
and Wilton 1992), and the Burton-Miller formulation, which solves
a combined system of 2 BIEs involving a complex-valued coupling
parameter (Burton and Miller 1971).

The BEM modeling of the damping plate was conducted with the
FMBEM code being developed at CMST as well as a standard
BEM model from a commercial numerical software package.
Initially the Burton-Miller formulation was used as the stabilisation
method in both the numerical models and was observed to have
a significant effect on the calculated pressure over certain parts
of the model. However the agreement of the calculated results
between the models was not entirely convincing. The commercial
software could alternatively use the CHIEF method in the BEM
solution and again it was observed that the agreement between the
FMBEM/BEM models at the suspected eigenfrequencies was poor.
Furthermore, the calculated total surface pressure for the damping
plate between the 2 BEM models from the commercial software
package also displayed discrepancies, with the only difference
being the stabilisation technique used. These results indicated that
the numerical solutions of the model were sensitive to the solution
method used and it was surmised that this might be due to the
particular shape of the damping plate and the fact the model was
being treated as rigid (which may not be a valid assumption over
the frequency range of interest).

This paper presents and discusses the FMBEM and BEM results of
the damping plate yielded by the non-uniqueness mitigation tech-
niques mentioned above. The initial sections of this paper discuss
the set-up of the noise experiment with reference to the numerical
modeling and briefly review the background theory for the BEM
and FMBEM acoustic modeling. The next sections discuss the rigid
numerical modeling and the initial fully coupled modeling respec-
tively. Finally, some conclusions are presented.

THE EXPERIMENT

A photo of the hydrophone deployment setup is shown in Figure 1.
The yellow object is the steel damping plate and weight structure
that was numerically modeled. The structure can be broken into
the top disk, a cylindrical open-ended tube, a fin, and two angle
brackets. The top disk has a 2cm radial cut stopping just short of the

Figure 1: A photo of the hydrophone (black cylindrical shape) at-
tached ready for deployment to the steel weight and damping struc-
ture (yellow).

tube where the hydrophone cable is being fed through. The distance
that the hydrophone was positioned below the end of the tube was
not measured and is likely to have changed between different exper-
imental runs. To account for this the analysis was undertaken within
a 15cm x 15cm x 16cm cubic field starting 6cm below the bottom
of the structure. This bounding box should also take into effect
swing of the hydrophone with current away from the direct axis of
the structure. The orientation of the structure in the water column
with respect to the incident field was also unknown, as the damping
plate may have twisted about the cable. To consider the effect of
this uncertainty the numerical analysis was undertaken at a range of
orientation angles about the plane of symmetry of the damping plate.

The calibrated sound source used in the experiment was a RJE model
no ULB-364/10-PL wet activated 10 kHz beacon with a listed out-
put of 183 dB re 1uPa at 1m. It has 5 ms pulse length and 42 second
period between pulses. The beacon was deployed at approximately
10.5m depth and the horizontal displacement between the beacon
and the hydrophone was calculated to be 11m. The hydrophone sys-
tem was lowered from the aft deck to depths down to 380m. This
created a changing angle of incidence of the sound field from the
beacon between 48 degrees above and 90 degrees below the hori-
zontal. For the noise profile experiment the far field measurements
were of greater interest and so the analysis was undertaken for an
incidence angle range of 15 to 88 degrees below the horizontal.

BEM/FMBEM ACOUSTIC MODELLING

The governing equation of interest for acoustic modeling using ei-
ther BEM is the integral form of the Helmholtz differential equa-
tion (Mechel 2008). For an infinite exterior fluid domain containing
an acoustic source impinging an incident acoustic field pinc on a
boundary surface S, the Helmholtz BIE is:

−1

2
p(y) =

∫
S

[
∂G(x,y)

∂n(x)
p(x)−G(x,y)

∂p(x)

∂n(x)

]
dS(x)

− pinc(x)

(1)

where p and ∂p(x)
∂n(x)

are the total pressure and its outward pointing
normal derivative, x and y are points on S (assumed to be locally
smooth at y) and G(x,y) is the Helmholtz fundamental solution
or free-space Green’s function (Gaul, Brunner, and Junge 2009).
G(x,y) takes the form of a spherically radiating point source:

G(x,y) =
eikr

4πr
(2)
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where r is the magnitude of the distance between x and y, k is
the wavenumber and i is the complex number (Liu 2009). The
effects of sound absorption can be incorporated into equation (1) by
making the wavenumber a complex value (Ihlenburg 2008).

The Burton-Miller formulation provides a unique solution to the
Helmholtz BIE at all frequencies by combining equation (1) with the
normal derivative of the equation applied at y (Li and Huang 2010).
The coupling parameter between the 2 BIEs must be complex to
yield a unique solution at all frequencies (Liu and Rizzo 1992)
and is usually made inversely proportional to the wavenumber.
Conversely, the CHIEF method provides stability to the Helmholtz
BIE by introducing additional equations which set the total pressure
to zero at arbitrarily chosen points inside the boundary surface
(Amini, Harris, and Wilton 1992). Unfortunately, CHIEF points
placed at locations already corresponding to zero pressure points
for the equivalent interior problem do not stabilise the BIE (Hwang
1997) and these points are generally not known a priori. However
it has been shown that only one non-zero CHIEF point is required
to obtain a unique solution (Seybert and Rengarajan 1987).

Numerical solution of equation (1) is achieved by discretising the
surface into a number of elements and posing the equation with
respect to each element. The surface integrals are implemented
as a sum of numerical integrals (i.e. via Gaussian quadrature or a
similar technique) over the elements which approximate the surface.
Application of the boundary conditions will eliminate one of the
unknowns (p or q) on the right hand side of equation (1) yielding a
system with as many equations as unknowns. The BEM may solve
this system of N unknowns directly for a cost of N3 operations or
iteratively for a cost of N2 operations per iteration (Gumerov and
Duraiswami 2009). These algorithmic complexities come about
from the fact that the pressure at any point on the boundary is
dependent on the pressure at every other point due to the surface
integrals in the Helmholtz BIE. When discretised, the interactions
are between each pair of boundary points and are described by the
Green’s function in equation (2). Thus the standard BEM constructs
and stores the Green’s function coefficient matrix which require the
order of N2 memory to store and N2 operations for each iterative
multiplication – a prohibitive cost for large problems

The FMBEM reduces both the algorithmic complexity and memory
requirements of the BEM by approximately calculating the product
of the matrix-vector multiplication without explicitly forming the
coefficient matrix and by dealing with interactions between groups
of boundary elements (Amini and Profit 2003). The key mechanism
of the FMBEM is to separate the Green’s function into a pair of
independently calculable series expansions which introduce an in-
termediate point or expansion centre between the boundary points
x and y (Brunner et al. 2010). A number of different types of se-
ries expansions have been investigated for the Helmholtz equation,
broadly catagorised into high and low frequency expansions (in ref-
erence to the frequency regimes in which the expansions are used)
(Nishimura 2002). One possible choice is the Singular S and Regu-
lar R spherical basis functions:

Sm
n (r) = jn(kr)Y

m
n (θ, φ) (3)

Rm
n (r) = hn(kr)Y

m
n (θ, φ) (4)

where n = 0, 1, 2... and m = −n : n are the degree and order of
the expansion, j and h are the spherical Bessel and Hankel functions

of the first kind and Y m
n (θ, φ) is the spherical harmonic function

(Gumerov and Duraiswami 2003). Equations (3) and (4) may be
combined to build the Helmholtz Green’s function between points x
and y as follows:

G(y − x) = ik

∞∑
n=0

n∑
m=−n

R−m
n (x− c)Sm

n (y − c) (5)

valid for |x−c| < |y−c| (Gumerov and Duraiswami 2004). Series
expansions centred about similar expansion points may be combined
into single sets of coefficients and thus interactions between ‘well
separated’ groups of elements may be considered in the FMBEM.
Furthermore, the expansion centres may be shifted with appropriate
translation algorithms allowing the domain of validity of the expan-
sions to be varied and so the expansions of local groups of elements
may be re-used. Thus the surface integrals required to calculate the
pressure at each point on the boundary surface may be split into a far
region, where the well separated criterion is met and the FMM may
be used, and a near region, where the integrals are directly calculated
and stored as with the BEM (Gumerov and Duraiswami 2007).

RIGID DAMPING PLATE ANALYSIS

The initial analysis of the damping plate involved the construction
of two boundary meshes, shown in Figure 2, being a high resolution
FMBEM model containing 166,326 plane triangular elements (each
with one pressure degree of freedom (DOF)) and a lower resolution
BEM model containing 8,196 elements/DOFs (corresponding to
approximately 44 and 9 elements/λ respectively at 10kHz). The
FMBEM model was constructed in part to test the FMBEM code on
larger scale problems to ascertain the capabilities of the code and
also to determine if a much coarser model (with some of the fine
detail of the plate removed) could be used in the analysis without
significantly changing the results. The main differences are that the
low resolution model does not include the rebar loop for hanging
the damping plate or the lip on the edge of the circular plate, the
end of the cut-out in the circular plate is approximated as a square
cut instead of a semi-circle cut and the attachment of L-shaped
plates is simplified to a continuous connection. The results shown
in Figure 2 are the calculated total surface pressure from a 10kHz
incident plane wave traveling at 45 degrees below the horizontal
and in the plane of symmetry of the model. This orientation
of the incident field with respect to the plate is used for the re-
mainder of the paper for comparisons with the commercial software.

Obviously as the mesh discretisations are different a direct com-
parison of the calculated total surface fields cannot be made for
the two meshes shown Figure 2. However, the off-surface received
field (calculated from the total surface pressure) in the cubic region
encapsulating the hydrophone were calculated on exactly the
same grids. These sets of results had a relative residual norm of
4.4% for the entire set of received field planes, indicating that the
low resolution damping plate gives a good approximation to the
damping plate with singificantly fewer unknowns. Furthermore the
mesh has enough elements to satisfy the usually quoted ‘X nodes
per wavelength’ rules, where X is a small integer typically less than
10 (see for example (Marburg 2008)) up to the maximum 10kHz
frequency. Thus the low resolution mesh was used for the numerical
modeling over the full range of frequencies and incident angles.
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Figure 2: Comparison of high resolution (left) and low resolution
(right) damping plate models. The colour variation indicates the
total surface pressure in Pascals for a 10kHz unit strength incident
plane wave.

The commercial software was able to use either the Burton-Miller or
CHIEF methods to stabilise the Helmholtz BIE and so both methods
were used to compare to the FMBEM results at one incident field
orientation at each of the frequencies ranging from 0.5-10kHz in
0.5kHz increments. The times to set up and solve the total surface
pressure at 1kHz for the commercial software were 38.3 minutes
and 36.8 minutes using the Burton-Miller and CHIEF methods
respectively. The FMBEM software solved the same problem in 151
seconds but the convergence of the iterative solver slowed down as
the frequency increased (as apposed to the solution time of the BEM
software which seemed to be independent of the frequency), solving
in about 380 seconds at 10kHz. The FMBEM code solved the high
resolution mesh at 10kHz (pictured left in Figure 2) in 5.2 hours,
with 260 iterations required to reach the 10-4 convergence criterion.
This slow convergence can be attributed to the damping plate
model around the connection of the rebar loop and the cylinder,
where the boundary element surfaces are very close together and
facing each other. Although appropriate methods are used to deal
with near-singular and singular integrals in the near field of each
element, it appears (at least for the rigid boundary condition) that
the solution for constant pressure triangular elements in these
regions is quite unstable. Re-running the model with the loop
removed (which reduced the number of elements to 155,843) almost
halved the number of iterations to 131 for a similar convergence
criterion. The BEM software was unable to solve the high resolution
mesh: the coefficient matrix would require a few hundred Gb of
space to store and the computation time to apply even one matrix-
vector product to such a volume of data would be prohibitively large.

A plot of the relative residual norms between the FMBEM and
two BEM results for the low resolution plate is shown in Figure 3.
This plot also shows the relative residual norms between the sets of
BEM results, where the only difference in the solution process is
the method used (CHIEF, Burton-Miller) for providing numerical
stability to the BIE.

The plot of the relative residual norms (which represent a measure
of the disagreement or ‘error’ between the numerical models)
between the FMBEM and BEM solutions in Figure 3 shows several
interesting features: the most obvious being the error spikes at 1kHz

Figure 3: Plot of the relative residual norms versus Frequency be-
tween the FMBEM and commercial software results for the total
surface pressure on the damping plate.

and 4.5kHz. At 1kHz it can be seen that the higher errors are from
the comparison of the FMBEM and BEM results (although the error
between the two sets of BEM results is still about 12%), which
indicates that there may be an issue with the FMBEM solution.
The well-separated part of the surface field, calculated via the
FMM, of 400 randomly chosen surface elements was compared to
the same field yielded from applying a 5×5 Gaussian quadrature
rule. The relative residual norm between these results (which in
this case may be considered as the error involved with treating the
well-separated part of the field with the FMBEM instead of the
BEM) was only 0.58%. The FMBEM solution was re-calculated
with a larger seperation distance (i.e. with more of the field treated
with the BEM and less with the FMBEM) and the relative residual
norm with the Burton-Miller and CHIEF BEM solutions reduced to
5.47% and 16.81% respectively. This indicates that the calculated
total surface pressure at 1kHz was sensitive to the errors introduced
by the FMBEM but the large errors that still exist between the
Burton-Miller and CHIEF results suggest that there also is another
factor involved. Similarly, the spikes in the errors at 4.5kHz are due
to the poor agreement of the Burton-Miller and CHIEF results.

The above discussion of the relative residual norms between the so-
lutions at 1kHz and 4.5kHz suggests that there is poor agreement
between the Burton-Miller (BEM or FMBEM) and CHIEF meth-
ods. The most common technique used to determine the stability
of the numerical solutions is to change the complex coupling pa-
rameter between the BIEs of the Burton-Miller formulation or to
vary the number of CHIEF points for the CHIEF method. In ei-
ther case, varying these parameters should not change the solution
substantially for a well-conditioned problem. Focusing on the 1kHz
results it was observed that halving the Burton-Miller parameter var-
ied the results by 2.2% while doubling the number of CHIEF points
appeared to have no effect on the solution calculated by the com-
mercial software, indicating that the solutions at 1kHz were fairly
stable. The main discrepancies between the two total surface pres-
sure fields are occuring along the inner cylinder surface. In fact, a
similar comparison of the surface field excluding the the inner sur-
face of the cylinder reduces the relative residual norm between the
FMBEM and CHIEF BEM results to 2.4% (compared to 35% for the
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full field), indicating that the error between the solutions is localised
to the inner cylinder surface. The field on the inner cylinder (Figure
4) shows the total surface pressure calculated by the FMBEM and
CHIEF BEM for half of the model cut along the plane of symmetry.

Figure 4: Comparison of the FMBEM (left) and CHIEF BEM
(right) calculated total surface pressure for a 1kHz unit strength in-
cident plane wave shown in the plane of symmetry for the low reso-
lution damping plate model. The colour variation indicates the total
surface pressure in Pascals.

Figure 4 shows that the FMBEM code has calculated a peak in pres-
sure near the centre of the cylinder but shifted away from the end
with the cylindrical plate while the CHIEF method has predicted
a low pressure point shifted in the opposite direction. The main
part of the damping plate structure is an open-ended cylinder and so
the model should exhibit resonances close to the frequencies corre-
sponding to standing waves inside the cylinder (particularly at the
lowest node there should be a peak in pressure in the middle of the
cylinder). Perhaps the most appropriate end corrections for the res-
onant frequency formula are to approximate the end of the cylinder
with the circular plate as flanged (using half of the flanged pipe end
correction 0.8217 (Nomura, Yamamura, and Inawashiro 1960)) and
the other end as open (using half of the open pipe correction 0.6133
(Silva et al. 2009)), giving the frequencies f as:

f =
pv

2L+ d(0.4108 + 0.3066)
(6)

where L is the cylinder length, d is the inner diameter and p
is an integer for the pth mode. This formula gives the resonant
frequencies of the pipe section of the damping plate as integer
multiples of 866Hz. Therefore the first mode may be contributing
to the error at 1kHz but it would suggest that a strong resonance and
most likely a proportional disagreement between the Burton-Miller
and CHIEF methods should occur at 3.5kHz (being within 40Hz of
the forth mode). While there is some increase in the error between
the methods at 3.5kHz, the peak in the errors occur at 4.5kHz which
would be almost 170Hz from the 5th mode: a moderate difference.
A similar plot of the total surface pressure at 4.5kHz from the
FMBEM and CHIEF BEM methods along the plane of symmetry
of the damping plate is shown in Figure 5.

It can be seen from Figure 5 that the total pressure field at 4.5kHz
must be close to the 5th mode of the cylindrical part of the damping
plate. A more accurate measure of the resonant frequency can be

Figure 5: Comparison of the FMBEM (left) and CHIEF BEM
(right) calculated total surface pressure for a 4.5kHz unit strength
incident plane wave shown in the plane of symmetry for the low
resolution damping plate model. The colour variation indicates the
total surface pressure in Pascals.

determined by calculating the total surface pressure over a range
of frequencies and looking for a peak in the pressure amplitude.
This was done using the commercial software’s Burton-Miller
formulation and by refining the frequency around 4.5kHz, giving
the plot of peak total pressure versus frequency shown in Figure 6.

Figure 6: Plot of the peak total surface pressure versus frequency
for the low resolution damping plate. The incident field again had
an amplitude of 1 and was directed 45 degrees below the x-axis in
the xz-plane.
The peak pressure calculated by the model around the 5th mode
was at 4520Hz and so the exact frequency of this mode must lie
within ±5Hz (the increments used around this frequency). This
gives the modal frequencies of the damping plate as integer mul-
tiples of 904±1Hz, which would explain the large error observed
between the numerical models at 4.5kHz in Figure 3. The smaller
error peak at 3.5kHz lies within 100Hz of the 4th mode and so the
error between the numerical models may be due to the differences in
the peak pressure calculated by the Burton-Miller and CHIEF meth-
ods near that frequency (Figure 6 shows the extent of the increased
peak pressure is about ±100Hz from the resonant frequency). A
similar argument can be put forward for the model errors at 1kHz, al-
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though it has already been established from Figure 4 that the CHIEF
method calculated a pressure low at 1kHz where as an open ended
pipe should have a pressure peak at the lowest mode (as was cal-
culated by the FMBEM and BEM Burton-Miller methods). The er-
ror peak at 2kHz appears to be outside the range of effect of the
peak pressure discrepancies between the Burton-Miller and CHIEF
methods. The larger errors at 2kHz are between the FMBEM and
BEM methods which again implies that the disagreement between
the models is due in part to the approximations introduced by the
FMBEM (as was the case at the 1kHz results). It is likely that the
errors between the model results at 2kHz are due to a combination
of these factors, as was the case at 1kHz.

DAMPING PLATE ANALYSIS WITH COUPLED
FLUID-STRUCTURE INTERACTION

Thus far the analysis of the damping plate has treated the object as
rigid, allowing the problem to be fully described by the Helmholtz
BIE. A more realistic analysis of the problem is to treat the solid as
elastic and allow the acoustic field to distort the structure, which
in turn affects the scattered field, i.e. a coupled fluid-structure
interaction. Therefore an interior model of the structure is also
required and this usually takes the form of a finite element method,
due to the favorable properties of this method for modeling finite
domains (as discussed in the introduction). The infinite exterior
fluid region is treated in a similar manner as the rigid acoustic model
(i.e with the same Helmholtz BIE) and the two models are coupled
on the shared boundary surface to give the interaction between the
fluid and structure (Ali and Rajakumar 2004). Boundary conditions
can be enforced on the shared surface to reduce the number of
unknowns to two (the surface displacement and the total surface
pressure) and the coupled system of equations simultaneously
solved for both unknowns.

Of course the disadvantages cited for the BEM still stand when us-
ing the method in a coupled analysis. An obvious step in improving
the model would be to use the FMBEM to model the exterior acous-
tic region and couple this to an interior FEM model. Such models
have been developed (Fischer and Gaul 2005) and various aspects,
particularly of the coupling between non-conformant meshes (where
lower resolutions are required in the structure due to the significantly
higher sound speeds of common building materials i.e. steel, com-
pared to that for the fluid), have been investigated by several authors
(Schneider 2008, Gaul, Brunner, and Junge 2009, Brunner, Junge,
and Gaul 2009). For simple interior structures like solid objects or
those involving a few regions of piece-wise constant material prop-
erties, it may be advantageous to treat the interior solid domain with
a BIE which restricts all of the unknowns to the boundary surface,
analogous to the Helmholtz BIE treatment of the exterior fluid do-
main. This can be achieved using the elastodynamic BIE which re-
lates the displacement u and traction t on the boundary surface S
(Tong and Chew 2007):

1

2
uj(y) =

∫
S

[uj(x)Tij(x,y)− tj(x)Uij(x,y)] dS(x) (7)

where x and y are boundary points and Uij and Tij are the dis-
placement and traction fundamental solutions (Bonnet 1999). It has
been shown that the fundamental solutions for the elastodynamic
BIE can be expressed in terms of the Helmholtz Green’s functions
and thus the FMM has been used to accelerate the solution of the

elastodynamic BIE (Fujiwara 2000, Chaillat 2008, Bonnet, Chaillat,
and Semblat 2009). Equation (7) similarly does not natively include
dissipation effects via viscoelasticity, but these effects can be
incorporated by making the Lame parameters (which appear in Uij

and Tij) complex valued (Chaillat 2008).

The FMBEM code being developed at CMST has recently been
extended to allow coupled fluid-structure interaction problems to be
modeled, where both the fluid and structural domains are treated
with a BIE equation (Helmholtz for the fluid and elastodynamic for
the solid) and both are accelerated using the FMM. A comparison
of the coupled FMBEM results with those from the commercial
software which uses the standard BEM for the exterior fluid
domain and a standard FEM for the interior structure was intended.
Unfortunately, the commercial software calculated asymmetric
results for the plane wave incident on the damping plate in the plane
of symmetry (which should obviously yield a symmetric solution)
regardless of the frequency or BEM stabilisation technique used.
Hence the initial coupled results presented from the FMBEM code
have not yet been validated.

Therefore, only one set of coupled surface pressure results are
shown, for the maximum 10kHz frequency where the total field is
most complicated due to the shorter wavelength. The FMBEM rigid
and coupled results are shown in Figure 7.

Figure 7: Comparison of the rigid (left) and coupled (right)
FMBEM results for the calculated total surface pressure shown at
10kHz for a unit strength incident plane wave. The colour variation
indicates the total surface pressure in Pascals.

The differences between the sets of total surface pressure results are
quite interesting, particularly that the largest pressures observed on
the outer surface are significantly smaller in magnitude on the cou-
pled model, which now allows the surface to distort under the effect
of the acoustic field. Also the peak pressure rings on the inner cylin-
der surface are higher for the coupled model and now show asym-
metry with respect to the width of each peak depending on their
proximity to the cylinder attachments. The coupled model was also
run at 4.5kHz where it was observed that the peak pressure inside
the cylinder dropped significantly to less than half of that for the
rigid case. The model of the low resolution damping plate contain-
ing 8196 elements (but now 32,784 unknowns: 1 pressure and the
3 displacement components per element) was solved by the coupled
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FMBEM at 10kHz in about 108 minutes, taking about 200 GMRES
iterations to converge.

CONCLUSIONS

This paper has discussed the numerical modeling of a damping
plate that was undertaken as part of noise modeling for using
the Australian Antarctic Division’s vessel the Aurora Australis
as a launch platform for AUVs. The numerical modeling of the
damping plate revealed some interesting results when comparing the
calculated total surface pressure between the FMBEM code being
developed at CMST and a commercial BEM software. At certain
frequencies the disagreement or ‘error’ between the FMBEM and
BEM results was quite large. Some of these errors were in part
due to the small approximations introduced by using the FMBEM
and it was suspected that the remainder of the errors might be
caused by the ’non-uniqueness’ of the exterior BEM at certain
eigenfrequencies of the equivalent interior problem. However it was
determined that the solutions were stable at the suspect frequencies
using the standard (Burton-Miller, CHIEF) stabilisation methods
and that these methods were calculating different peak pressures
along the inner cylinder surface of the damping plate model. The
peak pressures corresponded to the maxima and minima of the
standing waves for the resonant frequencies of the tube down the
middle of the structure and the largest errors observed between the
models were at frequencies very close to these resonant frequencies.

The discrepancies between the calculated peak pressures for the
models seems to be a result of the fact that the rigid model does
not take into account energy dissipation via fluid viscosity. The
structure was treated as rigid in the initial error modeling analysis
when a better approximation is to treat it as elastic to allow a fully
coupled fluid-structure interaction, and furthermore should involve
structural damping. The FMBEM code now has the ability to model
coupled fluid-structure interactions but satisfactory results from the
commercial software could not be achieved for comparison with the
FMBEM. Some initial coupled FMBEM results indicate that treat-
ing the structure as elastic substantially reduced the peak pressure
of the standing wave at one of the resonant frequencies. Further
work will involve a comparison of the coupled FMBEM and com-
mercial BEM results followed by introducing damping in both fluid
and structural domains via complex wavenumbers to see how this
affects the results near the resonant frequencies.
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