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ABSTRACT 
A common measure for near-field acoustic energy of a vibrating structure is the acoustic intensity, which usually has 

positive and negative values that correspond to energy sources and sinks on the surface of the radiating structure. 

Sound from source and sink areas partially cancel each other and only a fraction of the near-field acoustic energy 

reaches the far-field. In this paper, an alternative method to identify the surface areas of a vibrating structure that con-

tribute to the radiated sound power is described. The surface contributions of the structure are based on the acoustic 

radiation modes and are computed for all boundaries of the acoustic domain. In contrast to the sound intensity, the 

surface contributions are always positive and no cancellation effects exist. To illustrate the method, the radiated 

sound power from a resonator is presented. 

INTRODUCTION 

Prediction and control of interior and exterior structure-borne 

sound is important in many engineering applications such as 

aircraft, aerospace vehicles, automobiles and marine vessels. 

For interior noise problems, a method to predict the contribu-

tion to radiated sound from individual components of a vi-

brating structure was developed by identifying the contribu-

tion of each node of a boundary element model to the total 

sound pressure (Ishiyama et al. 1988).  

For exterior noise problems, the sound intensity is commonly 

used to analyze contributions of vibrating surfaces to the 

radiated sound power. Other methods to identify acoustic 

energy source areas on a vibrating structure include the in-

verse boundary element technique (Ih, 2008) and near-field 

acoustic holography (Maynard, 1985). The concept of the 

supersonic acoustic intensity was introduced by Williams 

(1995, 1998) to identify only those components of a structure 

that radiate energy to the acoustic far-field. Since subsonic 

wave components of the vibrating structure only contribute to 

evanescent acoustic energy in the near-field, these wave 

components are filtered out. Only the remaining supersonic 

wave components, which correspond to the resistive part of 

sound intensity, radiate acoustic energy to the far-field.  

This paper presents a new method to compute the surface 

contributions to the radiated sound power from a vibrating 

structure. The surface contributions are based on the acoustic 

radiation modes (Cunefare and Currey, 1994; Chen and 

Ginsberg, 1995), and are computed for every node of a 

boundary element mesh of the radiator. In contrast to the 

sound intensity which can be either positive or negative and 

as such results in cancellation effects of energy on the surface 

of the vibrating structure, the surface contributions are al-

ways positive. Hence the surface contributions will directly 

indicate which parts of the surface contribute to the radiated 

sound power, while the sound intensity may yield much dif-

ferent values over similar surface regions due to the cancella-

tion effects and thus falsely predict the surface contributions 

to the radiated sound power. To illustrate the difference be-

tween the sound intensity and the continuous surface contri-

bution to the radiated sound power from a vibrating structure, 

a numerical example corresponding to an open resonator 

composed of two parallel plates is presented. 

RADIATED SOUND POWER 

Sound Power and Sound Intensity 

For exterior acoustic problems, the well-known Helmholtz 

equation is given by 

( ) 022 =+∇ pk                                       (1) 

 

where p is the acoustic pressure and k is the wave number. 

Discretisation of the acoustic domain leads to the following 

linear system of equations (Marburg and Nolte 2008) 

Hp = Gv                                            (2) 

 

where p is the acoustic pressure vector, v is the particle ve-

locity vector in the normal direction, and G, H are the 

boundary element matrices. The radiated sound power P is 

defined as (Marburg et al. 2013) 
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where ℜ  denotes the real part of a complex number, * de-

notes the complex conjugate, vn is the particle velocity in 

normal direction, I is the sound intensity and n is the outward 

normal on the boundary Γ pointing into the complementary 

domain. Γ is taken to be the surface of the radiating structure. 

The discretised sound power can be written as a sum of all 

nodal sound power contributions by 
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The nodal contributions in terms of the sound power 
k

P  or 

the sound intensity 
k

I  can be either positive or negative, 
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which results in cancellation effects of energy on the bound-

ary Γ. Thus 
k

P  and 
k

I  are not suitable to visualise the sur-

face contributions to the radiated sound power from a vibrat-

ing structure. 

Surface Contributions to Radiated Sound Power 

In what follows, the radiated sound power is described in 

terms of the sum of only positive sound power contributions 

of the radiating surface. When all the contributions are posi-

tive, the cancellation effects observed in Eq. (4) are elimi-

nated, thus delivering a tool to visualize surface contributions 

to the radiated sound power.  

Defining the surface contribution to the radiated sound power 

as η, the total radiated sound power is expressed by the fol-

lowing boundary surface integral 
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Similar to the sound intensity, the physical unit of η is W/m2. 

Let 

*)()()( xxx ββη =                               (6) 

 

where β  is a vector without physical significance. For any 

interpoloation node 
k

x  on the boundary Γ, 
k

η  is given by 
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From Eq. (7) it is observed that 
k

η  is always real and posi-

tive for any complex β . Discretisation of Eq. (5) leads to 

(Marburg et al. 2013) 
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where T denotes the matrix transpose, Θ  is the boundary 

mass matrix, β  is expressed in terms of known boundary 

values and is given by (Marburg et al. 2013) 
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Ψ  are the acoustic radiation modes and Λ  is a diagonal 

matrix with the corresponding radiation efficiencies. Substi-

tution of Eq. (9) into Eq. (8) allows the express the surface 

contributions to the total radiated sound power in terms of 

only real positive values. 

NUMERICAL EXAMPLES 

The method has been implemented using the boundary ele-

ment code Akusta (Marburg et al. 2003, 2005). Additional 

subroutines are written using FORTRAN 90. Eigenvalue 

problems have been solved using a simple simultaneous vec-

tor iteration procedure. A residual tolerance of 10−5 was re-

quired. Constant and linear discontinuous boundary elements 

have been used for the models. In the case of linear elements, 

collocation points are selected for the zeros of the Legendre 

polynomials (Marburg et al. 2003).  

An open resonator consisting of two square parallel plates is 

modelled. The open resonator is presented in two configura-

tions – with and without a Helmholtz resonator, which is an 

acoustic equivalent for a tuned vibration absorber. Figure 2 

shows the configuration of the two parallel plates without a 

Helmholtz resonator. Figure 3 shows the two parallel plates 

with a Helmholtz resonator embedded in the lower plate. The 

lower plate is fixed and has a thickness of 0.4 m. The upper 

plate is flexibly mounted and has a thickness of 0.3 m. Both 

plates have a top surface area of 1.5 m2 and are 0.915 m 

apart. The upper plate oscillates in the vertical direction with 

a surface normal particle velocity of vn = 1 mm/s. Damping 

only exists in the form of radiation damping.  

 

Figure 2. Open resonator consisting of two parallel plates 

 

 

Figure 3. Open resonator consisting of two parallel plates 

with a Helmholtz resonator embedded in the lower plate 

The total radiated sound power for both configurations is 

calculated using Eq. (3) and presented in Figure 4. Note that 

Eqs. (4) and (8) would yield exactly the same result for the 

total radiated sound power. For the first configuration con-

sisting of two parallel plates and an air gap, the vibro-

acoustic system has resonances at 60 Hz, 198 Hz and 379 Hz 

in the considered frequency range. The resonance of the open 

resonator system at 60 Hz corresponds to a rigid body mode 

similar to the rigid body mode that occurs at 0 Hz in a closed 

fluid-filled box (Marburg et al. 2006). The resonances at 198 

Hz and 379 Hz correspond to half a wavelength and one full 

wavelength between the plates, respectively. Adding a Helm-

holtz resonator tuned to a resonant frequency of 198 Hz to 

the lower plate of the open resonator significantly reduces the 

sound power at this frequency, while other frequencies re-

main mostly unaffected. This is typical behavior of a tuned 

vibration absorber or Helmholtz resonator.  

The normalized normal sound intensity I·n and normalised 

continuous surface contribution η are compared for the two 

plate configurations without a Helmholtz resonator (Figure 5) 

and with a Helmholtz resonator (Figure 6). In both figures, 

the normal intensity (left) and surface contribution (right) is 

shown at two viewing angles to show the top surface of the 

lower plate (top) and bottom surface of the upper plate (bot-

tom). The normal sound intensity is always zero for the lower 
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Figure 4. Radiated sound power by the open resonator con-

sisting of two parallel plates with an oscillating upper plate – 

with and without a Helmholtz resonator embedded in the 

lower plate 

plate because of zero particle velocity (the plate is fixed). On 

the upper plate, the normal sound intensity is positive on the 

inner side facing the lower plate (see lower pair of plates) and 

negative on the outer side (see upper pair of plates). In con-

trast, the surface contribution is distributed over both plates 

and is always positive. 

It is important to note that the lower plate contributes to the 

radiated sound despite being fixed in space. The fact that the 

lower plate contributes to the radiated sound becomes obvi-

ous if the plate were removed from the vibro-acoustic system 

in which case the frequency response of the system would 

change significantly. 

The localized effect in the results for the surface contribution 

of the Helmholtz resonator on the fixed bottom plate can be 

clearly observed in the section view in Figure 7. Thus, the 

surface contribution is more appropriate for visualization of 

the actual contributions of the lower and upper plates to the 

radiated sound power. 

SUMMARY 

A method to identify the surface contributions to the radiated 

sound power of a vibrating structure has been presented. The 

surface contributions to the far-field radiated sound power 

can be observed at the fluid boundary on the surface of the 

structure. An expression for the sound power is derived in 

terms of the acoustic radiation modes. The surface contribu-

tions are then computed for every node of a boundary ele-

ment mesh of the radiator. In contrast to the sound intensity, 

using surface contributions, the radiated sound power is de-

scribed as the sum of only positive sound power contribu-

tions of the vibrating surface, thus avoiding cancelation ef-

fects. A numerical example has been used to illustrate the 

method, corresponding to an open resonator composed of two 

parallel plates. Using the surface contribution method, the 

individual contributions of the lower and upper plates of the 

open resonator to the radiated sound power were identified. 

This is particularly valuable for the fixed lower plate of the 

resonator, for which sound intensity wrongly indicates zero 

contribution to the radiated sound. The technique presented 

here provides a new method to localize the relevant radiating 

surface areas on a vibrating structure.  

 

 

Figure 5. Normalized normal sound intensity (left) and sur-

face contribution (right) for the two parallel plates at 198 Hz 

 

 

Figure 6. Normalized normal sound intensity (left) and sur-

face contribution (right) for the two parallel plates with a 

Helmholtz resonator at 198 Hz 

 

 

Figure 7. Section view of the two parallel plates with a 

Helmholtz resonator showing the normalized continuous 

surface contribution at 198 Hz 
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