
Proceedings of Acoustics 2013 – Victor Harbor 17-20 November 2013, Victor Harbor, Australia 

 

Australian Acoustical Society 1 

NEW ACOUSTICAL PATTERN RECOGNITION 
APPROACH TO IDENTIFY DIFFERENT STAGES OF A 
COOKING PROCESS. THE BOILING WATER CASE. 

M. Tabacchi (1), C. Asensio (2), I. Pavón (2) and M. Recuero (2) 

(1) Hibbs & Associates Pty Ltd, Unit 48, 378 Parramatta Rd, Homebush, NSW 2140, Australia 

(2) Universidad Politécnica de Madrid (I2A2), ETSI TGC, Campus Sur – UPM, Ctra. Valencia Km. 7, 28031 Madrid, Spain 

 

ABSTRACT 
Although pattern recognition technique has been largely used in many fields, it seems that very few studies have ap-

plied this technique to cooking processes. In this preliminary research, a new methodology has been developed and 

tested on a simple case of water boiling. Besides defining and analysing the efficacy and the performance of a statis-

tical pattern recognition approach when applied to different signals (sound and vibration), an optimisation module has 

been proposed to boost the classification rates by adding syntactical analysis that enables to consider the inertia of the 

process. In the specific case of boiling water, almost 100% successful recognition has been reached. These results 

prove the validity of this methodology, opening new research lines for new scenarios such as different cooking pro-

cess, acoustically polluted environments, sensors optimisation, etc. 

INTRODUCTION 

Pattern recognition currently comprises a vast body of meth-

ods supporting the development of numerous applications 

and researches in many different areas such as civil and envi-

ronmental engineering, industrial process control, communi-

cation science, etc. In the field of acoustics, pattern recogni-

tion has been applied to speech recognition (Fazel & 

Chakrabartty 2011; Garner 2011), environmental noise 

sources detection and classification (Gaunard et al. 1998; 

Cowling & Sitte 2003). However, very few studies have ap-

plied acoustic pattern recognition to detect different stages of 

a cooking process (Gutierrez et al.; Doney 1994). Although 

these studies try to exploit acoustic signals to recognise dif-

ferent stages of a cooking process, none of them seems to 

stabilise the results taking into account the intrinsic inertia of 

a generic cooking process. 

For this reason, besides defining and analysing the efficacy of 

a pattern recognition methodology, and its performance when 

applied to different signals (sound or vibration), this research 

proposes a new optimisation module that improves the classi-

fication rates by adding a syntactical analysis of the phenom-

enon to classify. In order to analyse the potentials of this 

classification system a very simple case of water boiling was 

first studied. The optimisation module in this case took into 

account the inertia of the process. 

METHODOLOGY 

Figure 1 outlines the process followed to fulfil the aims of 

this research.  

 
Figure 1. Outline of the whole process. 

The water-boiling phenomenon was recorded by a micro-

phone near the pot and by an accelerometer mounted on the 

stove. The recordings of the signals were manually labelled 

into the 4 stages of boiling water described below. Then, the 

significant signal features were extracted to train and test a 

statistical classification system. To improve the results, the 

classifier’s results were optimised taking into account the 

characteristics of the full boiling process.  

Audio and vibration recordings 

The water-boiling phenomenon was recorded by a cardioid 

microphone (AKG – SE300B, frequency range 20-20000 Hz, 

sampling rate 44100 Hz) located 50 cm from the cooking 

vessel with an angle of 45º with respect to the vertical axis 

and by accelerometer (model 352C33, frequency range 0.5-

10Khz, sampling rate 44100 Hz) placed right in the centre of 

the cooking induction stove.  

As this project is the very first approach for future research 

and in order to reduce the influence of the side factors, a 

simplified and a very specific case study were considered:  

 1.5 litres of distilled water; 

 power of the induction stove set on boost (maximum); 

 water at room temperature; 

 enamelled cookware of 18 cm diameter. 

The measurements were undertaken filling the uncovered 

cook- ware with 1.5 l of distilled water at room temperature 

and heating up at boost power. The duration of each meas-

urement was approximately 7–8 min to measure the whole 

boiling process without letting all the water evaporate. Final-

ly, 28 experiments were undertaken measuring audio and 

vibration at the same time (i.e. 28 recordings of two chan-

nels).  

Labelling 

All the boiling recordings were split from the beginning into 

two groups, one to be used for training (19 boiling record-

ings) and another one used for testing (9 boiling recordings). 

100ms samples were extracted from the recordings and then 

labelled into one of these 4 classes of boiling water boiling 

(i.e. heating, nucleate boiling, transition boiling and film 

Paper Peer Reviewed



Proceedings of Acoustics 2013 – Victor Harbor 17-20 November 2013, Victor Harbor, Australia 

 

2 Australian Acoustical Society 

boiling). A total of 70650 and 33000 samples were available 

for training and testing of the system respectively. 

Feature selection and classificiation 

Many studies and articles show that the formation of bubbles 

in a heated liquid like water often causes cavitations and 

acoustic effects (Nesis 2008). In particular, each boiling wa-

ter stage presents a unique acoustic pattern that can be used 

to discriminate one stage of the phenomenon from the others 

(Lawrence 2008). Once we know that there are some acoustic 

differences between the sound events, or, in our case, be-

tween the 4 stages of water boiling, this information needs to 

be extracted and analysed using feature vectors. Mel-

frequency cepstrum coefficients (MFCC) are generally em-

ployed for speech recognition as they are based on human 

auditory perception (Lee et al. 2003; Sahidullah & Saha 

2012; Kraaijveld 1996). However, since previous studies 

(Crowling & Sitte 2003; Asensio, Ruiz & Recuero) have 

demonstrated that they can be successfully used even for 

non-speech sound recognition (e.g. environmental aircraft 

noise), we decided to exploit them for our case study. MFCC 

were derived from each input samples previously labelled 

using an extended bandwidth from 0 Hz to 15kHz and con-

sidering 20 coefficients instead of the more usual 13 coeffi-

cients. This extraction technique works quite well in this 

case. In fact, for each coefficient the probability density func-

tion of each class can be easily distinguished from the others.  

To compare the performance of the different input signals, 

features were extracted from:  

1. audio (20 features); 

2. vibration (20 features). 

These two separate sets of features were used as input for the 

classification.  

Several nonlinear supervised training algorithms such as 

Parzen, ANN or SVC were applied to the training samples. 

The training and testing processes were carried out using 

PRtool for Matlab. The Parzen classifier was finally deemed 

to be the more suitable for the case study. 

Optimisation of the results 

For each labelled sample in the testing dataset, the trained 

classifier estimates its probability of belonging to each class, 

yielding for each sample 4 outcomes varying from 0 to 1. The 

high fluctuation of these results leads the detection system to 

be a little bit unstable and unreliable especially because it 

does not fit the slow variations of the boiling water phenom-

enon well. 

 
Figure 2. Outline of the optimisation system. 

In the scenario, an optimisation of recognition system is 

needed, bearing in mind the inertia of the phenomenon we 

are trying to represent. Figure 2 shows the basic outline of the 

optimisation system used.  

Boiling is a pseudo-stationary process with long-term chang-

es. It is not worth classifying the labelled samples separately, 

because the time correlation of the samples is very strong. So 

the time sequence of each of them needs to be considered, 

hence the posterior probabilities for each sample to belong to 

each one of the 4 classes will be analysed as a soft output of 

the classifier with strong time dependency.  

For this reason, to avoid sudden and unrealistic changes in 

the classes and probabilities (Figure 3, dotted blue line), each 

of the four soft outputs of the classifier was smoothed with a 

moving average (Figure 3, red line).  

 
Figure 3. Smoothing of the classifier estimations. 

Afterwards, a threshold detector was applied in order extract 

events from the smooth outcome. This module detects a 

class-event if its probability exceeds a certain threshold (in 

this case 0.5) during more than a defined time interval (in this 

case 1 second). The output of this block is a Boolean signal 

that takes the value 1 when an event is detected and 0 if it is 

not (Figure 4).  

 
Figure 4. Class-event detector. 

After applying the described constraints, the events detector 

marks the events of each class for steady time intervals, when 

the boiling class is certain. But due to the strict constraints, it 

can be observed that sometimes for a specific time interval no 

class-event is detected, and the class to be assigned is uncer-

tain. Therefore a null class was created to state that in these 

particular instants the classification system is unable to de-

cide about the specific boiling stage with sufficient accuracy. 

Due to the inertia of the water boiling process, it is not possi-

ble to get quick and unsteady stage changes. Taking ad-

http://en.wikipedia.org/wiki/Cavitation


Proceedings of Acoustics 2013 – Victor Harbor 17-20 November 2013, Victor Harbor, Australia 

 

Australian Acoustical Society 3 

vantage of this, a null-class event will be triggered if the “un-

certainty interval” lasts for more than one second (i.e. more 

than 10 samples of 100ms). If the uncertainty of the system is 

sporadic (less than a second), the system will keep the class 

previously detected. Only when a null-class event is triggered 

will the optimiser output show “class 0” as result.  

This optimisation process improves the understanding and 

the interpretation of the phenomenon of boiling water adjust-

ing the results to its inertia. The outcomes of this system are 

therefore more stable and reliable, boosting the opportunity 

to implement this recognition system for future develop-

ments. 

Testing 

Different types of tests were undertaken to find out the best 

signal (audio and vibration) and especially to determine the 

improvements of the optimisation of the recognition process.  

In the first test, we only wanted to check the efficacy of the 

trained classifier itself. Therefore, we simply applied the 

trained Parzen classifier to the testing dataset of labelled 

samples. 

In the second test, we wanted to check the improvements 

achieved with the optimisation, so all the classification pro-

cesses explained above were applied to the same labelled and 

sequential samples. It is worth remembering that only the 

parts of the signal far from the transitions from one boiling 

stage to another were considered. In this way we avoid any 

possible errors during the evaluation of the system deriving 

from incorrectly labelled samples.  

Therefore, a third test was needed to see how the recognition 

system developed actually behaves in the stage transitions. 

For this purpose, the whole input signal of each recording 

was analysed comparing, even in this case, the results yielded 

with and without the optimisation.   

RESULTS AND DISCUSSION 

Audio 

Table 1 shows the results of the test for audio input signal 

where the columns represent the classified classes and the 

rows the real classes. It can be seen that even without the 

optimisation the percentage of successful recognition reaches 

99% especially in the first (heating) and fourth class (film 

boiling). However, with the optimisation system all the clas-

ses achieve a better recognition ratio of up to 100% for the 

first and fourth class. The misclassification (<2%) of the 

second (nucleate boiling) and third (transition boiling) class 

is mainly due to the boundary problems described previously.  

Table 1. Results of the test (%) using audio. 

Real 

class 

Classified class 
Null 

1 2 3 4 

Before optimisation 

1 99.25 0.68 0.01 0.06 - 

2 0.00 98.12 1.86 0.02 - 

3 0.00 1.90 98.10 0.00 - 

4 0.00 0.35 0.32 99.32 - 

After classification 

1 100.00 0.00 0.00 0.00 0.00 

2 0.00 98.90 0.86 0.00 0.24 

3 0.00 1.70 98.30 0.00 0.00 

4 0.00 0.00 0.00 100.00 0.00 

Figure 5 presents the results of the test run on the entire input 

signal of each recording. The first row represents the root 

mean square of the audio signal. The second, third, fourth 

and fifth rows represent the probabilities of the signal belong-

ing respectively to first (heating), second (nucleate boiling), 

third (transition boiling) and fourth (film boiling) class, while 

the sixth row stands for the final decision of the classification 

system. The figure below highlights the outcomes due to the 

trained classifier only (without optimisation). We can observe 

that the output of the system is quite unstable (for instance 

time 260-270, or 300-310), showing sporadic misclassifica-

tion samples not only in the boundary (which might be more 

acceptable) but also in the middle of a stage. Moreover, the 

system mixes up not only one class with the next or previous 

ones but also with further ones (e.g. confusing the fourth 

class with the first). This outcome may lead the system to be 

somehow unreliable. 

Figure 5. Outcome of the recognition without optimisation 

(audio input). 

In this scenario, the need for an optimisation can be easily 

understood. In fact, Figure 6 presents the classification after 

applying the optimisation. As can be seen in the figure, the 

outcome is perfect: there is a clear transition from a boiling 

stage to the next and there is not a single class misclassified. 

Although the limit among stages is fuzzy, the system takes 

feasible and reliable decisions, removing instantaneous or 

sporadic changes in the output. 

Figure 6. Outcome of the recognition with optimisation (au-

dio input). 

Vibration 

Table 2 shows the results of the test for the vibration signal 

where the columns represent the classified classes and the 

rows the real classes. It can be seen that even without the 

optimisation the percentage of successful recognition reaches 
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at least 99% in the first class (heating). However, with the 

optimisation system all the classes increase the recognition 

ratio up to 100% for the fourth class. The misclassification 

(<3%) of the second (nucleate boiling) and third (transition 

boiling) class is mainly due to the boundary problems de-

scribed above.  

Table 2. Results of the test (%) using vibration. 

Real 

class 

Classified class 
Null 

1 2 3 4 

Before optimisation 

1 99.77 0.22 0.00 0.01 - 

2 0.00 96.77 3.23 0.00 - 

3 0.00 0.00 94.60 5.40 - 

4 0.00 0.11 1.67 98.22 - 

After classification 

1 99.79 0.10 0.00 0.00 0.11 

2 0.00 97.44 2.32 0.00 0.24 

3 0.00 0.00 97.80 2.20 0.00 

4 0.00 0.00 0.00 100.00 0.00 

Figure 7 presents the results of the test run on the entire input 

signal of each recording. The first row represents the root 

mean square of the vibration signal. The second, third, fourth 

and fifth rows represent the probabilities of the signal belong-

ing respectively to first (heating), second (nucleate boiling), 

third (transition boiling) and fourth (film boiling) class, while 

the sixth row stands for the final decision of the classification 

system. This figure highlights the outcomes due to the trained 

classifier only. We can observe that the output of the system 

is quite unstable detecting the wrong classes not only in the 

boundary (which might be more acceptable) but also in the 

middle of the class.  

Figure 7. Outcome of the recognition without optimisation 

(vibration input). 

After applying the optimisation, the result is outstanding. In 

fact all the transitions from one class to another are clearly 

defined and, above all, no misclassified class is detected in 

the middle of the class (Figure 8).  

Figure 8. Outcome of the recognition with optimisation (vin-

bration input). 

The reason why the vibration cannot give as many good re-

sults as the audio can be found in the sample labelling. In 

fact, since the 2 channel samples (audio and vibration) used 

for training and testing the system were labelled considering 

only the audio time signal, it is possible that some vibration 

parts of the samples had not been properly labelled. This may 

explain the reduced recognition rates that can be noted espe-

cially in the second and third stage.  

CONCLUSION 

After analysing the results, we can state that the developed 

pattern recognition system can be a useful tool to detect dif-

ferent stages of a cooking process such as the boiling water 

with very high recognition rates. In general for both audio 

and vibration, we reach almost 100% of successful recogni-

tion for the first (heating) and fourth (film boiling) class. In 

particular, the best recognition rates can be achieved by using 

audio signal as input. In this case, the misclassification of the 

second (nucleate boiling) and third (transition boiling) class 

is mainly due to a boundary problem. As the transition from 

one class to another is not defined crisply, some samples 

might have been wrongly labelled and may be mistaken for 

the next or previous boiling stage. For this reason, more re-

search is needed to find a more precise way to define bounda-

ries (e.g. using temperature sensors, pressure sensors, etc.).  

Nonetheless, the optimisation has been demonstrated to be 

the key to improve the recognition rates. For all the different 

inputs and in all the classes, the optimisation increases up to 

2% the recognition rate.  

With this very simple case of study, we have demonstrated 

that our optimisation module can avoid all the sudden and 

unrealistic changes of stages and yielding a more reliable and 

stable outcomes. This is the very first step of our research 

that aims to analyse and exploit the potentials of using this 

acoustic patter recognition system for a real detection of dif-

ferent stages of a generic cooking process.  
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