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ABSTRACT

The use of permanent magnets has been investigated in recent years to provide load bearing forces for vibration isola-
tion. Using two pairs of magnets in both repulsion and attraction, it is possible to generate a force-displacement charac-
teristic that has an inflection point at zero stiffness, known as the quasi-zero stiffness location. Since vibration isolation
performance is known to improve with lower resonance frequencies and therefore isolator stiffnesses, the quasi-zero
stiffness location is considered the point at which vibration isolation is best achieved. However, since this location is
only marginally stable, for passive operation it is only possible in practice for the equilibrium position of the system to
asymptotically approach the quasi-zero stiffness point. The proximity to this point that can be achieved depends on the
loads to be borne and the amplitude of vibration to be isolated. In previous works, this particular magnetic system has
seen theoretical treatment. A prototype of the magnetic system will be presented that uses magnet pairs mounted on a
rigid lever arm to constrain their motion to a single degree of freedom. Experimental results are presented that demon-
strate the quasi-zero stiffness behaviour of the practical system. Finally, a novel electromagnetic actuator is incorporated
into the design to attenuate the resonance peak via active skyhook damping using accelerometer measurements. The
limits of this feedback are shown to be caused by the filter poles of the accelerometers used to measure the vibration.

INTRODUCTION
Vibration isolation of sensitive equipment involves mounting
with as low a stiffness as possible to reduce the resonance
frequency of the system. Several approaches have been sug-
gested for adding negative stiffness elements in series with a
vibration mount in order to reduce the resonance frequency
while maintaining its load-bearing ability, including flexible
members (Tarnai 2003; Cella et al. 2005; Lee, Goverdovskiy,
and Temnikov 2007), ‘buckling’ springs (Molyneux 1957; Al-
abuzhev et al. 1989; Carrella, Brennan, and Waters 2007; Car-
rella et al. 2009), and attracting pairs of magnets (Carrella et al.
2008; Robertson et al. 2009; Robertson et al. 2006; Robertson,
Cazzolato, and Zander 2007; Zhu et al. 2011).

While in theory such systems are refered to as having ‘quasi–
zero stiffness’, this term is slightly misleading as the position
of dynamic zero stiffness is only marginally stable and the
system cannot stably operate at this point. Linear control sys-
tems can be used to stabilise such a system, but the additional
dynamics of the controller will have their own influence on
the propagated vibration disturbance. For stable operation, the
nominal operating position of the system must be chosen suffi-
ciently far away such that the maximum excursion from equi-
librium remains within the stability region (Robertson et al.
2009). In this case, the system will have a non-zero but small
positive stiffness; further improvement to the vibration isola-
tion properties of the system can be achieved using standard
active vibration feedback control.

This paper documents a set of experiments that were conceived
to demonstrate these ideas. A single degree of freedom sys-
tem was designed using one pair of magnets in repulsion for
load bearing and one pair in attraction for stiffness reduction
(Fig. 1). The system was tuned to achieve a minimal resonance
frequency and active vibration isolation used to improve the
transmissibility for vibration isolation.

DESCRIPTION OF APPARATUS
The experimental apparatus that was designed and built as part
of this project is shown as a schematic in Fig. 1 and as a pho-
tograph in Fig. 2. Physical parameters of the design are shown
in Table 1.

The rig consists of an arrangement of magnets, of which two
are fixed to the frame; ‘floating’ magnets are supported by
these of which one is situated below to apply a repulsive force
(positive stiffness) and the other is situated above to apply an
attractive force (negative stiffness). The physical location of
the fixed magnets may be moved vertically in order to vary the
respective amounts of positive and negative stiffness.

The magnet system is designed to investigate the dynamics in
the vertical displacement direction; having stability in this di-
rection implies instability in the horizontal direction (Bassani
2006). In order to remain stable, the magnets require a physical
constraint, achieved by placing the floating magnets at the end
of a long pinned rigid beam. Small rotations of this beam can
be assumed to correspond to largely vertical displacements of
the end magnets.

Table 1. Physical properties of the experimental rig.

Rig height H 209 mm
Beam mass mb 266 g a

Beam length Lb 320 mm
Beam height hb 25 mm
Beam width wb 40 mm
Beam thickness tb 2 mm
Beam vertical offset ob 82 mm

Magnet support height hm 105 mm
Magnet support lever arm Lm 300 mm
Magnet support mass mm 87 g
Magnets height h 9.5 mm
Magnets diameter 2Rm 12.7 mm
Magnets remanence Br 1.3 T
Lower fixed magnet origin om 44 mm
Upper fixed magnet origin on 30 mm plus offset b

Sensor height hs 85 mm
Sensor horizontal offset Ls 252 mm
Sensor displacement measurement xs 43 mm–53 mm

aMass of the accelerometer is accounted for in this value.
bOffset varied to adjust the amount of added negative stiffness.
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Figure 1. Schematic of the experimental rig (not to scale). Position shown is the marginally stable configuration with equal gap between
the lower and upper pairs of magnets.
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Figure 2. Photo of the experimental apparatus. Base shaker is not shown.
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The beam itself was chosen as a hollow rectangular section in
order to minimise weight and maximise stiffness; it is assumed
to be a rigid body for the purposes of these experiments (espe-
cially at the low vibrational frequencies under investigation).

The pin support was constructed by clamping the beam to a
thin piece of flexible plastic which was clamped to the frame.
The use of a flexural element was chosen to avoid static friction
that would be present in a bearing or hinge joint. The stiffness
of this plastic can be assumed to be negligible as it played no
part in the load bearing of the beam.

Electromagnetic actuator

A dual-coil electromagnetic arrangement was custom-built for
the actuator for the experimental apparatus. A schematic of
the dual-coil system is shown in Fig. 3 with parameters in Ta-
ble 2. The coil was designed to have an impedance of 8 Ω, from
which the outer radius of the coil was calculated given a cer-
tain wire diameter and resistance (Robertson, Cazzolato, and
Zander 2012).

Rm
rc

Rc

hc hcG

h
Figure 3. Schematic of the dual-coil electromagnet built for
the experimental apparatus. (Not to scale.)

Table 2. Dual-coil electromagnet parameters.

Magnet radius Rm 6.4 mm
Magnet height h 9.5 mm

Coil height hc 7 mm
Coil inner radius rc 10 mm
Coil outer radius Rc 10.7 mm
Coil gap G 7 mm
Turns (approx.) 105

Former inner radius 14.2 mm

The dimensions of the coil were chosen to ensure sufficient
force over the displacement range expected from the system.
The force imparted by the coil remains within 10% of maxi-
mum over a displacement range of around ±2 mm, which is
acceptable for the purposes of the design.

Displacement and acceleration sensors

The sensor purchased for the experimental apparatus was a
Wenglor 05 MGV 80 opto-electronic sensor, which uses a laser
to measure distance over a range of 10 mm.

For the beam, a Brüel and Kjær 4367 accelerometer was used
to measure the ‘output’ signal; for the base, a 4332 accelerom-
eter measured the ‘input’ signal of the system. The accelerom-
eters were used with Brüel and Kjær 2635 charge amplifiers
set to appropriate gain values for the input signals. The signals
were low-pass filtered at 50 Hz to avoid aliasing effects using
a Krohn-Hite Model 3362 digital filter (using a 4-pole Butter-
worth filter).

For open loop measurements, these accelerometers were used
to measure acceleration directly; for closed loop control, the
charge amplifier was used to integrate the measured signals to
estimate the velocities. The high-pass filter in the charge ampli-
fiers used a 0.1 Hz cut-on frequency when measuring acceler-
ation and 1 Hz for velocity. The higher frequency is necessary
for velocity to avoid drift due to accumulation of errors in the
integrator circuit.

Translational effects of the rotating beam

Three moving magnets were required in the system: one at the
main end of the motional beam to be repelled for positive stiff-
ness by the fixed lower magnet; a second to be used with elec-
tromagnetic coil for control forces; and the third to be attracted
for negative stiffness by the fixed upper magnet.

The beam added a horizontal constraint to the system for sta-
bility. As the beam rotates, the magnets move predominantly
in the vertical direction; there is still some horizontal motion,
however, and the area restricted by the electromagnetic coil re-
quires attention to ensure that there is no contact between the
moving magnet and the fixed coil. However, the smaller the air
gap between the coil and the magnet, and thus the smaller the
inner radius of the coil, the greater the forces imparted by the
coil on the magnet, so the smaller the tolerance the better.

The actual clearance between the outer radius of the brass cylin-
der holding the magnets and the inner radius of the coil former
was 0.35 mm. This tolerance was judged to be small enough
to allow a surrounding coil without having a significantly di-
minished force characteristic from the air gap required to avoid
contact. It should be noted that this tolerance caused a degree
of inconvenience since the attachment and positioning of the
coil required careful alignment in order to allow free move-
ment of the cylinder holding the magnets.

EXPERIMENTAL RESULTS

A number of measurements were performed using the exper-
imental apparatus; in the sections following, measured data
is presented for: magnet gap versus beam displacement; open
loop frequency responses for a range of magnet gaps; and, ve-
locity feedback in a single configuration.

Static displacement measurements

The upper magnet’s position was varied until the limit of stabil-
ity was reached. The lower fixed magnet was kept fixed, which
means that the position of quasi–zero stiffness was changing;
with counter-threaded mounts for the upper and lower mag-
nets, they could be adjusted in parallel to achieve a fixed quasi–
zero stiffness location.

As the upper magnet placement was lowered, the rest position
of the beam moved closer to the quasi–zero stiffness position
(as more force was supported by the upper magnet). This rela-
tionship is shown in Fig. 4b. The normalised magnet gap g is
used in the following sections to represent the varied config-
uration of the spring in the experiments, defined as g = og/h,
where og is the magnet gap at quasi–zero stiffness and h is the
height of the magnets. From the geometry of the rig, the posi-
tion of the upper magnet was used to calculate the gap between
the magnets at quasi–zero stiffness:

og(on) =
1
2
[
H−om−on−hm

]
+h−hε , (1)

where geometrical properties are described in Table 1 and hε =
2.5mm is an extra clearance to account for space taken up
by the thicknesses of the magnet mounting. The height of the
quasi–zero stiffness location itself, oq, is given by

oq(on) =
1
2
[
H−om +on

]
. (2)
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(c) Expected natural frequency as the magnet position varies.

Figure 4. Measured rest position of the system as the magnet position varies. For simplicity, only a single floating magnet is shown
here.

The measured output of the sensor xs was used to infer a mag-
net displacement, x, (referenced from the quasi–zero stiffness
position) with the following relationships. Firstly, the rotational
origin of the beam was used as a vertical reference point, and
the displacement of the beam xb at the laser sensor location
calculated as

xb(xs) = H−ob−hs− xs, (3)

which can be extrapolated using the respective lever arms to
calculate the resultant vertical displacement of the moving mag-
nets with respect to the beam origin with

xp(xb) = xb
Lm

Ls
. (4)

This moving magnet displacement can be written with respect
to the origin of the frame of the rig with

xm
(
xp
)
= ob + xp−hb + tb + 1

2 hm. (5)

Accordingly, the displacement of the system x from the quasi–
zero stiffness location is given by

x(xs,on) = xm−oq. (6)

The displacements between the centres of each magnet in the
interacting pairs can be similarly calculated based on the dis-
placement of the moving magnet assembly xm. With respect to
the frame origin, the magnet centres for the base magnet m1,
upper magnet m2, lower moving magnet m3, and upper moving
magnet m4 are

m1 = om−hε − 1
2 h , (7)

m2 = H−
[
on−hε − 1

2 h
]
, (8)

m3 = xm− 1
2 hm + 1

2 h , (9)

m4 = xm + 1
2 hm− 1

2 h . (10)

Predicted resonance frequencies

From the displacement results shown previously, predicted res-
onance frequencies can be calculated for this system as a func-
tion of magnet gap. The expected magnetic forces F due to the
measured displacements were calculated using the theory for
coaxial cylindrical magnets (Robertson, Cazzolato, and Zan-
der 2011) based on magnet centre displacements m3−m1 and

m2−m4. Numerical differentiation was used to calculate the
stiffnesses k at these displacements, and the natural frequency
at each location calculated with ωn =

√
k/meq where meq =

F/g is the equivalent mass borne by the static force F . With
parameters as specified, the expected natural frequency versus
magnet gap results are shown in Fig. 4c.

Open loop dynamic measurements

As the position of the upper magnet is varied, the amount of
negative stiffness added to the system changes. This predom-
inantly affects the rest position and the resonance frequency,
along with small changes in damping. Frequency response mea-
surements were taken at a number of discrete locations of the
upper fixed magnet to observe the changes in dynamics as the
rest position of the system approached the quasi–zero stiffness
position.

The parameters used to perform the spectral analysis for each
measurement are shown in Table 3. Due to the low damping
and low resonance frequency of the system, very long sam-
ple times were required to achieve results with enough fre-
quency resolution and sufficient coherence to characterise the
response. A high sample rate (1000 Hz) was chosen to reduce
the possibility of controller time delays influencing the feed-
back control.

Table 3. Parameters used in the signal and spectrum analysis
for the experimental measurements.

Sample rate 1000 Hz
FFT points 216

Sample time ≈17.5 min
Average overlap 0.75
Number of non-overlapping averages 16

Open loop measurements were taken both with and without the
electromagnetic actuator connected (wired as both a short cir-
cuit and an open circuit). In the closed circuit configuration, the
coil adds damping via induced eddy currents from the moving
magnet. As an open circuit, the coil has no effect on the dy-
namics of the system.

Open loop measurements without the coil connected are shown
in Fig. 5a and measurements taken with the coil (that is, with
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(a) Open circuit coil; no additional damping is added to the system.
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(b) Closed circuit coil. The coil adds damping to the system, which can be seen by the reduction
in height of the resonant peaks in comparison to Fig. 5a.

Figure 5. Open loop measurements with the electromagnetic coil connected in an open and closed circuit as a function of normalised
gap g.

added damping) are shown in Fig. 5b. For both of these results,
the transmissibility T shown is the transfer function between
the accelerometer measurements of the base and magnet-supported
beam:1

T =
Pmb

Pbb
, (11)

where Pbb is the power spectral density of the accelerometer
measurements of the base, and Pmb is the cross power spectral
density of the magnet and base accelerometer measurements.

Analysis of the open loop data

From the measurements shown in the previous section, data
fitting of the frequency response functions was used to ex-
tract a linear model of the system in each configuration. While
more sophisticated techniques are possible (Chen, Liu, and Lai
2009), fitting the data to a known exact frequency response
function yielded acceptable results in this case since the linear
model is relatively simple.

The model used to fit the data was a single degree of freedom
vibration isolation system in terms of the natural frequency,
ωn =

√
k/m, and damping ratio ζ = b/(2

√
km):

T (iω) =
2iζ ωωn +ω2

n
−ω2 +2iζ ωωn +ω2

n
, (12)

where ω is the frequency at which to calculate the transmis-
sibility T (iω). The data was fit2 to Eq. (12) between 1

2 ωn ≤
ω ≤ 2ωn, with well-fit transmissibility around the resonance
peak at each measurement taken. Due to the influence of un-
modelled dynamics in the system, the model starts to deviate
from the measured data at higher frequencies. The natural fre-
quencies and damping ratios calculated from this curve fitting
are shown in Fig. 6. Comparing the results with the coil circuit
open and closed, the resonance frequencies remained constant
but the damping ratios changed. With the actuator connected,
movement of the actuator magnet caused eddy currents to be
induced in the coil, adding damping to the system.

The curve of the measured resonance frequencies (Fig. 6a) fol-
lows the same trend as the predicted natural frequencies (re-
drawn from Fig. 4c). However, their magnitudes are not well

1Calculated with Matlab’s tfestimate command.
2Using Matlab’s fminsearch.
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Figure 6. Analysed results from fitting the open loop measure-
ments to the isolator model of Eq. (12).
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matched. As the system approaches the quasi–zero stiffness
position, even small changes in alignment and physical toler-
ances have significant effects on the calculated instability re-
gion; as seen in the low end of the quasi-static measurements,
Fig. 4c, a fraction of a millimetre change in the position of the
top magnet can change the natural frequency by 25%. Associa-
tively, with larger magnet gaps the discrepancy becomes lower.
Therefore, the discrepancy seen between theoretical and mea-
sured results should be expected.

The resonance frequency of the system was unaffected by the
presence of the electromagnetic coil (which can also be ob-
served by comparing Figs 5a and 5b) but the damping was in-
creased significantly when the coil circuit was closed.

Observed nonlinear behaviour

The dynamics shown in the undamped case are more nonlin-
ear than the damped case; this is due to the greater displace-
ments experienced by the beam moving the magnets through
greater ranges of stiffness variation. When the transmissibility
is calculated as the transfer function between the input and out-
put signals, the system is assumed to be linear and nonlineari-
ties are rejected by the ratio of the cross-spectrum and power-
spectrum terms in Eq. (11). A different result can be shown by
instead calculating the transmissibility via a ratio of the indi-
vidual power spectra of the magnet and base:

T =
√

Pmm/Pbb, (13)

In this case, any nonlinearities in the signals are retained in the
final result.

The transmissibility calculated with this method is shown in
Fig. 7 for the coil in an open circuit (that is, low damping).
In this case, there are significant nonlinearities present in the
data, seen by a clear peak in each spectrum at close to twice
the ‘linear’ resonance frequency. When the coil is connected
and the damping present in the system increased, these non-
linearities are no longer seen (the results are indistinguish-
able to those shown in Fig. 5b). The reduced nonlinearity with
increased damping is consistent with the work of other re-
searchers (Jazar et al. 2006).
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Figure 7. Open loop measurements without the coil connected;
the transmissibility is calculated with Eq. (13). Black markers
show resonance frequencies and the points at twice each reso-
nance frequency, indicating the nonlinear behaviour.

Closed loop velocity feedback dynamic measurements
In this section, results are shown using closed loop feedback
control to improve the vibration isolation characteristics of the
system. For this experiment, the rest position of the spring was
chosen to achieve an arbitrary low resonance frequency (ap-
proximately 3.5 Hz). In this position, the electromagnetic coil
was used in a simple absolute velocity feedback controller in
an attempt to reduce the magnitude of the resonance peak. The
gain of the feedback control was increased until the system
became close to instability. Frequency response measurements
over this range of feedback gains are shown in Fig. 8. Sampling
parameters were as shown previously in Table 3.
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Figure 8. Closed loop frequency response measurements for a
range of velocity feedback gains. The maximum feedback gain
is close to instability for the system.

To estimate the velocity of the moving beam, the accelerom-
eter measurement was integrated by the charge amplifier with
a cut-on frequency of 1 Hz. Because the accelerometers were
being used to measure velocity (via integrators in the charge
amplifiers), the transmissibility curves shown in Fig. 8 were
calculated from the ratio of the velocity measurements instead
of acceleration measurements.

Due to the presence of higher-order dynamics in the structure,
a low pass filter was used to reject signals above 50 Hz. This
also ensured that aliasing was avoided when taking the fre-
quency response measurements and when feeding back the ve-
locity signal for the controller.

The overall improvement to the vibration isolation can be shown
by calculating the root-mean-square of the transmissibility over
a certain frequency range:

TRMS =

√
ω2

∑
ω=ω1

T (ω)2. (14)

The lower frequency limit is defined as ω1 = 1Hz, as the re-
sults become very noisy below this frequency. The upper fre-
quency limit ω2 = 11Hz was chosen as the higher-order dy-
namics (not shown in Fig. 8) have little impact below this fre-
quency.

Figure 9 shows the reduction in root-mean-square transmissi-
bility TRMS as the negative feedback gain increases. The overal
transmissibility reduction is calculated as 1−TRMS/T0, where
T0 is the root-mean-square transmissibility of the open loop
system. The resonance at 1 Hz observed in Fig. 8 as the feed-
back gain increases causes the overall transmissibility reduc-
tion to have a local maximum.
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Figure 9. Affect on overall transmissiblity TRMS between 1 Hz
and 11 Hz as velocity feedback gain was increased.

Analysis of the gain-induced resonance

The appearance of a low frequency peak at 1 Hz in Fig. 8 as
the feedback gain is increased is explained by the presence of
the high-pass filter incorporated in the accelerometer charge
amplifier, which also has a pole at 1 Hz. This behaviour has
been shown previously for single degree of freedom structures
with velocity feedback (Brennan, Ananthaganeshan, and El-
liott 2007). Here, the same type of analysis will be used to
investigate the response of a linear two degree of freedom iso-
lator system (shown in Fig. 10) with integrated accelerometer
measurements used for velocity feedback control.

m1

ẍ1

k b

m

ẍ2

K

f

Figure 10. Vibration isolation schematic with active feedback.

G1 G2∑

K

s2X1 s2X2

F

Figure 11. Block diagram of Eq. (16) representing the system
shown in Fig. 10.

In the time domain, the response of this linear system is given
by

mẍ2 = f −b
[
ẋ2− ẋ1

]
− k
[
x2− x1

]
, (15)

which can be re-written in the Laplace domain as

s2X2

[
m+b/s+ k/s2

]
︸ ︷︷ ︸

[G2]
−1

= F + s2X1

[
b/s+ k/s2

]
︸ ︷︷ ︸

G1

. (16)

This is shown as a block diagram in Fig. 11. If the control force
is written as a function of the acceleration of the mass, F =

s2X2K, the transmissibility of the system is

X2

X1
=

G1G2

1+KG2
. (17)

When the controller is some gain gc in series with an ideal in-
tegration of the accelerometer signal, K = gc/s, Eq. (17) sim-
plifies to the idealised absolute velocity feedback expression:

X2

X1
=

k+bs
k+
[
b+gc

]
s+ms2 . (18)

This result is plotted in Fig. 12a for equivalent values of stiff-
ness and damping as the experimental setup.

A more complex model for the controller block is required to
account for the signal processing involved with amplifying and
filtering the accelerometer signal to measure the velocity in
reality. Assuming that the entire process between acceleration
measurement and velocity output from the charge amplifier can
be approximated as an ideal integrator in series with two high
pass filters3 (Brennan, Ananthaganeshan, and Elliott 2007), the
controller block is defined as

K =
gc

s

[
s

s+ωc

]2
, (19)

where gc is the absolute velocity feedback gain and ωc is the
corner frequency of the two high pass filters in the charge am-
plifier.

Using Eq. (19) in Eq. (17) gives the final transfer function be-
tween the mass and base states,

X2

X1
=

[
bs+ k

][
s+ωc

]2
gcs3 +

[
ms2 +bs+ k

][
s+ωc

]2 . (20)

This is plotted versus frequency in Fig. 12b, where the reso-
nance induced by the high pass filter becomes apparent as the
feedback gain is increased to 99% of the gain margin, which
is the gain when the system becomes unstable. The simulation
uses linear parameters ω = 3.5Hz and ζ = 0.023 in order to
show results at similar behaviour to Fig. 8.

In order to calculate the gain margin of Eq. (20), KG2 was eval-
uated equal to −1, where the system response of Eq. (17) be-
comes unbounded. To do this, first the critical frequency was
found as the frequency at which Im(KG2) = 0; this frequency
was then substituted into Re(KG2) = −1, which was solved
for gc to find the gain margin.

Comparing the simulated results of Fig. 12b with the experi-
mental results of Fig. 8 shows a clear similarity between the
two. The corner frequency of the high pass filter at 1 Hz in the
charge amplifier to measure velocity is an impediment to the
vibration isolation properties of the feedback-controlled sys-
tem. This is a fundamental limitation in the use of accelerome-
ters for estimating velocity for vibration control. To avoid this
issue, the use of geophone sensors which measure velocity di-
rectly (such as used by Hong and Park (2010)) are a promising
alternative to integrated accelerometer measurements. How-
ever, geophones are not a panacea since their response rolls off
at low frequencies, limiting their performance at the frequency
range of interest in this case.

3One filter for the integration of the acceleration signal, another for the con-
ditioning electronics in the amplifier; assume for simplicity that they have the
same cut-on frequency.
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(a) Ideal velocity feedback.
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(b) Integrated accelerometer feedback with a second order high pass filter.

Figure 12. Closed loop simulation with gains 0, 5, 10, 20, 50, and 99 percent of the gain margin in Fig. 12b.

CONCLUSION

In this paper, the experimental results have been presented from
a magnetic system designed to demonstrate the ability of vari-
able stiffness through position changes of the load-bearing mag-
nets. As the system was brought closer to quasi–zero stiffness,
the resonance frequency reduced until the operating point be-
came too close to the position of marginal stability where even
slight disturbances would yield instability. The minimum reso-
nance frequency that could be achieved passively with this sys-
tem was around 2 Hz. A lower resonance frequency than this
could potentially be achieved with larger magnets with larger
equilibrium magnet gaps, which would result in a larger phys-
ical region of stable operation near the quasi–zero stiffness po-
sition.

Without feedback control and without the actuator coil con-
nected, the system showed very small damping ratios of around
0.005; these were dependent on the distance between the mag-
nets at equilibrium. Connecting the non-contact electromag-
netic actuator increased this damping ratio to around 0.03–0.04
due to eddy currents induced in the coils from the permanent
magnet.

Dynamically, the system showed transmissibilities which could
be modelled well by standard single degree of freedom models.
With the very low damping of the open loop system, superhar-
monics were clearly visible in the variance gain but the reso-
nance peaks remained linear-like. Once the actuator was con-
nected, the additional eddy current damping suppressed these
nonlinearities.

Absolute velocity feedback control was successful in reducing
the transmissibility peaks, but as the gain was increased the
additional poles added by the integration filters caused an ad-
ditional lower frequency peak to appear as the closed loop sys-
tem approached the gain margin. At best, the resonance peak
was reduced by over an order of magnitude and the root mean
square transmissibility was reduced by around 65%.
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