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ABSTRACT

Negative stiffness mechanisms have seen renewed attention in recent years for their ability to reduce the resonance
frequency of a structure without impeding their load-bearing ability. Such systems are often described as having quasi-
zero stiffness when the negative stiffness is tuned to reduce the overall stiffness of the system as close to zero as possible
without creating an instability. The system analysed in this work consists of a vertical spring for load bearing, and two
symmetric inclined springs which behave with a snap-through effect to achieve negative stiffness. While this structure
has been analysed extensively in the literature, generally only the stiffness in the vertical direction has been considered in
the past. Here, the horizontal stiffness is assessed as well, and it is shown that it is possible to achieve quasi-zero stiffness
in both directions simultaneously if the spring stiffnesses and pre-loads are chosen sufficiently. Attention is paid to the
tuning required in order to set the equilibrium point at a position which is arbitrarily close to having quasi-zero stiffness
while avoiding issues arising from mechanical instability.

INTRODUCTION
In recent years a number of nonlinear systems have been pro-
posed for vibration isolation to overcome the trade-off between
low stiffness and high load bearing. These systems in general
use a combination of positive and negative stiffness elements
to achieve a localised region of ‘quasi–zero stiffness’ at or near
the equilibrium position of the system (Xing, Xiong, and Price
2005).

One system that exemplifies this idea involves using a repelling
magnet pair to provide load bearing and an attracting magnet
pair to provide negative stiffness (Robertson, Kidner, Cazzolato,
and Zander 2009; Zhu, Cazzolato, Robertson, and Zander 2011),
which has been investigated previously by the authors. The
noncontact forces of the magnetic system make them well-
suited for online tuning (Zhou and Liu 2010; Xu, Yu, Zhou, and
Bishop 2013), but the inherent instability of magnetic systems
can add complexity to the control required.

While flexible structures have been shown to operate in a similar
manner (Tarnai 2003; Cella, Sannibale, DeSalvo, Marka, and
Takamori 2005; Lee, Goverdovskiy, and Temnikov 2007), the
most commonly investigated structure for achieving quasi–zero
stiffness involves arrangements of inclined mechanical springs
which generally operate in ‘buckling’ regimes such as the spring
arrangement shown in Figure 1 (Molyneux 1957; Alabuzhev,
Gritchin, Kim, Migirenko, Chon, and Stepanov 1989; Carrella,
Brennan, and Waters 2007; Carrella, Brennan, Kovacic, and
Waters 2009). This system consists of a load bearing vertical
spring in parallel with a pair of inclined springs that behave in
a buckling regime. Generally, analyses of this system have only
considered its stiffness properties in a single degree of freedom,
in the direction of the primary load bearing.

This paper consists of an analysis of the quasi-static behaviour
of this inclined spring system and re-formulates the force and
stiffness characteristics in both vertical and horizontal direc-
tions, describing in some detail the approach by which low
stiffness in both directions can be achieved. Low stiffness in
the vertical direction has been previously documented (as cited
previously) due to the negative vertical stiffness of a pair of hor-
izontal springs in compression. Low stiffness in the horizontal
direction is newly analysed here, which is achieved due to the
negative stiffness in the horizontal direction of the load-bearing
vertical spring.

GEOMETRY
Figure 1a shows the planar inclined spring system without load
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(a) Inclined springs in their uncompressed state, corresponding to a vertical
displacement of z = h.
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(b) Inclined springs at a position of maximum negative stiff-
ness, corresponding to a vertical displacement of z = 0.

Figure 1. Negative stiffness inclined springs in parallel with a
positive stiffness spring.

(that is, with undeflected springs) and Figure 1b shows the same
system after deflection to the position which has the potential
of achieving ‘quasi–zero stiffness’, which is the position of
maximum compression of the inclined springs. The overall
stiffness of the system must be tuned to support the mass of the
load at this position.

At the unloaded state shown in Figure 1a, all springs are con-
sidered to be in their uncompressed state; with inclined spring
lengths L0 =

√
h2 +w2 and vertical spring length H0 = ηL0,

where η is denoted the ‘length ratio’ between the vertical and
inclined springs. The inclined springs each have stiffness ki and
the vertical spring has stiffness kv = αki, with α denoted the
‘stiffness ratio’ between the vertical and inclined springs. The
stiffness and deflection properties of the springs are summarised
in Table 1.
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Table 1. Properties of the springs in the quasi–zero stiffness
inclined spring system defining stiffness ratio α and length ratio
η .

Spring Stiffness Undeflected length

Inclined ki L0 =
√

h2 +w2

Vertical kv = αki H0 = ηL0

The position of maximum compression of the inclined spring,
shown in Figure 1b, defines the displacement origin of the
system, where z is the displacement in the load bearing direction,
and x is the displacement in the non–load bearing direction (this
is used later for the derivation of the horizontal stiffness of the
system).

The deflected lengths of the springs from displacement (z,x)
are L(z,x) for the inclined spring and H(z,x) for the vertical
spring. The compressed length of the inclined spring (on the
left) is

L(z,x) =
√

x2 +
[
w+ y

]2
, (1)

and the vertical spring length is

H(z,x) =
√

x2 +
[
z−h+H0

]2; (2)

note that L(h,0) = L0 and H(h,0) = H0.

The geometry that has been chosen uses linear springs that
are all arranged to be undeflected in the unloaded state of the
system. Kovacic, Brennan, and Waters (2008) have explored
the effects of including pretension and the use of nonlinear
softening springs for vertical vibration isolation.

VERTICAL FORCES

The forces on the mass are calculated by looking at the compo-
nents of the forces due to each spring individually. The force
due to the inclined spring (on the left of Figure 1a), in the
direction of the spring, is given by

Fi(z,x)=
[
L0−L(z,x)

]
ki =

[√
h2 +w2−

√
x2 +

[
w+ y

]2]ki.

(3)

Assuming only vertical displacement (x = 0), the vertical com-
ponent of this inclined spring force is

Fiv(z) = Fi(z,0)
x

L(z,0)
= zki

[√
h2 +w2
√

w2 + z2
−1

]
. (4)

It is convenient to normalise this result by representing the
lengths and displacements as ratios of the uncompressed height
of the inclined springs. With the coordinate substitutions ξ =
z/h and γ = w/h, the inclined spring force in the vertical direc-
tion can be written in non-dimensional form as

Fiv(ξ )

hki
= ξ

[√
γ2 +1

γ2 +ξ 2 −1

]
, (5)

where γ is denoted the ‘geometric ratio’ of the system and ξ

the normalised displacement.

This is a different normalisation than used in the literature (Car-
rella, Brennan, and Waters 2007; Carrella, Brennan, Kovacic,
and Waters 2009); note that here γ = 0 corresponds to unloaded
inclined springs at 90° (that is, vertical) before compression,
and γ = ∞ corresponds to unloaded inclined springs at 0° (that
is, horizontal). In the coordinate system used here, the displace-
ment origin z = 0 corresponds to the position of maximum

compression of the inclined springs; that is, when they are
horizontal.

Figure 2a illustrates the force characteristic of Eq. (5) versus
normalised displacement for a range of geometric ratios γ . The
‘snap-through’ forces that cause the negative stiffness are espe-
cially strong for smaller values of geometric ratio γ (that is, the
more vertical the spring angles before deflection in Figure 1a).
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(a) Vertical force due to inclined springs only using Eq. (4) for a range of geometric
ratios γ .
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(b) Normalised vertical force characteristic of the system calculated with Eq. (8).
Minimum displacements are calculated from Eq. (9); these termination points
represent the limiting case of the vertical spring being compressed to zero length.

Figure 2. Vertical forces due to the inclined springs. γQZS is the
value of γ for which quasi–zero stiffness is achieved at ξ = 0,
calculated from Eq. (12).

The total vertical force produced by the system, Ftv(z), is cal-
culated by combining Eq. (4) for each inclined spring with the
force due to the vertical spring:

Ftv(z) = 2Fiv(z)+Fvv(z) . (6)

For vertical displacements, the force due to the vertical spring
is given by

Fvv(z) =
[
h− x

]
kv, (7)

and the total force in the vertical direction can be nondimen-
sionally represented by

Ftv(z)
hki

=−ξ α +α +2ξ

[√
γ2 +1

γ2 +ξ 2 −1

]
, (8)

recalling that α = kv/ki is the stiffness ratio between the vertical
and inclined springs. This equation is depicted in Figure 2b for a
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unity stiffness ratio (α = 1), where it can be seen that by select-
ing the geometric ratio γ appropriately it is possible to generate
a local region of low stiffness at displacement ξ = 0, approach-
ing the quasi–zero stiffness condition under ideal circumstances.
The calculation for γQZS , the value of the geometric ratio γ for
which quasi–zero stiffness is achieved, will be shown later in
Eq. (12).

The force curves in Figure 2b terminate at a certain point in
the negative displacement region, which corresponds to the
maximum possible compression of the vertical spring, given
by the condition H(zmin,0) = 0. In other words, the spring has
been compressed to zero length (which would be troublesome
to achieve in practice). This condition can be solved for zmin
and subsequently normalised for the equivalent ξmin, which are
given by

zmin = h−H0, ξmin = 1−η

√
γ2 +1. (9)

VERTICAL STIFFNESSES

The vertical stiffness characteristic, Kv, of the system is calcu-
lated by differentiating the vertical force, Eq. (8), with respect
to vertical displacement z:

Kv =−
d
dz

Ftv(z) , (10)

Kv

ki
=−2γ

2

√
γ2 +1[

γ2 +ξ 2
]3 +α +2. (11)

Graphs of the normalised vertical stiffness Kv/ki versus nor-
malised displacement ξ are shown in Figure 3a together with
the associated horizontal stiffness (Figure 3b), which will be
analysed in the next section. The parameter selection required
to achieve a quasi–zero stiffness condition in the vertical direc-
tion can be found by solving Eq. (11) for Kv = 0 at ξ = 0. This
results in the relation

γQZS =
2√

α2 +4α
(12)

which is used as the reference value of the geometric ratio γ for
the results shown in Figures 2 and 3.

Achieving exactly quasi–zero stiffness with this spring is not
feasible in practice as the stiffness characteristic becomes nega-
tive for γ < γQZS , as shown in Figure 3a. This is important as
the geometric ratio γ will have some uncertainty in its value due
to environmental conditions such as temperature and physical
imperfections such as creep. The deviation of γ from γQZS , ε ,
can be defined by

γ =
[
1+ ε

]
γQZS. (13)

Figure 4a shows the total vertical force, Ftv(z), of the system
for ε ∈ {−0.1,0,0.1}. It can be seen that negative values of ε

(that is, a geometric ratio less than that for quasi–zero stiffness)
correspond to negative stiffness at normalised displacement
ξ = 0. A system in this condition is in a position of unstable
equilibrium, and will move towards and remain at the position
of stable equilibrium indicated in the figure rather than the
design point at ξ = 0.

Figure 4b plots the stiffness at this deviated equilibrium point as
ε varies; in the unstable zone, the system will move to the equi-
librium point shown in Figure 4a away from ξ = 0. (With suffi-
cient excitation the system will ‘snap though’ from one equilib-
rium position to another with a resulting displacement profile
that is comparatively large given the excitation amplitude; this
mechanism has been proposed as a useful phenomenon for en-
ergy harvesting purposes (Ramlan, Brennan, Mace, and Kovacic
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(a) Normalised vertical stiffness of the system calculated with Eq. (11).
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(b) Normalised horizontal stiffness of the system calculated with Eq. (19).

Figure 3. Vertical and horizontal stiffness characteristics for
a range of geometric ratios γ at α = 1. Plots are labelled with
their ratio to γQZS , which is calculated for a length ratio of
η = 1.

2009).) It can be seen that the stiffnesses in the stable region for
ε > 0 are smaller than the stiffnesses in the equilibrium region
for ε < 0. This highlights the importance of never breaching
the ε < 0 instability condition. Therefore, a chosen value for
the geometric ratio γ will approach γQZS but always be slightly
greater in order to retain stability of the equilibrium position.

HORIZONTAL STIFFNESS CHARACTERISTIC

Now that the vertical stiffness characteristics of the system have
been analysed and a condition derived to achieve quasi–zero
stiffness in that direction, the same approach will be taken for
the horizontal behaviour.

In order to calculate the horizontal stiffness of the system, the
force from the vertical spring needs to be represented in terms of
both vertical and horizontal displacements. This force, aligned
in the direction of the nominally-vertical spring, is

Fv(z,x) =
[

ηL0−
√

x2 +
[
−h+ z+ηL0

]2]kv, (14)

recalling that x is the displacement of the mass in the horizontal
direction. Substituting x = 0 into Eq. (14) yields the previous
Eq. (7). The horizontal component of this force is

Fvh(z,x) = Fv(z,x)
x

H(z,x)
. (15)
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(b) The stiffness at equilibrium as ε varies; as the stiffness becomes negative, the
stiffness shown corresponds to the stable point of equilibrium shown in the figure
adjacent.

Figure 4. Force and stiffness of the inclined spring system near
quasi–zero stiffness, showing the effect of unstable equilibrium.

Similarly, the horizontal component of the force from the in-
clined spring on the left (referring to Figure 1a) is given by

Fih(z,x) = Fi(z,x)
w+ x
L(z,x)

, (16)

and the horizontal component of the force from the inclined
spring on the right is

Fih(z,x)
∣∣∣∣
right

=−Fih(z,−x) . (17)

The stiffness characteristic in the horizontal direction, Kh, is
derived in a similar fashion to the vertical stiffness. The total
force in the horizontal direction is

Fth(z,x) = Fih(z,x)−Fih(z,−x)+Fvh(z,x) , (18)

using Eqs (15) and (16). Differentiating with respect to horizon-
tal displacement x and evaluating at x = 0 gives the horizontal
stiffness characteristic as the vertical displacement varies,

Kh

ki
=−2ξ

2

√
γ2 +1[

γ2 +ξ 2
]3 +

α
[
ξ −1

]
η
√

γ2 +1+ξ −1
+2. (19)

This equation has been previously graphed together with the
vertical stiffness in Figure 3 on the preceding page. In these

figures, it can be seen that while the vertical stiffness is zero at
normalised displacement ξ = 0 and geometric ratio γ = γQZS
(which is as derived), the horizontal stiffness exhibits separate
behaviour, and can even be negative (that is, unstable) for values
of γ lower than around 1.25γQZS .

Since the vertical stiffness and horizontal stiffness are indepen-
dent, further analysis into the behaviour of the horizontal stiff-
ness at the vertical quasi–zero stiffness condition is warranted.
Substituting the quasi–zero stiffness condition of Eq. (12) into
Eq. (19) at displacement ξ = 0, gives the normalised horizontal
stiffness as a function of stiffness ratio α:

Kh

ki

∣∣∣∣
V. QZS

= 2−α

 [
α +2

]
η√

α
[
α +4

] −1

−1

. (20)

This equation is depicted in Figure 5; it can be seen that the
horizontal stiffness of the spring may be chosen by varying
both the spring stiffness ratio α and the spring length ratio η .
Since the length ratio η is not found in Eq. (11), the horizontal
and vertical stiffnesses may be tuned independently in order to
achieve quasi–zero stiffness in both simultaneously.
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Figure 5. Horizontal stiffness characteristic at the vertical quasi–
zero stiffness condition for varying stiffness ratio α and length
ratio η , calculated with Eq. (20).

To obtain quasi–zero stiffness in the horizontal direction, Eq. (20)
is solved at Kh = 0, showing a relationship between α and η

when the quasi–zero stiffness condition is achieved in both the
vertical and the horizontal directions.

αQZS(η) = 2
[√

η2 +1−1
]
, or

ηQZS(α) =
1
2

√
α
[
α +4

]
.

(21)

As a consequence, increasing η (say, in order to reduce the
compression of the vertical spring) results in an increasing value
of the vertical spring stiffness in order to remain at quasi–zero
stiffness.

Using αQZS from Eq. (21) in the stiffness equations (11) and (19)
allows the stiffness characteristics of the system in the two di-
rections to be compared when both have quasi–zero stiffness
simultaneously. Considering the vertical stiffnesses first in Fig-
ure 6a, it can be seen that increasing the length ratio η increases
the vertical stiffness gradient, which is an important parameter
to be kept small in order to mitigate possible nonlinear dynamic
effects that may arise due to a large rate of change of stiffness
over displacement.
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Figure 6b illustrates that the quasi–zero stiffness condition is
always marginally unstable in the horizontal direction since neg-
ative displacement will result in negative stiffness. In practice
this requires that the system be tuned slightly away from the
quasi–zero stiffness condition in the horizontal direction after
accommodating for the maximum disturbance displacement of
the isolator. It is possible to do this without compromising the
quasi–zero stiffness condition in the vertical direction because
the spring length ratio η does not affect the vertical stiffness.

As an example, Figure 7 shows the horizontal stiffness for a
stiffness ratio detuned by five percent below that required for
quasi–zero stiffness (that is, α = 0.95αQZS). In comparison
with Figure 6b, the spring has a stable displacement range of
approximately ξ = ±0.025. Provided that the spring length
ratio η is large enough, the horizontal stiffness at ξ = 0 is still
significantly reduced.

Therefore, there is a direct compromise between the nonlinearity
of the stiffness in the vertical direction (which increases with η)
and the amount of stiffness reduction in the horizontal direction
(which decreases with η).

η = 1

η = 1.5

η = 0.5

η = 2

Normalised displacement, ξ

N
o
rm

.
v
er
t.
st
iff
n
es
s
K

v
/k

i

0.00 0.05 0.10 0.15 0.20−0.05−0.10

0.0

0.1

0.2

0.3

0.4

0.5

(a) Normalised vertical stiffness of the system.
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(b) Normalised horizontal stiffness of the system; negative displacement will result
in negative stiffness.

Figure 6. Vertical and horizontal stiffness characteristics at
quasi–zero stiffness in both directions, for a range of spring
length ratios, η .

SPRING COMPRESSION

One factor that has not been addressed with this particular
design is the amount of spring compression required at the
equilibrium position of quasi–zero stiffness. The total allowable
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Figure 7. Normalised horizontal stiffness of the system at α =
0.95αQZS in order to obtain a small range of displacement
around ξ = 0 with positive stiffness (compare with Figure 6b
which has negative stiffness for ξ < 0). The vertical quasi–zero
stiffness condition is unaffected.

compression will be limited by the shape and properties of
the springs themselves. By adjusting the design parameters of
the inclined spring system, the amount of compression in each
spring at equilibrium can be selected.

The amount of spring compression can be analysed with a
metric here called the ‘compression ratio’ related to the un-
compressed spring length. For the inclined and vertical springs,
respectively, the compression ratios Ci and Ci are given by

(22)Ci = 1− L(z,x)
L0

, Cv = 1− H(z,x)
H0

.

This metric for the compression ratio was chosen to be zero for a
spring in its uncompressed position and unity if it is compressed
to its full length (which is the theoretical limit for springs in
compression).

The compression ratios were evaluated at the quasi–zero stiff-
ness condition in both directions; that is, (z,x) = (0,0), γ =
γQZS , and η = ηQZS (see Eqs (12) and (21)), yielding

(23)Ci

∣∣∣
QZS

=
α

α + 2
, Cv

∣∣∣
QZS

=
2

α + 2
.

The compression ratios of the vertical and inclined springs
at quasi–zero stiffness are shown in Figure 8 as functions of
varying spring stiffness ratio α . (Recall that quasi–zero stiffness
is achieved by adjusting η for each specified value of α with
the relationship shown in Eq. (21).) These results show that a
large compression (greater than fifty percent) in at least one of
the springs is required to achieve quasi–zero stiffness.

THE GENERAL APPLICABILITY OF THE INCLINED
SPRINGS SYSTEM

In order to adapt this system to withstand time-varying load
conditions, both the anchor positions of the inclined and the
vertical springs must be adjusted in order to tune for, first,
the required load bearing, and second, the amount of negative
stiffness required to achieve quasi–zero stiffness in the vertical
direction.

Dynamically changing the system for quasi–zero stiffness in
the horizontal direction requires that either the uncompressed
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Figure 8. Compression relationship of the springs for a range of
spring stiffness ratios, at quasi–zero stiffness both horizontally
and vertically. A compression of 100% implies a change in
displacement of the entire spring length, which is difficult to
realise in practice.

spring lengths or the spring stiffnesses be adjustable during
operation. Since the deflection properties of the spring cannot
be adjusted, a time-varying stiffness is required. This could be
achieved, for example, with magnetorhealogical fluid springs;
others have achieved such effects using leaf springs in a four-bar
linkage (Choi, Hong, Lee, Kang, and Kim 2011).

Note that the principles discussed for horizontal stiffness can
be extended to a three-dimensional system, most easily with
a rotationally-symmetric structure with horizontally aligned
springs in each plane.

CONCLUSION
This paper has analysed the horizontal stiffness characteristics
of a common quasi–zero stiffness arrangement that uses linear
mechanical springs. This system has been analysed extensively
in the literature with respect to its vertical stiffness properties
and its suitability for vibration isolation; this work has shown
that with correctly tuned spring stiffnesses, low horizontal stiff-
ness can be achieved simultaneously with low vertical stiffness.
However, the tuning required to maintain quasi–zero stiffness
for this spring arrangement is difficult to achieve in practice.
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