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ABSTRACT 
An approach to forming a training data set for active sonar classification from the free-field noiseless echoes of un-
derwater objects is considered. The approach has been tested on simulated data based on laboratory measurements. 
Both the test and the training data are generated from the clean data by applying two environment parameters: noise 
and a channel maltipath. It was investigated how well the parameters of the channel used for forming the training data 
should match those used for generating the test data. The dependence of classification accuracy on the pulse fre-
quency bandwidth was also investigated and shown to increase with increasing bandwidth.. Some knowledge of the 
environment is required for the application of this approach to real sonar data. 

INTRODUCTION 

An ability to classify active sonar echoes is important in 
Anti-Submarine Warfare (ASW). The supervised classifica-
tion techniques, which are used in this paper, require training 
data for each object class (Theodoridis & Koutroumbas, 
2006). In the most common approach to active sonar classifi-
cation, all sonar echoes are divided into two classes: those 
originating from the target of interest, such as a submarine, 
and all other, non-target, echoes. The training data for both 
classes should be representatively sampled from all possible 
echoes to provide good classification accuracy. In the under-
water environment this task is complicated by the fact that 
the echoes from the objects are distorted by the propagation 
effects, such as multipath, reverberation etc. As a result of 
this, training classifiers on the echoes obtained from targets 
in the free-field, noiseless conditions does not necessarily 
lead to accurate classification of the echoes from the same 
targets because they are modified by the propagation in the 
underwater environment (Ainslie, 2010). Obtaining the free-
field data for the targets of interest is not an easy task. It is 
much more difficult, however, to obtain echoes from these 
targets in all possible environments to form a universal train-
ing data set. It is therefore of interest to develop a classifica-
tion approach based on the noiseless free-field target echoes, 
or in other words clean training data, to classify target echoes 
distorted by the underwater propagation. 

In mathematical terms the problem can be formulated as 
follows. Assuming that we have clean target echoes ( )

( )
txi , 

classify the test echo  distorted by the propagation, so 
the recorded echo available to the classifier is  

tx

( ) ( ) ( ) ( )twtxthtz +⊗= , 

where  is the propagation transfer function and ( )th ( )tw  is 
the noise. There are several solution strategies for this prob-
lem. They include: 
- Use of channel invariant features, i.e. the features not 

affected by the propagation (Okopal et al., 2008).  
- Use of the so-called blind deconvolution to reconstruct 

the clean target signal (Kil & Shin, 1996). This method 
required some knowledge of the environment parameters. 

- Use of forward modelling to modify the clean data by the 
propagation and use it as the training data. This method 

also requires the knowledge of the environment (Liu et 
al., 2004).  

In the present research we apply forward modelling for a 
range of environmental parameters to form the training data 
set and investigate how well we need to know the environ-
ment for building the training data set.  

DATA DESCRIPTION 

The clean acoustic data for this research were obtained in the 
water tank located in the Underwater Acoustic Scattering 
Laboratory (UASL) at Maritime Operations Division of 
DSTO. Two objects were used to represent different classes: 
a model of a generic submarine and a concrete cylinder of 
similar size. The generic submarine model is made of brass 
with a hull length of about 700 mm and a diameter of 80 mm. 
The concrete cylinder length is 560 mm and the diameter is 
72 mm.  

A schematic diagram of the experiment setup for the acoustic 
scattering measurements is shown in Figure 1. To collect 
acoustic scattering data, the object was suspended in the tank 
on four thin wires at a depth of 2 m. The tank is of 9 m 
length, 6 m width and 4 m depth. The acoustic unit trans-
ducer, which combines both transmitter and receiver in one 
housing, was positioned about 4 m away from the object at 
the same depth. The object was insonified with short pulses 
of 200 μs in duration. The echoes of the objects were re-
corded by the data acquisition system. The aspect angle of 
the object with respect to the transmitter was changed in the 
range from -5 to 362 degrees with one degree increment re-
sulting in 368 echoes for each object. In case of the subma-
rine model, zero degree aspect angle corresponds to the posi-
tion of the model with its bow directed towards the transmit-
ter. Similar for the cylinder, zero aspect angle means that its 
axis is aligned with the direction to the transmitter. 
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Figure 1. Setup for scattering measurements in UASL tank. 

At each aspect angle four incident pulses with different fre-
quency bandwidth were used. A technique of modifying the 
input pulse to account for the transfer function of the trans-
mitter in order to generate incident pulses with sufficiently 
flat spectrum within the bandwidth was applied (Swincer et 
al., 2012). The following four frequency bands of the incident 
pulses were used:  

- band 1: 80 – 220 kHz; 
- band 2: 100 – 200 kHz; 
- band 3: 120 – 180 kHz; 
- band 4: 140 – 160 kHz. 

The power spectra of the four incident pulses are shown in 
Figure 2. 

 
Figure 2. Power spectra of the incident pulses. 

The echoes of the objects are strongly aspect dependent. This 
is clearly visible in Figure 3, where the so-called hour-glass 
plots of echoes of the generic submarine and the concrete 
cylinder are shown for the incident pulse with the frequency 
bandwidth of 80-220 kHz (band 1). These plots show the 
absolute value of the return signal in two dimensions: time 
and aspect angle. Thus, at the aspect angle of zero degrees, 
the earliest highlight is from the bow of the submarine model, 
the middle is from the fin, and the last is from the tail struc-
ture. At the aspect angle of 180 degrees the sequence of high-
lights is opposite. Of course the shortest and strongest echoes 
are at the aspect angles of 90 and 270 degrees, when the ob-
ject is positioned with its side facing the transmitter. One can 

see from the figure that the clean data from the two different 
objects have clearly different structure. The submarine model 
data have fewer well structured highlights reflecting the sim-
ple design of the generic model. The data in the bottom plot 
have many randomly positioned highlights due to the rough 
surface of the cylinder with numerous cavities randomly 
located on the surface. 
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Figure 3. Hour-glass plot of echoes from the generic subma-
rine (top) and concrete cylinder (bottom) for the incident 

pulse with the frequency bandwidth of 80 - 220 kHz (band 1). 

The power spectra of the two objects are summarised in 
Figure 4 as two-dimensional frequency – aspect plots. The 
data in this plot are shown again for the bandwidth of band 1, 
80 – 220 kHz. 
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Figure 4. Frequency – aspect power spectrum plots for the 
generic submarine model (top) and the concrete cylinder 

(bottom) for the incident pulse with the frequency bandwidth 
of 80 – 220 kHz (band 1). 

CLASSIFICATION FEATURES AND 
ALGORITHM 

In this research we use the kernel ridge regression classifier 
as described in Saunders et al. (1998). The algorithm may be 
summarized as minimizing a quadratic loss function: 

( )( )∑
=

−+=
l

i
ii gyL

1

22 xwλ , 

where  is the data vectors of the training samples, 

 is their class labels, and λ > 0 regulates the norm. Given 
the training data, the classification algorithm finds the real 
valued linear function 

lii ≤≤1,x

iy

( ) ( )xwx φ,=g  that minimizes the 

above quadratic loss function. The function ( )xφ  maps data 
vector  into the feature space. It can be shown that the label 
g(x) of a test vector x is calculated as 

x

testλtrain KΙKyx 1)()( −+′= λg  

where y is the vector of class labels of the training data. For 
example we may assign y = -1 for elements of class 1 and y = 
1 for elements of class 2.  is the identity matrix of dimen-
sion l corresponding to the number of training examples. The 
training and test kernel matrices,  and  are formed 
from training and test data vectors according to a selected 

kernel function. In this article we use the polynomial kernel, 
. 

λΙ

trainK testK

p

( )

c)( +><= zx,z)K(x,

There are many approaches to calculating features from the 
active sonar echoes. In this report we limit ourselves to the 
set of twenty five features described in Tucker&Brown 
(2005). The features are based on the Short-Time Fourier 
Transform of the object echoes. 

The results of classification can be presented in a different 
form such as the Receiver Operating Characteristic (ROC) 
curve, confusion matrix etc. Here we use two criteria to esti-
mate the performance of the classification: the area under the 
ROC curve (AUC) and the average accuracy of classification. 
Those criteria are single valued parameters allowing presen-
tation of the results of classification in a simple form. The 
average accuracy of classification is the average of the di-
agonal elements of the confusion matrix. In other words, it is 
the average of true positive and true negative classifications 
of the test data echoes. 

The ROC curve is built by changing the decision threshold 
and calculating corresponding True Positive Rate (TPR) ver-
sus False Positive Rate (FPR). The True Positive Rate is 
calculated as the ratio of True Positives to the total number of 
Positives, and the False Positive Rate is calculated as the 
ratio of False Positives to the total number of Negatives. In 
our implementation the elements of class one are considered 
as Positives and the elements of class two are as Negatives. 
The decision threshold is specific to a classifier. 

To build the ROC curve for the Ridge Regression Classifier 
we threshold the decision function . In its traditional 
form the decision is made according to the following rule: 

xg

( )
( ) N

Pg
∈>
∈<

xx
xx

,0g if
,0 if   

where P  stands for Positives, or class one, and  denotes 
negatives, or class two. Introducing threshold in the decision 
rule will result in the following rule: 

N

( )
( ) NT

PTg
∈>
∈<

xx
xx

,g if
, if  

The ROC curve is built by sweeping the threshold in the 
interval ( )( ) ( )( )xgTxg maxmax ≤≤−  and counting True 

Positives and False Positives for each value of the threshold.  

The AUC can be calculated by numerical integration of the 
ROC curve or directly according to the following equation: 

( ) ( )
−+

= = >∑ ∑
+ −

−+

=
nn
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n

i

n

j xgxg ji1 1
1
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where  and  denote the positive and negative samples, 
respectively,  and  are the number of positive and 
negative samples, respectively.  is defined to be 1 if the 
predicate 

+x −x
+n −n

π1
π  holds and 0 otherwise. 

SYNTHETIC DATA GENERATION 

To test the classification approach we use synthetic active 
sonar data generated from the laboratory acoustic scattering 
data described above. The synthetic data are generated by 
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( )

applying the channel filter and noise to the clean data echoes 
obtained in the laboratory in a free-field noiseless environ-
ment. Both test and training data are constructed in a similar 
way but using different values of parameters for the channel 
filter and noise. The algorithm for building the synthetic data 
is as follows. The clean data echo, , where  is the time 

sample index and k  is the aspect angle index, is convolved 
with the specially constructed channel filter, 

ixk i

( )fS;ih . The 

parameter  characterises echo elongation due to multipath. 

The randomly generated noise, 
fS

( )iw  is then added to the 
convolved signal: 

( ) ( ) ( ) ( )iwixSihiz kfk +⊗= ;  
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The construction of the base channel filter, , is taken from 
Anderson&Gupta (2008). We have introduced the parameter 

 to describe additional elongation of the echoes.  

0h

fS

The noise is generated as follows: 

( ) iriw α=  

where  is the random Gaussian number with zero mean and 
unit standard deviation. The coefficient 

ir
α  is calculated from 

the required SNR: 

( )
( )10/10

max
1 SNR

ir
−=α  

Figure 5 and Figure 6 show the effect of applying the noise 
and channel filter, respectively, to the clean data at a certain 
aspect angle. 

 
Figure 5. Effect of adding random noise to the clean data. 

 
Figure 6. Effect of applying channel filter to the clean data. 

RESULTS AND DISCUSSION 

In this research we generate the test data using a fixed single 
value of SNR and the channel parameter, , for all four 

frequency bands. The training data are generated for SNR 
and channel parameter values selected randomly from an 
interval: 

fS

( ) [ ]maxmin SNR,SNRSNR ∈tr    (1) 

( ) [ ]maxmin , ff
tr

f SSS ∈    (2) 

The above intervals include the corresponding values used 
for generating the test data. For each clean data echo  
training data echoes are generated with  pairs of SNR and 
channel parameter each time randomly selected from the 
above intervals. In this research  is used. Here we 
investigate how the width of the above intervals affects the 
classification accuracy.  

trN

trN

3=trN

First, we consider effect of the SNR interval. In this case we 
do not apply the channel filter to either the training or to the 
test data. The test data set is formed with SNR = 10 dB. 
Figure 7 shows the plots of the accuracy of classification as a 
function of the training data SNR range, or the length of the 
interval (1), minmax SNRSNR − . One can see from the figure 
that increasing the SNR range of the training data certainly 
leads to the decrease of the classification accuracy. However, 
it is still sufficiently high for the first two frequency bands. 
This plot also clearly shows the importance of the wide fre-
quency bandwidth for accurate classification. 
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Figure 7. Classification accuracy versus width of the training 

data SNR interval for four different frequency bands. No 
channel filter applied. 

Next, we apply a channel filter to both the test and the train-
ing data. First, we use the same channel filter parameter for 
both data sets, . In other words, 2=fS 2minmax == ff SS  in 

the equation (2). We should note here that even if we use the 
same channel filter parameter, , the filter still has an ele-

ment of randomness in it due to the way it is generated. 
Therefore every echo in both test and training sets is gener-
ated using a slightly different channel filter. This leads to a 
change in the dependence of the classification accuracy on 
the training data SNR range (

fS

Figure 8). 

The variation of the channel filter from echo to echo leads to 
some decrease in the classification accuracy for the first two 
bands. However, the classification for two narrower bands, 
bands 3 and 4, actually improves. It could be explained by 
the following. Pulses of the narrow frequency bands are more 
elongated comparing to the pulses of the wide frequency 
bands. As a result the hour-glass plots look more blurry for 
narrow frequency bands (Swincer et al., 2012). Obviously, 
multipath environment has the same effect of elongating, or 
blurrying, the object echoes. As a result, application of the 
channel filter blurrs the originally sharp wide band echoes 
and thus reduces the difference between the echoes of differ-
ent bands. 

 
Figure 8. Classification accuracy versus width of the training 
data SNR interval for four different frequency bands. Chan-
nel filter parameter Sf  =2 applied to both test and training 

data. 

Now we will use the same SNR of 10 dB for both the test and 
the training sets and change the channel filter parameter 

range for the training set. As before this means that in equa-
tion (1) dB10SNRSNR maxmin == . The channel filter pa-
rameter for generating the test data is kept constant, 3=fS , 

at the centre of the parameter  interval of the training data. 

The results of this test are presented in 
fS

minfS

Figure 9 for the classi-
fication accuracy and in Figure 10 for the area under the 
ROC curve. In both figures the horizontal axis shows the 
length of the channel filter parameter interval, i.e. 

maxfS − .  

 
Figure 9. Classification accuracy versus width of the training 
data  Sf interval for four different frequency bands. SNR=10 

dB for both test and training data. 

One can see from these figures that trying to include a wide 
range of multipath environments into the training data set 
may lead to a significant reduction in classifier performance. 
However, a reasonable range of multipath environments in 
the training data keeps the classifier performance at a suffi-
cient level. The question of course is what is the reasonable 
range of multipath environments. From Figure 6 we can see 
that change from no multipath to the channel filter with the 
parameter Sf = 5 gives a significant stretch to the echo. The 
question how this corresponds to the real environment can be 
answered using a higher fidelity acoustic environment model, 
which is left for future work.  

We also see from these figures that again, the performance of 
the classifier is better in the two widest frequency bands. 
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Figure 10. Area under the ROC curve versus width of the 
training data Sf  interval for four different frequency bands. 

SNR=10 dB for both test and training data. 

Finally, we generate the training data by randomly selecting 
both SNR and the channel filter parameter  in gradually 

increasing intervals. Again, the procedure of selecting both 
parameters is repeated three times, so for each combination 
of the intervals of SNR and the channel filter parameter the 
number of echoes in the training data set is three times the 
number of clean data echoes. As before, the test data set is 
generated from the clean data using SNR=10 dB and 

fS

3=fS . 

The results for the accuracy of classification are presented as 
surface plots in Figure 11 to Figure 14. As before, the per-
formance of the classifier decreases with increasing SNR and 
channel filter parameter intervals for the training data. Ap-
parently in these plots the effect of the channel filter parame-
ter is much stronger than that of SNR. 

 

Figure 11. Classification accuracy versus training data inter-
vals of SNR and the channel filter parameter. Test data pa-

rameters: SNR=10 dB, Sf  =3. Band 1. 

 

Figure 12. Classification accuracy versus training data inter-
vals of SNR and the channel filter parameter. Test data pa-

rameters: SNR=10 dB, Sf  =3. Band 2. 

 

Figure 13. Classification accuracy versus training data inter-
vals of SNR and the channel filter parameter. Test data pa-

rameters: SNR=10 dB, Sf  =3. Band 3. 

 
Figure 14. Classification accuracy versus training data inter-
vals of SNR and the channel filter parameter. Test data pa-

rameters: SNR=10 dB, Sf  =3. Band 4. 

CONCLUSION 

We considered an important issue in the active sonar classifi-
cation of correct selection of the training data. Obtaining 
training data in situ for all targets and environments is not 
possible. That is why various techniques based on the use of 
the so-called clean data obtained from either mathematical 
modelling or controlled free-field experiments are gaining 
popularity. Here we considered one of such approaches based 
on the forward modelling to generate the training data. The 
question we investigated here is how well the environment 
parameters used for generating training data should match to 
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those of the test data. We based our research on the clean 
free-field echoes obtained at the DSTO Underwater Acoustic 
Scattering Laboratory test tank for two objects: scale model 
of a generic submarine and a concrete cylinder of similar 
size. The measurements were conducted for four frequency 
bands to additionally investigate the influence of the fre-
quency bandwidth on the classifier performance. Both the 
test and the training data were generated from the clean data 
by applying two environment parameters: noise and a chan-
nel filter to model echo distortion due to multipath. While the 
test data echoes were generated using single values of SNR 
and the channel filter parameter, the parameters for generat-
ing the training data were randomly picked in gradually in-
creasing intervals centred on the values of the test data. 

As expected, the increase of the parameter intervals for gen-
erating the training data leads to a decrease of the classifier 
performance. However, the performance remains relatively 
high for reasonable intervals of SNR especially at the low 
values of the channel filter parameter. An increase in the 
channel filter parameter leads to a decrease in classification 
accuracy even in the cases when the same single value chan-
nel filter parameter was used for generating the training data. 
This is explained by the fact that the channel filter has addi-
tional randomness even at the same value of the channel filter 
parameter. This randomness results in difference between the 
echoes, which increases with increasing channel filter pa-
rameter. In the current research the channel multipath was 
modelled artificially to purely investigate the influence of the 
echo distortion on the classifier performance. In future work 
more realistic approach to accounting for the environment 
will be conducted using, for eaxmple, high-fidelity simula-
tion of echoes from objects in acoustic waveguide (Kou-
zoubov, 2005).  

All the results also show that the performance of the classifier 
is much higher when the pulses with wider frequency band-
width are used. 
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