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ABSTRACT 
The present authors previously obtained an exact solution for propagation of the incident acoustic plane wave in a 

wind-induced bubbly surface layer where sound speed gradient is high. Based on the solution, the dependence of the 

grazing angle of the energy flux vector of the incident wave at the surface on the grazing angle of the incident wave at 

the bottom of the layer was obtained and utilised for calculations of the surface reflection loss. However, the solution 

in its original formulation is represented via an infinite slowly converging series which makes the use of the solution 

in practical calculations difficult. In this paper, this solution is simplified with the assumption that the grazing angle 

at the bottom of the layer as well as some other parameters depending on the frequency and wind speed are small. 

The convergence of the infinite series is improved using a special technique. Approximate solutions are obtained for 

the cases where the small parameters can be neglected and where the terms up to the third order with respect to the 

small parameters are taken into account. Zones of validity are derived for the approximate solutions as well as for the 

Snell’s law of ray acoustics. The results of this paper allow the prediction of the grazing angle at the surface within 

the zones of validity of the approximate solutions using simple calculations with only the wind speed, the frequency 

and the equilibrium sound speed as the input parameters. 

INTRODUCTION 

Trapping acoustic energy within a medium, due to a favoura-

ble sound speed gradient, is a well-known effect. An example 

of duct trapping occurs within an isothermal surface layer in 

an ocean for which the sound speed increases with depth due 

to the increasing hydrostatic pressure. Formation of such a 

duct may lead to a significant increase in the propagation 

range, as is well known. 

At the same time, the propagation of sound wave in the layer 

is significantly complicated by the roughness of the ocean 

surface. Due to the roughness, the acoustic energy can be 

scattered in non-specular directions thus considerably in-

creasing the reflection loss and correspondingly decreasing 

the propagation range. As a result, the roughness of the ocean 

surface must be taken into consideration in any realistic mod-

el of sound propagation within the surface duct. 

Existing models of sound scattering at the rough ocean sur-

face usually take the grazing angle at the surface as an input 

parameter. In some instances the grazing angle at the surface 

can be calculated by means of Snell’s law of ray acoustics. 

However, in situations where the sound speed change in the 

surface duct is considerable on the scale of the acoustic 

wavelength, Snell’s law may no longer be applied for calcu-

lating the grazing angle and a wave-based theory becomes 

necessary for this purpose. For example, such a situation can 

be caused by the presence of air bubbles in the ocean near the 

surface. These wind-induced bubbles change the compressi-

bility of water thus leading to significant reduction of the 

sound speed near the surface. 

Jones et al. (2011) suggested a model for evaluating the loss 

of acoustic energy due to reflection from the rough ocean 

surface. The model was called “JBZ” by the authors and is 

based on the Hall-Novarini bubble population model (Hall, 

1989,  Keiffer et al., 1995) as well as on the calculations of 

the sound speed in the bubbly layer by Ainslie (2005). An 

integral part of the JBZ model is also a novel method of eval-

uating the grazing angle at the surface. The method is found-

ed on a wave-based solution of the wave equation in a verti-

cally stratified layer. The solution is based on a formulation 

provided by Brekhovskikh (1960) for a transitional layer 

between two media with different values of the equilibrium 

sound speed. This solution has been considered in detail by 

Zinoviev et al (2012). It has been demonstrated that, if the 

incident grazing angle at the bottom of the bubbly layer is of 

the order of a few degrees or less, the grazing angle at the 

surface may differ significantly from the value predicted by 

Snell’s law.  

The lesser of two values for the grazing angle at the surface, 

one of which was predicted by Snell’s law and the other one 

by the wave-based solution, has been utilised in calculations 

of the transmission loss using the JBZ model (Jones et al., 

2011). The results of the calculations have shown good corre-

lation with the results obtained using a Parabolic Equation 

transmission code. 

Although the JBZ model showed its validity, in the original 

formulation the solution for the grazing angle at the surface 

contains a slowly converging infinite series and depends on 

parameters of the layer which need to be obtained from 

matching the sound speed profile in the real layer and the 

transitional layer described by Brekhovskikh (1960). There-

fore, to make the wave-based method of calculating the graz-

ing angle at the surface more practicable, its theoretical for-

mulation needs to be simplified. 

This paper is devoted to finding and justifying simplified 

approximate solutions for the grazing angle at the surface. In 

the first section, the exact solution obtained by Zinoviev et al. 

(2012) is reviewed. In the second section, major steps in the 

derivation of the approximate simplified solutions are 

demonstrated. The third section contains justification of 

zones of validity of the obtained approximate solutions and 
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of the Snell’s law. Finally, in the fourth section, examples of 

the dependencies of the grazing angle at the surface on the 

incident grazing angle for different frequencies and wind 

speeds are shown and discussed. 

EXACT SOLUTION FOR SOUND 
PROPAGATION IN THE SURFACE LAYER 

Sound speed profile in the surface layer 

Zinoviev et al. (2012) showed that the sound speed profile 

based on the Ainslie’s calculations of sound speed in the 

mixture of water and bubbles can be well approximated by 

sound speed profile in the transitional layer considered by 

Brekhovskikh (1960). This derivation is reviewed below. 

Assume that the vertical coordinate, z, is directed from the 

surface. If the sound speed far below the surface layer is c0, 

the profile of the transitional layer can be determined by the 

following equation: 
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In Equation (1), N and m are parameters of the layer. N char-

acterises the “strength” of the layer and is determined by the 

following equation: 
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where  cs is the sound speed at the surface. As m = 0 corre-

sponds to an infinitely wide layer, whereas at m → ∞ the 

layer is infinitely thin, it can be said that 1/m describes the 

“thickness” of the layer. 

It is convenient to assume that the surface of water in the 

Ainslie’s layer does not coincide exactly with the surface 

z = 0 in the transitional layer, but, instead, it is located at 

some positive depth z = z0. In this case, the following equa-

tion provides the link between the parameters m and z0: 
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To determine m and z0, it is necessary to consider Equation 

(3) together with another equation chosen to make sure that 

the transitional layer profile represents the “best fit curve” for 

the Ainslie’s profile. This procedure is explained in detail by 

Zinoviev et al. (2012). 

Solution for the grazing angle at the surface 

Brekhovskikh (1960) showed that, if a plane wave with the 

wave vector, k0, approaches the transitional layer from below 

with the grazing angle, θ0, between the wave vector and the 

horizontal axis, x, the solution for the acoustic pressure with-

in the layer can be written with the use of hypergeometric 

series. By applying Brekhovskikh’s solution for the acoustic 

pressure to the transitional layer Zinoviev et al. (2012) de-

rived a system of equations for the grazing angle, θs, of the 

energy density vector, q, at the surface. The vector q is de-

termined via the acoustic pressure, p, and the particle veloci-

ty, v, as q = pv. After some parameter substitutions the sys-

tem of equations for finding θs takes the following form: 
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In Equations (4) to (14), as well as in the analysis below, p is 

the acoustic pressure, vn and vx are vertical and horizontal 

components of the particle velocity, ω=2πf is the cyclic fre-

quency of the acoustic wave (temporal dependence e-iωt is 

assumed), ρ is the equilibrium water density, G(ξ) is an infi-

nite series originating from the hypergeometric series, and δ 

and µ are auxiliary variables. The equilibrium sound speed 

far below the layer, c0, is assumed to be 1500 m/s. Equations 

(4) to (14) represent the exact solution for a plane wave prop-

agation in the transitional layer as no assumptions have been 

made about values of any of the parameters. 

DERIVATION OF APPROXIMATE SOLUTIONS 
FOR THE GRAZING ANGLE AT THE SURFACE 

Small parameters for approximations 

It is difficult to use Equations (4) to (14) in practical calcula-

tions for two reasons. First, they include an infinite series, 

G(ξ),  which is converging slowly near the ocean surface, 

where |ξ| → 1. Second, to find the layer parameters m, N and 

z0, it is necessary to know the real sound speed profile in the 

bubbly layer, which is not always feasible.  

However, it is possible to simplify the solution for θs by mak-

ing assumptions that some parameters are small and subse-

quently using Taylor series to neglect terms of higher orders 

with respect to these parameters. First of all, it is known that, 

during the sound propagation in the surface duct, the incident 

angles are normally not larger than a few degrees. Therefore, 
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it is reasonable to assume that the incident grazing angle at 

the bottom of the bubbly layer, 0, is small: 

0 3 0.052 rad 1.      (15) 

Also, some parameters of the bubbly layer in realistic condi-

tions can be considered to be small. Table 1 shows the pa-

rameters of the layer calculated for four values of the wind 

speed using the method described by Zinoviev et al. (2012). 

The wind speed in the present analysis refers to the height of 

19.5 m above the ocean surface. 

Table 1. Dependence of the calculated parameters of the 

layer on the wind speed. 

Wind 

speed, m/s 

5 7.5 10 12.5 

N 0.0043 0.014 0.034 0.064 

m, m-1 3.1 3.1 2.1 1.5 

z0, m 0.0010 0.0035 0.012 0.034 

It is clearly seen from Table 1 that, at the wind speeds of 

interest, the following assumptions can be made: 

0.1 1,N    (16) 

0 0.1 1.mz    (17) 

Taking into consideration Equations (15) to (17), all terms in 

a Taylor series containing θ0, N and mz0 of the second and 

higher orders are neglected in this analysis. 

At the same time, the parameters δ and µ determined by 

Equations (13) and (14) contain the small parameters multi-

plied by the ratio k0/m, which is proportional to the frequency 

and may be significantly larger than unity at frequencies of a 

few kilohertz. Therefore, terms of higher orders than the first 

one with respect to δ and µ are required to be taken into ac-

count. In this analysis, the terms containing δ and µ of the 

orders up to the third one are used and the terms of higher 

orders are neglected. 

Improving convergence of the infinite series 

Detailed description of the calculations leading to the approx-

imate solutions is considered to be outside the scope of this 

work. However, these calculations involve an important step 

– an application of a special technique to significantly im-

prove the convergence of the infinite series. This step is de-

scribed in this section. 

It is clear that the infinite series G(ξ) described by Equations 

(10) to (12) converges at all depths z > 0. Indeed, the term in 

the brackets in Equation (12) tends to unity if n → ∞. Also, 

the following condition is satisfied for the variable ξ: 

0 0
1.mz

z z
e

 
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However, close to the surface, where z → z0, the convergence 

is slow due to the small value of the exponent mz. Numerical 

experiments show that, for the series G(ξ) to converge, a 

large number of terms need to be taken into account. Obvi-

ously, derivation of a simplified approximate solution re-

quires this slow convergence to be improved. 

Such improvement is carried out here using Kummer’s trans-

formation (Linton, 1998). After expanding into Taylor series 

over small parameters the term in the brackets in Equation 

(12) can be written as follows: 
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Now the infinite series G(ξ) takes the form of 
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According to Kummer’s transformation, the sum of an infi-

nite converging series, xn, can be represented by the follow-

ing equation: 
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Assume the sum S in Equation (23) can be found analytically. 

The infinite series in the right-hand part of that equation con-

verges much faster than the series in the left-hand part, as the 

two terms in the brackets asymptotically tend to each other 

and their difference tends to zero with increasing n. 

For the series G(ξ) under consideration, it can be found nu-

merically that the coefficients an at large n tend to the follow-

ing expression:  

2 21 ,n n
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where a and b are constants determined as 

2.404, 1.645.a b   (25) 

Applying Kummer’s transformation to the series G(ξ) allows 

one to re-write the series in the following form: 
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It can be shown by numerical calculations that the series 

determined by Equation (26) converges quickly. 

Approximate solutions for the grazing angle at the 
surface 

An investigation of the series in Equation (26) shows that 

only a few terms in the series are needed to obtain a solution 

with a good degree of approximation. As successive terms of 

the series have opposite signs, the total sum of the series is 

always between two successive partial sums.  

In this analysis, the approximate solutions have been ob-

tained for one and two terms in the series. The substitution of 
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Equation (26) into Equations (4) to (14), expanding the re-

sulting equations into the Taylor series where necessary and 

neglecting terms of higher orders leads to the following sim-

ple equations for the grazing angle at the surface for one and 

two terms in the series respectively: 

   1 2

0 1 1.19 ,s     (27) 

   2 2

0 1 1.96 ,s     (28) 
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Note that the parameter µ can be considered as non-

dimensional frequency. Due to the opposite signs of succes-

sive terms of the infinite series, the full solution for θs should 

be found between θs
(1) and θs

(2). The validity of Equations 

(27) and (28) is discussed further in this analysis. 

Determining the layer parameters by polynomial 
curve fitting 

The obtained approximate solutions (Equations (27) and 

(28)) include the layer parameters N and m. Note that the 

parameter z0 is absent from these solutions. As shown above, 

the layer parameters can be found by matching the sound 

speed profile of the bubbly layer to the sound speed profile of 

the transitional layer. It is clear, however, that this method is 

not useful for practical purposes. 

It is demonstrated below that the parameters N and m can be 

also found by polynomial curve fitting using only the wind 

speed, W, as an input parameter. Figures 1 and 2 show values 

for N and m calculated using the sound speed matching algo-

rithm as described in Zinoviev et al (2012) as well as by 

means of the curve fitting (best fit curve) method. The equa-

tions determining the best fit curves are as follows: 
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Figure 1. Parameter N calculated by means of the sound 

speed matching algorithm in comparison with the best fit 

curve. 

 
Figure 2. Parameter m calculated by means of the sound 

speed matching algorithm in comparison with the best fit 

curve. 

It is clear from Figures 1 and 2 that polynomial curve fitting 

of the third power approximates the dependencies of the pa-

rameters N and m on the wind speed within the given range to 

such an extent that the original curves and the best fitted ones 

are virtually indistinguishable. Note that m is constant below 

the wind speed of 8 m/s due to a peculiarity in the Hall-

Novarini bubble population model. 

Numerical calculations show that, within the range of realis-

tic values of c0, m does not depend on the equilibrium sound 

speed, c0, and N depends on c0 only slightly. Therefore, 

Equations (30) and (31) provide a tool for determining the 

parameters of the transitional layer acoustically equivalent to 

the bubbly surface layer with only the wind speed as an input 

parameter. 

AREAS OF VALIDITY OF THE SOLUTIONS 
FOR THE GRAZING ANGLE AT THE SURFACE 

Equations (27) and (28) show that, if µ2
 is small enough, the 

grazing angles at the ocean surface, θs, and at the bottom of 

the surface layer, θ0, can be considered equal and, conse-

quently, the refraction in the layer can be neglected. Assume 

that the parameter µ2
 can be considered to be small for this 

purpose if the following condition is satisfied: 

2 0.1.   (32) 

Taking into consideration Equation (29), the criterion of the 

absence of refraction in the layer can be written as 

00.0503 ,
mc

f
N

  (33) 

where N and m are determined via the wind speed, W, by 

Equations (30) and (31). 

Figure 3 shows the areas of validity of the approximate solu-

tions on the frequency/wind speed plane. The case of no re-

fraction corresponds to the lowest (green) curve, so that re-

fraction can be neglected at any point below this curve.  

it is reasonable to assume that the next term in Equations (27) 

and (28) with respect to the parameter µ will be of the order 

of µ4 and, therefore, the condition of validity of Equations 

(27) and (28) can be written as 

4 0.1,   (34) 

2 4 6 8 10 12 14
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Best fit curve for N, Power = 3

Wind speed, m/s

N

 

 

Calculations

Best fit

2 4 6 8 10 12 14
1

1.5

2

2.5

3

3.5
Best fit curve for m, Power = 3

Wind speed, m/s

m
, 
m

-1

 

 

Calculations

Best fit



Proceedings of Acoustics 2013 – Victor Harbor 17-20 November 2013, Victor Harbor, Australia 

 

Australian Acoustical Society 5 

which leads to the following condition for the corresponding 

frequency range: 

00.0900 .
mc

f
N

  (35) 

In Figure 3, the area of validity of Equations (27) and (28) is 

below the cyan line. It can be seen that these approximate 

solutions are valid at higher frequencies and wind speeds 

than the solution which neglects the influence of bubbles on 

refraction altogether.  

Equations (33) and (35) together with Equations (30) and 

(31) represent a simple method of determining the frequency 

ranges where the refraction in the bubbly layer can be ne-

glected altogether and where the approximate solutions are 

valid. The input parameters are the wind speed, which can be 

easily measured, and the equilibrium sound speed, which, in 

real conditions, is close to a constant value of 1500 m/s. 

The well-known Snell’s law of ray acoustics, in application 

to the layer under consideration, can be formulated as 

0 0

cos
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cos

s sc

c
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As cs < c0 for the surface bubbly layer, Equation (36) shows 

that the grazing angle θs at the surface is not zero even if the 

incident grazing angle θ0 approaches zero. This directly con-

tradicts Equations (27) and (28), which show that θs → 0 if  

θ0 → 0. To resolve this contradiction, it is necessary to de-

termine the area of applicability of the Snell’s law in the 

bubbly layer.  

As shown above, Equations (27) and (28) have been obtained 

using the assumptions that some parameters are small and 

subsequently considering only low-order terms with respect 

to these parameters. It is clear, however, that taking into con-

sideration terms of higher orders in Equations (27) and (28)  

will not lead to the Snell’s law, as the higher order terms will 

also vanish at θ0 → 0. Therefore, it can be concluded that the 

parameters assumed small in the analysis leading to Equa-

tions (27) and (28) are not small when Snell’s law is valid. 

Numerical calculations show that the full solution for the 

grazing angle at the surface tends to the predictions of the 

Snell’s law with increasing θ0 (Zinoviev et al., 2012). Out of 

the small parameters described earlier in this paper only one 

parameter, δ, which is determined by Equation (13), depends 

on θ0. Therefore, it is reasonable to assume that the Snell’s 

law is valid if δ is large enough for the Taylor series over this 

parameter not to be valid. Assume that the following condi-

tion for δ is satisfied in this case: 

0.5.   (37) 

Considering that N is small, Equation (37) can be used to 

derive the following  condition on frequency to determine the 

validity of the Snell’s law in the application to the surface 

bubbly layer: 

0

0

0.0796 .
mc

f


  (38) 

In Figure 3, the areas of validity of the Snell’s law are shown 

for the incident angle θ0 of 1.5 and 3 degrees. The Snell’s law 

is valid at any point above the corresponding curves.  

Figure 3. Areas of validity of approximate solutions. The 

solutions corresponding to the case of no refraction and to the 

approximation with respect to the small parameters are valid 

below the respective curves. The Snell’s law is valid above 

the respective curves.  Circles denote the points for which 

graphs are shown in Figure 4. 

It can be seen from Figure 3 that the refraction in the layer 

can be neglected if the wind speed and/or the frequency are 

not too high. In this case the acoustic wavelength is large in 

comparison to the depth of the layer, so that the layer cannot 

affect significantly the acoustic wave propagation. It is also 

clear that the obtained approximate solutions (Equations (27) 

and (28)) are valid at larger intervals of the wind speed and 

frequency according to the assumption that the non-

dimensional frequency µ is small but non-zero. 

Equation (38) demonstrates that the area of validity for the 

Snell’s law depends on the incident grazing angle θ0. The 

lowest frequency where the Snell’s law is valid is inversely 

proportional to θ0. This leads to an important conclusion that, 

for each frequency, there is a critical incident grazing angle 

such that the Snell’s law is not valid at any angle smaller than 

this critical value.  

In general, the approximate solutions derived and investigat-

ed in this paper can be used if the corresponding point on the 

wind speed/frequency plane is below the green line in Figure 

3. If the incident angle is larger than the angle determined for 

a given frequency by Equation (38) Snell’s law can be used 

to determine the grazing angle at the surface. In other cases 

the full solution needs to be used for this purpose. 

DEPENDENCE OF THE GRAZING ANGLE AT 
THE SURFACE ON THE INCIDENT GRAZING 
ANGLE 

In Figure 4, dependencies of the grazing angle at the surface, 

θs, on the incident grazing angle, θ0, are shown for the com-

binations of values of the wind speed and frequency marked 

by circles in Figure 3. The letters near the circles in Figure 3 

point to the corresponding graphs in Figure 4.  

Figure 4D corresponds to the point in Figure 3 below the 

green line. It is clear that, in this case, the full solution and 

the solution for the case of no refraction are very close, which 

means that, as expected, the influence of bubbles on sound 

propagation can be neglected at this wind speed and frequen-

cy combination. 
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Figure 4. Dependence of the grazing angle at the surface on the incident grazing angle below the surface layer. Red line – full 

solution, top and bottom cyan lines – approximate solutions with two and one terms in the series respectively, green line – no 

refraction, blue line – Snell’s law. The letter notations correspond to the points in Figure 3. 

A) E) 



Proceedings of Acoustics 2013 – Victor Harbor 17-20 November 2013, Victor Harbor, Australia 

 

Australian Acoustical Society 7 

The points C and H in Figure 3 lie on the boundary of the 

area of validity of the no refraction case. It can be seen in the 

corresponding graphs in Figure 4 that the green line for the 

no refraction case is slightly below the red line for the full 

solution. At the same time, it can be seen that the approxi-

mate solutions are valid, as the red line lies between the two 

green straight lines for the approximate solutions. The same 

is applied also to Figure 4B. 

The point G in Figure 3 is on the boundary of the area of 

validity of the approximate solutions. In the corresponding 

Figure 4G, the curve for the full solution lies very close to the 

line for the approximate solution with two terms in the series 

(the top green line). 

The point F in Figure 3 lies in the area where the approximate 

solution is not valid. This is clearly seen in the corresponding 

Figure 4F. The maximum of the full solution curve is caused 

by the proximity of the frequency to one of the resonances 

described by Zinoviev et al. (2012). 

The point A in Figure 3 is located above the line which marks 

the area of validity of the Snell’s law at θ0 = 3º. The corre-

sponding figure 4A shows that, indeed, the full solution coin-

cides with the Snell’s law at θ0 > 2º. Similar coincidence 

between the full solution and the Snell’s law can be observed 

in Figure 4E at θ0 > 1.5º. 

Overall, the graphs depicted in Figure 4 confirm the criteria 

of validity determined by Equations (33), (35) and (38). 

CONCLUSIONS 

In this paper, an exact solution for plane wave propagation in 

a bubbly surface layer is simplified using assumptions that 

some parameters characterising the layer are small. An infi-

nite series present in the equation for the acoustic pressure in 

the layer is transformed using Kummer’s technique to im-

prove its convergence. Approximate solutions are obtained 

for one and two terms in the series. It is shown that the full 

solution lies between the two approximate solutions if the 

underlying assumptions are valid. 

Areas of validity with respect to the frequency, the wind 

speed, the sound speed, and the incident grazing angle are 

obtained for the approximate solutions as well as for the 

Snell’s law. A criterion of validity is also obtained for the 

case where no significant refraction occurs in the layer. 

It is shown that the parameters characterising the layer can be 

obtained by means of polynomial curve fitting of the third 

order with only the wind speed as an input parameter. 

Dependencies of the grazing angle at the surface on the inci-

dent grazing angle at the bottom of the layer are calculated 

for several values of the wind speed and frequency. The ob-

tained dependencies confirm the criteria of validity for the 

obtained approximate solutions. 

Overall, the results of this paper demonstrate that, when a 

bubbly layer with high sound speed gradient is present near 

the ocean surface, the grazing angle at the surface can be 

predicted by means of a few simple equations, if the parame-

ters of propagation satisfy the obtained criteria. 
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