
Proceedings of Acoustics 2013 - Victor Harbor 17-20 November 2013, Victor Harbor, Australia

A CFD-BEM coupling technique for low Mach number
flow induced noise

P. Croaker (1), N. Kessissoglou (1), S. Marburg (2)
(1) School of Mechanical & Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052, Australia

(2) LRT4 – Institute of Mechanics, Universität der Bundeswehr München, D-85579 Neubiberg, Germany

ABSTRACT

A technique to couple computational fluid dynamics (CFD) and boundary element method (BEM) models is proposed
that allows the total sound pressure field produced by low Mach number flow past a rigid body to be predicted. An
incompressible CFD solver is used to calculate the transient hydrodynamic flow field. Acoustic sources based on
Lighthill’s analogy are then extracted from the flow field data. The CFD/BEM coupling technique is used to compute the
acoustic field incident on the body. The incident acoustic field is calculated based on a near-field solution of Lighthill’s
analogy, which employs numerical techniques to accurately evaluate singular and near-singular integrals. This incident
field is combined with a BEM model of the cylinder to predict the scattered sound pressure field. The results from this
CFD/BEM coupling technique are presented for flow past a circular cylinder with Reynolds number, ReD=100 and Mach
number, M=0.02. The directivity of the sound pressure field at the vortex shedding frequency is compared with results of
alternate methods available in the literature.

INTRODUCTION

Lighthill (1952, 1954) reformulated the Navier-Stokes equa-
tion into a wave equation that represents the acoustic source
generation by fluid motion and the propagation of these acous-
tic sources. He derived an acoustic analogy that demonstrates
sound generated by a turbulent fluid flow is equivalent to the
sound generated by a distribution of acoustic quadrupoles com-
puted from the instantaneous velocity fluctuations. The acoustic
sources are extracted from the transient flow field data and
then a wave equation, derived from Lighthill’s acoustic analogy,
is solved to predict the propagation of these acoustic sources.
Curle (1955) extended Lighthill’s acoustic analogy to include
the effect of stationary boundaries present in the turbulent flow
on the sound generation. He showed that the contribution of
a stationary rigid body on the sound generated by unsteady
flow is equivalent to a surface distribution of acoustic dipoles
computed from the instantaneous pressure fluctuations on the
body. Powell (1964) demonstrated that forces acting on a rigid
body due to the fluctuating hydrodynamic pressure cannot pro-
duce acoustic fluctuations as the boundary is fixed and cannot
vibrate. Instead, the body causes diffraction and scattering of
the acoustic waves generated by the flow noise sources and
this significantly amplifies the sound pressure. Gloerfelt et al.
(2005) successfully demonstrated that the surface distribution
of dipoles from Curle’s analogy is equivalent to the scatter-
ing of sound waves generated by the volume distribution of
quadrupoles by the rigid surface. Hence, these surface integrals
only represent an equivalent source and do not provide any
insight into the actual acoustic sources generated by the flow or
the hydrodynamic mechanisms that cause them.

For an acoustically compact body, Curle’s analogy provides
an accurate and efficient way to predict the sound scattered
by a body immersed in a fluctuating flow field. For low Mach
number flows past an acoustically compact body, a flow field
predicted using either a compressible or an incompressible
form of the fluid dynamics equations will produce accurate
acoustic results with Curle’s analogy. However, if the body is
not acoustically compact, Curle’s analogy does not accurately
predict the scattered sound field unless the compressibility of
the fluid is included in the hydrodynamic analysis (Schram,
2009; Khalighi et al., 2010).

For low Mach number flow induced noise computations it is
incredibly challenging and computationally impractical to in-
clude the fluid compressibility in the hydrodynamic analysis
(Khalighi, 2010). Schram (2009) devised a BEM extension of
Curle’s analogy for non-compact bodies at low Mach numbers.
The pressure was decomposed into acoustic and hydrodynamic
components. Then, a boundary integral equation was developed
by splitting the volume sources into near-field and far-field re-
gions. However, Khalighi (2010) points out that there is no clear
way to split the source field into near-field and far-field regions.
In contrast, Khalighi et al. (2010) developed a boundary inte-
gral equation from Lighthill’s wave equation and solved this
using BEM. In their work the volume distribution of quadrupole
sources in the flow field act as the acoustic sources and no as-
sumptions about the compactness of the source region is made.
The approach of Khalighi et al. (2010) is an excellent method
for predicting low Mach number flow induced noise in the
presence of both acoustically compact or non-compact bodies.
However, in their approach the hydrodynamic noise sources
are incorporated directly in their BEM formulation. Hence they
have had to develop their own BEM solver to predict the scat-
tered acoustic field. In this paper a different approach is adopted.

This paper presents a method to couple a CFD analysis of the
hydrodynamic flow field past a body with a BEM analysis of the
scattering of the acoustic waves by the body. This coupling is
achieved by extracting acoustic sources from the flow field and
calculating the propagation of the resulting acoustic waves from
these sources to the body. The incident acoustic field is then
applied to a BEM model of the body and the scattered acoustic
field is predicted. The main advantage of this approach over
that developed by Khalighi et al. (2010) is that, in this work, the
acoustic wave propagation from the flow induced noise sources
to the body is decoupled from the scattering of these waves by
the body. Hence, any existing BEM solver can be used to predict
the acoustic scattering. The CFD-BEM coupling technique is
used to predict the far-field sound pressure produced by the
volumetric quadrupole sources arising from laminar flow past
a cylinder at a Reynolds number, ReD=100 and Mach number,
M=0.02.
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NUMERICAL METHODS

Incident Field from Lighthill’s Acoustic Analogy

To calculate the incident field on a body, the acoustic pressure
and pressure gradient on the body due to direct radiation of
the flow induced noise sources is required. This acoustic pres-
sure and pressure gradient must be calculated neglecting the
diffracting effect of the body on the sound waves. Here, the
acoustic pressure and pressure gradient are predicted based on
Lighthill’s acoustic analogy as given by (Lighthill 1952,1954):

∂ 2ρ

∂ t2 − c2
0

∂ 2ρ

∂x2
i
=

∂ 2Ti j

∂xi∂x j
(1)

where ρ is the fluid density and c0 is the speed of sound in the
medium at rest. Ti j is the Lighthill tensor and is given by:

Ti j = ρuiu j +
(

p− c2
0ρ

)
δi j− τi j (2)

where p is the pressure, ui and u j are the ith and jth components
of the velocity vector respectively, δi j is the kronecker delta
and τi j is the viscous stress tensor. The first term on the right
hand side of equation (2) represents the contribution due to the
Reynolds stresses. The second term relates to sound generation
by non-isotropic processes and the third term represents the
contributions due to viscous stresses. The present work is for
low Mach number flows. For such a flow regime, it is reasonable
to approximate Lighthill’s tensor by:

Ti j = ρ0uiu j (3)

where ρ0 is the incompressible fluid density. Khalighi (2010)
has demonstrated that, for low Reynolds flows, the viscous
stress contribution cannot be neglected. They showed that the
viscous stresses on the body act as a dipole sound source. Hence,
the viscouss stresses must be taken into account for the case
considered here. Rather than including the viscous stress in
equation (3), the effect of the viscous stress on far-field sound
pressure is considered separately by considering a surface dis-
tribution of shear stress dipoles and applying Curle’s analogy
(Curle, 1955). In what follows, a harmonic time dependence of
e−iωt has been assumed. It is assumed that a region of space, Ω,
with boundary Γ, contains a non-zero, spatially varying distri-
bution of Lighthill’s tensor. An integral equation for calculating
the density at a field point, x, can be expressed as (Lighthill,
1952):

ρ̂ (x,ω) =
1
c2

0

ˆ
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∂yi∂y j
Ĝh (x,y)dy (4)

where:

Ĝh (x,y) =
eĩkar

4πr
(5)

is the harmonic free field Green’s function, ka is the acoustic
wavenumber, y is the source point and r = |x− y|. T̂i j and ρ̂

represent the Fourier transforms of Ti j and ρ, respectively, and
ĩ is the imaginary unit. Using p̂a = c2

0ρ, an expression for the
acoustic pressure, p̂a, is given by:

p̂a (x,ω) =

ˆ

Ω

∂ 2T̂i j (y,ω)

∂yi∂y j
Ĝh (x,y)dy (6)

From equation (6), the gradient of the acoustic pressure in the
kth direction, is then given by:

ˆqa,k (x,ω) =
∂ p̂a (x,ω)

∂xk
=

ˆ
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∂ 2T̂i j (y,ω)
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The expressions given by equations (6) and (7) contain the dou-
ble spatial derivative of the Lighthill tensor. Crighton (1993)

suggests that the error caused by differentiating the acoustic
sources can overwhelm the real sound at low Mach numbers.
Hence it is standard practice to transfer the derivatives from
Lighthill’s tensor onto the Green’s function by applying the
divergence theorem. The Green’s function is singular when
x = y. To apply the divergence theorem to a function contain-
ing a singularity, a small spherical volume, Vε , of radius ε and
bounded by the surface ∂Vε , is excluded around the field point.
When the field point lies on the boundary, Γ, the spherical exclu-
sion neighbourhood intersects the boundary, with the vanishing
boundary patch inside the spherical volume represented by Γε .
The domain and boundaries remaining after the removal of this
spherical volume are depicted in Figure 1.

 

    

  

     

      

(a) Field point in domain interior
 

    

  

     
    

      

(b) Field point on domain boundary

Figure 1: Domain with exclusion neighbourhood

Domain Discretisation

The source region is divided into discrete cells and in turn these
cells are partitioned into two sets corresponding to:

1. Ωs, representing the part of the domain where the cells
intersect the vanishing neighbourhood;

2. Ω0, representing the part of the domain where the cells
do not intersect the vanishing neighbourhood.

Applying the divergence theorem twice to equations (6) and (7)
in the domains Ω0 and (Ωs−Vε ) with the limit taken as ε → 0
and neglecting surface integrals (for a rigid body), equations (6)
and (7) can be expressed as:

p̂a (x,ω) = lim
ε→0

ˆ

(ΩS−Vε )

T̂i j (y,ω)
∂ 2Ĝh (x,y)

∂yi∂y j
dy

+

ˆ

Ω0

T̂i j (y,ω)
∂ 2Ĝh (x,y)

∂yi∂y j
dy (8)
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ˆqa,k (x,ω) = lim
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Evaluation of the incident field on a body within the discretised
acoustic source region requires evaluation of strongly singu-
lar and hypersingular volume integrals. In what follows, these
singular volume integrals are regularised using the singularity
subtraction technique of Guiggiani et al. (1990, 1992). The ap-
plication of this technique to strongly singular volume integrals
is given by Guiggiani and Gigante (1990) and applied to flow
noise sources by Croaker et al. (2012). Hypersingular volume
integrals are also considered here. Furthermore, close to the
body are many near-singular volume integrals which can re-
quire a large number of integration points to achieve an accurate
solution. To alleviate this problem, the polynomial transforma-
tion of Telles (1987) is applied to these near-singular volume
integrals.

Mapping to Intrinsic Coordinates

To facilitate efficient evaluation of equations (8) and (9) using
numerical integration, all cells are mapped onto a reference cell
in intrinsic coordinates. These intrinsic coordinates are denoted
by ξ = (ξ ,η ,ζ ). In the present work, a trilinear mapping is used.
This allows the Cartesian coordinates of any point, y, to be
calculated as follows:

y(ξ ) = ∑
m

Mm (ξ )ym (10)

where m represents the nodes used to define the geometry of
the cells, Mm (ξ ) are the geometric shape functions of the cells
expressed in intrinsic coordinates and ym are the Cartesian coor-
dinates of the mth node. During the mapping process, each cell
in Ω0 and ΩS map onto regions Ω0R and ΩSR, respectively, in
intrinsic coordinates using trilinear shape functions. In intrinsic
coordinates, equations (8) and (9) can be expressed as:

p̂a (x,ω) =
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where J (ξ ) is the Jacobian of the transformation from Cartesian
to intrinsic coordinates for the cells. The first terms on the right
hand side of equations (11) and (12) are singular and cannot
be evaluated by standard numerical integration. Instead, the
regularisation technique proposed by Guiggiani et al. (1990,
1992) is used to subtract the singularity from the integral. The
singular part of the integral is solved semi-analytically and
the remaining terms are integrated using standard Gaussian
quadrature schemes. This regularisation scheme is outlined in
the proceeding section.

The second terms on the right hand side of equations (11) and
(12) do not contain the singularity and hence can be evaluated

using standard numerical integration techniques. However it
is possible that the singularity may be very close to cells in
this region. In such ‘near-singular’ situations, a large number
of integration points may be required to achieve an accurate
result. The self-adaptive polynomial transformation technique
of Telles (1987) is used to evaluate these near singular cases and
this procedure is outlined in a later section. Gauss-Legendre
quadrature is used to evaluate all regular integrals in this work.

Regularisation of Singular Integrals

As the first terms on the right hand side of equations (11) and
(12) are singular, they cannot be evaluated by standard numeri-
cal integration. To remove these singularities, a coordinate trans-
formation to spherical coordinates, σ = (σ ,θ ,φ), is employed.
These spherical coordinates are centred at ξ0 = (ξ0,η0,ζ0), cor-
responding to the image of x in intrinsic coordinates, and are
given by

ξ = ξ0 +σ cosθ sinφ , η = η0 +σ sinθ sinφ , ζ = ζ0 +σ cosφ

(13)

where σ is the radius, θ is the azimuth angle and φ is the zenith
angle. The Jacobian of the transformation from intrinsic to
spherical coordinates results in the following relationship

dξ dηdζ = σ
2 sinφdσdθdφ (14)

This spherical coordinate transformation weakens the singular-
ity of equations (11) and (12) to O

(
σ−1) and O

(
σ−2), respec-

tively. To regularise the remaining singularity, the singularity
subtraction technique of Guiggiani et al. (1990, 1992) is imple-
mented. After application of this regularisation technique, the
singular integrals of equations (11) and (12) can be calculated
accurately using Gaussian quadrature.

Treatment of Near-Singular Integrals

Near-singular integrals are regular integrals and can hence be
solved numerically using standard quadrature schemes. How-
ever, when the field point is located close to a cell, the number
of integration points required to achieve an accurate solution be-
comes large. Coordinate transformation techniques cluster the
integration points towards the singularity. Using a self-adaptive
polynomial transformation technique (Telles, 1987), this in-
tegration point clustering is related to the distance between
a field point and a cell. Hence, as the distance increases, the
distribution of integration points within the element reverts to
normal. This allows the technique to be easily applied to all
near-singular integrals within the model.

Transient Laminar CFD Simulation

To demonstrate the CFD-BEM coupling technique, laminar
vortex shedding from a cylinder of diameter D is simulated
at a Reynolds number ReD = 100 and Mach number M = 0.02.
At this Reynolds number the flow is in the laminar unsteady
regime and is predominantly two-dimensional, with negligi-
ble spanwise contribution (Martínez-Lera and Schram, 2008).
Hence, only a two-dimensional CFD simulation is considered
here. A two-dimensional circular domain around the cylinder
has been modelled and analysed using ESI Group’s CFD-ACE+
software package. The velocity-pressure form of the incom-
pressible Navier-Stokes equations are solved by CFD-ACE+ in
this instance. The incompressible Navier-Stokes equations are
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given by:

ρ0
∂ (ux)

∂ t
+ρ0O · (uux) = − ∂ p

∂x
+O · (µOux)+SMx

ρ0
∂ (uy)

∂ t
+ρ0O · (uuy) = − ∂ p

∂y
+O · (µOuy)+SMy (15)

ρ0
∂ (ρuz)

∂ t
+ρ0O · (uuz) = − ∂ p

∂ z
+O · (µOuz)+SMz

O ·u = 0

where u = (ux,uy,uz) is the velocity vector and SMx, SMy and
SMz are momentum source terms in the x, y and z directions,
respectively. CFD-ACE+ uses an iterative, segregated solution
method with the pressure-velocity coupling handled using the
SIMPLEC algorithm.

The model used for the CFD simulation is shown in Figure
2, with the mesh topology in the vicinity of the cylinder inset.
The interior of the computational domain extends radially for
25D. A sponge layer extends radially for an additional 20D. The
interior domain contains 71,760 quadrilateral cells, with a cell
spacing adjacent to the cylinder of 0.005D. The cell distribution
is biased so that the wake region contains a high cell density to
resolve the vortices shed from the cylinder. The sponge layer
contains an additional 6,960 quadrilateral cells. The cell size
on either side of the interface between the interior domain and
sponge layer is uniform, with the cells in the sponge layer then
growing rapidly in the radial direction.

 

 

 

 

 

Figure 2: Domain shape and size for CFD analysis

The viscosity in the sponge layer has been artificially increased
by a factor of 35 to damp out the fluctuations in the velocity
field in an attempt to force the acoustic source terms to zero at
the boundary. A steady state simulation was performed with the
converged solution used as the initial condition of the transient
simulation. The simulations were second order accurate in time
and space, with a central difference scheme used for the spa-
tial discretisation and a Crank-Nicholson scheme used for the
temporal discretisation. The transient simulation was executed
with a non-dimensionalised time step size of 4t U∞

D = 2.99E−3,
where U∞ is the free stream velocity. This corresponds to a
Courant-Fredrichs-Lewy (CFL) number of approximately 0.6.
The simulation was allowed to progress until the flow field
achieved periodicity. Recording of the acoustic source data
commenced after this periodicity had been attained and data
from eight vortex shedding periods was obtained.

BEM Model and Incident Acoustic Field

The two-dimensional BEM model consisted of 40 linear one-
dimensional elements around the circumference of the cylinder,
with the vertices placed on the cylinder in 9◦ increments with
0◦ aligned with the direction of fluid flow. The vertices of these
BEM elements also represent the field points used to calculate
the incident acoustic field. The method presented here has been
developed for three-dimensional applications and hence the
acoustic propagation was carried out in three dimensions. An
artificial thickness of 0.1D was assigned to the two-dimensional
CFD cells and 100 identical copies of these sources were ex-
truded out of the plane of the flow. Symmetry about the plane
of the flow was taken into account, resulting in a source re-
gion with an out-of-plane span of 20D. Simulations were also
performed using smaller artificial thicknesses and longer out-of-
plane spans were also considered, however these had negligible
impact on the incident field on the cylinder and the far-field
sound pressure level.

Far-field Sound Pressure Level

The field points were placed on a circle of radius 6000D cen-
tred on the cylinder in 9◦ increments with 0◦ aligned with the
direction of fluid flow. The direct radiation from the volume
quadrupole sources to the far-field has not been considered here.
Only the scattered acoustic pressure is recorded at the far-field
locations. It should be noted that this scattered acoustic pressure
includes the radiation by the viscous shear stress dipoles, which
have been evaluated using Curle’s analogy (Curle, 1955).

RESULTS AND DISCUSSION

Hydrodynamic Analysis

The hydrodynamic analysis has been presented previously by
the authors (Croaker et al., 2013). Figure 3 shows a plot of the
vorticity in the flow field at one instance in time, with the black
arc representing the boundary of the sponge layer. The vorticity
generated at the cylinder surface is shed from the cylinder and
travels downstream as vortex pairs. Figure 3 shows that the
sponge layer is effective in damping out the vorticity before
reaching the downstream boundary.

Figure 4 shows the frequency spectra of the fluctuating lift and
drag forces exerted on the cylinder. The fundamental vortex
shedding frequency occurs at Strouhal number St = 0.165. This
figure also illustrates that peaks of the fluctuating lift force
occur at odd harmonics of the vortex shedding frequency and
peaks of the drag force occur at even harmonics.

Table 1 compares the results obtained with the present hy-
drodynamic simulation with reference solutions from litera-
ture. A more detailed discussion of these results can be found
in Croaker et al. (2013). Table 1 shows a comparison of the
Strouhal number, time averaged drag coefficient C̄D, peak-to-
peak lift coefficient 4CL and time averaged base-pressure co-
efficient − ¯CPb. The reference values are taken from the exper-
imental results of Fey et al. (1998) [1], empirical expressions
derived by Norberg (2001) [2] and the numerical simulations of
Posdziech and Grundmann (2007) [3] and Martínez-Lera and
Schram (2008) [4].

Incident Acoustic Field

The incident acoustic field was calculated using the regularised
forms of equations (11) and (12). The acoustic pressure and
pressure gradient incident on the cylinder, normalised by ρ0U2

∞,
at the vortex shedding frequency are shown in Figure 5. The
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Figure 3: Vorticies in wake of cylinder. Dimensionless vorticity, γ, contours from γmin =−1 to γmax = 1 with an increment of 0.1
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Figure 4: Frequency spectra of the lift and drag forces

Table 1: Comparison of the hydrodynamic results with
reference values

St C̄D 4CL − ¯CPb

Refs. [1,2] 0.164 Ref. [1] − 0.643 Ref.[2] −
Ref. [3] 0.165 1.331 0.647 0.717
Ref. [4] 0.170 1.393 0.686 0.787
Present 0.165 1.326 0.640 0.698

symmetry of both the pressure and pressure gradient about the
direction of flow is clearly observed.

Far-Field Directivity of the Scattered Field

The incident acoustic field was applied to the BEM model of the
cylinder and solved using the AEBEM2 subroutine of Kirkup
(1998). The far-field directivity of the sound pressure field scat-
tered by the cylinder, normalised by ρ0U2

∞, is shown in Figure
6. Figure 6 also shows the contributions of the viscous shear
stress dipoles and the total far-field sound pressure. This total
sound pressure field is compared with the results obtained using
Curle’s analogy by Croaker et al. (2013). The far-field direc-
tivity and magnitude of the total sound pressure is very similar
between the present work and that obtained using Curle’s anal-
ogy. The contribution from the viscous shear stress is significant
for this low Reynolds number, as discussed by Khalighi (2010).

CONCLUSIONS

A CFD-BEM coupling technique has been developed to predict
the scattering of flow induced acoustic waves by a rigid body
immersed in the flow. The method extracts the acoustic sources
based on Lighthill’s analogy from incompressible CFD data
and computes the propagation of the resulting acoustic waves
from the flow noise sources to the surface of the body. The

incident acoustic field on the body is then applied to an existing
BEM solver to predict the scattered sound pressure in the far-
field. This CFD-BEM coupling technique has been applied
to predict the scattering of sound waves produced by laminar
vortex shedding from a two-dimensional cylinder at a Reynolds
number, ReD = 100 and Mach number, M = 0.02. The total far-
field sound pressure level predicted with the present method,
which includes both the scattered field and the radiation due
to the viscous shear stress dipoles, compares well with results
from the literature obtained using Curle’s analogy.
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