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ABSTRACT 
Conventional active sonar processing systems typically reduce the sensor data from an intensity map to a point-
measurement form via a detection thresholding process. This approach is often sufficient for detecting and tracking 
high signal-to-noise-ratio (SNR) targets but becomes more challenging for low SNR targets. Track-Before-Detect 
(TkBD) is an alternative tracking technique that supplies raw sensor data to the tracker to determine the presence and 
kinematic state of a target. This paper considers the application of TkBD to an active sonar tracking problem using 
the Histogram-Probabilistic Multi-Hypothesis Tracking (H-PMHT) algorithm. To aid in the detection of targets in the 
sensor image, the measurement model for the standard H-PMHT algorithm is extended to incorporate a bearing-
dependent point spread function. Using real data gathered from sonar trials, the performance of the resulting multi-
target TkBD algorithm is shown to be more robust at low SNR levels when compared against a conventional point 
measurement tracker based on Integrated Probabilistic Data Association.  

1    INTRODUCTION 

The detection and tracking of low signal-to-noise-ratio (SNR) 
targets using an active towed array sonar is a non-trivial 
problem due to the complex nature of the underwater acous-
tic environment. Active sonar detection and tracking is par-
ticularly challenging in littoral environments where perform-
ance can be degraded by high levels of acoustic clutter that 
result in false alarms, fluctuating target returns due to com-
plex time-varying acoustic conditions, and a relatively low 
sonar data update rate. 

Traditionally, a sonar system's detection and tracking capa-
bilities have been considered separate functions. Conven-
tional active sonar processing systems use beamforming and 
matched filter correlation with a replica of the transmitted 
pulse to generate a sensor image of the reflected acoustic 
intensity as a function of range and bearing. Typically, this 
sensor image is normalised to remove mean background 
variations and a fixed threshold is applied to produce detec-
tions that are then provided to the tracker. The role of the 
tracker is to associate point-measurements from a common 
target across time and return estimates of the target's trajec-
tory. This approach is often sufficient for detecting and track-
ing high SNR targets but becomes more challenging for low 
SNR targets, as the process of reducing the sensor image to 
thresholded detections discards valuable target information. 

An example of active sonar tracking using conventional non-
linear Kalman filtering techniques on simulated measure-
ments is provided by [2]. A comparison of a number of con-
ventional multi-target point-measurement trackers based on 
Global Nearest Neighbour and Probabilistic Data Association 
(PDA) using a simulated active sonar environment was ad-
dressed in [14]. Techniques based on the inclusion of target 
and clutter amplitude information within conventional point-
measurement trackers to improve tracking performance for 
active sonar have also been considered [1, 10]. 

The desire for more robust trackers against low SNR targets 
in clutter-rich environments has resulted in the development 
of alternative techniques that perform concurrent detection 
and tracking, commonly referred to as Track-Before-Detect 
(TkBD). TkBD algorithms eliminate the thresholding process 
and directly use the sensor intensity data to determine the 
presence and kinematic state of a target. A review of early 
TkBD algorithms for applications in image sequences, radar 
and sonar is provided by [18]. These techniques have the 
potential to provide significant gains for both detecting and 
tracking low SNR targets in high clutter scenarios [8]. 

The first applications of TkBD to active sonar were based on 
dynamic programming techniques, which use a fixed grid to 
model the propagation of target states with time [4, 9, 18]. 
Furthermore, most of these techniques have been demon-
strated with simulated data and the application of TkBD to 
real sea trials data has been limited [15]. 

This paper considers the application of an alternative TkBD 
technique called Histogram-Probabilistic Multiple Hypothe-
sis Tracking (H-PMHT) [11, 16] to an active sonar tracking 
problem. In addition, the standard H-PMHT algorithm is 
extended to incorporate a bearing-dependent point spread 
function. The performance of the H-PMHT is compared with 
a conventional point-measurement tracker based on Inte-
grated Probabilistic Data Association (IPDA) [6, 12]. The 
benefits of TkBD over conventional tracking is analysed in 
two representative acoustic environments using trials data 
from an active towed array sonar system. 

The paper is arranged as follows. Section 2 outlines the track-
ing problem for both the conventional and TkBD case. Sec-
tion 3 gives a brief review of the IPDA approach to conven-
tional tracking as well as an introduction to the H-PMHT 
algorithm and its modification to incorporate a bearing-
dependent point spread function. A comparative study of the 
two algorithms is presented in Section 4 using real data gath-
ered from an active towed array sonar system. Section 5 sum-
marises and discusses avenues for future work. 
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2    ACTIVE SONAR PROBLEM 
 
In target tracking, the main objective is to identify the num-
ber of targets and estimate their trajectories over time using a 
sequence of noisy measurements. In practice, it is common to 
assume stochastic models for the system target dynamics and 
sensor data. 
 
Define the state vector xt, which evolves with time t Є N, 
where N is the set of all natural numbers. For conventional 
active sonar target tracking, it is sufficient to describe the 
target state using position and velocity in two-dimensions. 
However in the TkBD case, it is common to supplement the 
state vector with the target amplitude, 
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where m = 1,…, M denotes the target index in the case of a 
multiple target scenario and M denotes the total number of 
targets.  
 
Generally, when analysing a dynamic system, two models are 
required; the target and measurement models. The target 
model describes the target state evolution with time and can 
be expressed in terms of a linear discrete-time stochastic 
model 
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where Ft-1 is a known matrix describing a linear state transi-
tion from xt-1

m to xt
m, and vt-1 is an independent identically 

distributed (i.i.d.) system noise sequence representing uncer-
tainties in the target motion. 
 
For the active sonar tracking problem, the target model needs 
to capture the dynamics of an underwater target. In this pa-
per, it is assumed that a nearly-constant-velocity model is 
sufficient. 
 
The second model required is the measurement model, which 
relates the noisy measurements to the state xt

m. In conven-
tional sonar tracking, it is assumed that point-measurements 
are received in range and bearing, and are given by 
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where µt is an i.i.d. measurement noise sequence and η(xt

m) 
denotes the measurement model that maps the state into the 
measurement space. The set of received measurements which 
satisfy the threshold crossing requirements may originate 
from either clutter or target components and it is not guaran-
teed that returns from each target will satisfy the threshold. 
 
In the TkBD case, the measurement model relates images zt 
in range and bearing to the target state xt. Let zt

i denote the ith 
pixel in the measurement image at time t, and let zt = 
{zt

i}i=1,…I represent a stacked vector of all the pixels in the 
image, where i is the pixel index and I is the total number of 
pixels in the measurement image. For ease of presentation, 
we have used a stacked vector to represent the image to allow 
single index referencing. A two dimensional representation 
could just as easily have been used. We assume a point-
scatterer target, such that the target contribution to the meas-
urement image can be described purely in terms of the point 
spread function (psf), h (xt

m) 
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where wt is an i.i.d. measurement noise sequence. Note that 
the psf is a property of the sensor and is the same for all tar-
gets, but can vary with different sensors. Assuming inde-
pendent pixel noise, the likelihood for the image zt can be 
factorised as 
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For active sonar tracking, the measurement process only 
observes the position component of the target, thus the meas-
urement model assumes that the likelihood is independent of 
the target velocity component. To prevent numerical prob-
lems, the log of the likelihood is also calculated. 

Under linear Gaussian assumptions, the optimal finite dimen-
sional solution to the discrete-time recursive Bayesian state 
estimation problem is the Kalman Filter (KF). However as 
the sensor image is a function of range and bearing, approxi-
mations or suboptimal solutions must be considered to ac-
commodate the resulting non-linear measurement model. 
Furthermore, the TkBD measurement model defined by (4) is 
clearly a highly non-linear function of the target state. Thus 
only non-linear tracking methods can be considered when 
using TkBD techniques. In the next section, a brief review of 
the IPDA approach for conventional tracking and the H-
PMHT approach for TkBD will be given. 

3     TRACKING ALGORITHMS 

3.1 Integrated Probabilistic Data Association (IPDA) 
for Conventional Tracking 

One of the main difficulties in point-measurement tracking is 
determining which measurements arise due to a particular 
target and which measurements are the result of false alarms 
or due to objects that are not of interest. This problem is re-
ferred to as data association. Under a particular data associa-
tion hypothesis, the target state can be estimated using a KF 
or non-linear counterpart. Probabilistic Data Association 
(PDA) expresses the target state probability density function 
(pdf) as a sum over data association hypotheses and provides 
expressions to determine the probabilities of these hypotheses 
[6]. The resulting pdf is a Gaussian mixture, which is then 
approximated by a single Gaussian. The Integrated PDA 
(IPDA) extends the target state-space by defining a binary 
existence variable that indicates whether or not there is actu-
ally a target present and assumes that this variable evolves 
according to a Markov Chain. The IPDA provides equations 
for recursively updating the target states and the probability 
of target existence based on the PDA approach for data asso-
ciation [12]. The probability of existence can then be used to 
automate track management. 

The advantages of IPDA are that it is computationally inex-
pensive and can be implemented as a modified KF: the target 
description consists only of a mean vector, a covariance ma-
trix and a scalar existence probability. However, the algo-
rithm uses a single Gaussian component to approximate the 
Gaussian mixture arising from the sum of data association 
hypotheses. 

This approximation can be poor, especially when the mixture 
has more than one dominant component. IPDA also assumes 
the existence of at most one target. 
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Figure 1. Beam pattern vs. bearing for transmissions at 
broadside, near aft and aft of the array. 

In this paper, a single target IPDA tracker based on [12] is 
implemented. However, a multi-target track management 
logic is imposed based on the assumption that targets in the 
image do not overlap or interact with each other. Joint Inte-
grated Probabilistic Data Association (JIPDA) can be used 
for scenarios featuring interacting targets but it is more com-
putationally expensive than IPDA [13] and is not considered 
here. Tracks are initiated when the estimated probability of 
track existence rises above a certain threshold. Likewise, 
track termination occurs when the probability of track exis-
tence falls below another threshold. 

3.2 H-PMHT for TkBD 

The H-PMHT algorithm is an efficient multi-target approach 
to the TkBD problem. The technique is based on the genera-
tion of a synthetic histogram by quantising the energy in the 
sensor data followed by the application of Expectation-
Maximisation (EM) mixture modelling to describe the under-
lying data sources. The algorithm name stems from the inter-
pretation of the quantised data as a histogram and the use of 
the Probabilistic Multi-Hypothesis Tracking (PMHT) algo-
rithm [17] to perform the association of the resultant meas-
urement counts to target objects. In the final step of the deri-
vation, the limit of the quantisation is taken and the original 
sensor data is recovered. 

Unlike other TkBD approaches, the H-PMHT algorithm em-
ploys a parametric fitting approach and has been shown to 
give performance that is close to the optimal Bayesian filter 
at a fraction of the computational cost [8]. The H-PMHT can 
be naturally extended to track in a multi-target scenario but 
still has linear complexity with the number of targets. The H-
PMHT can also be applied to a wide range of problems as 
long as an appropriate state estimator exists to perform the 
EM step of the algorithm. 

The EM algorithm operates by iteratively optimising an aux-
iliary function. In the case of H-PMHT, this function consists 
of a target state evolution term, a mixing term dependent on 
the target SNRs, and a measurement term that couples the 
target states with the intensity map. This measurement term is 
the logarithm of the measurement likelihood weighted by 
data association probabilities, i.e. the logarithm of equation 
(5) with pixel-dependent scaling terms. When the sensor psf 
h(xt

m) can be approximated as a Gaussian then the logarithm  

Figure 2. Point spread function hθ(θ) vs. bearing for trans-
missions at broadside, near aft and aft of the array. 

of equation (5) is a sum of quadratics and this can be factor-
ised into a single quadratic, equivalent to the log-likelihood 
of a point-measurement [7]. Thus H-PMHT can be imple-
mented as an iterated data association step and point-
measurement estimation step. It is important to emphasise 
that this is not an approximation. In this paper, the maximisa-
tion step of the H-PMHT is performed using an extended 
Kalman Filter (EKF). However, the linearisation point for the 
EKF is modified with each EM iteration so the result is simi-
lar to the Iterated EKF, which is known to provide a more 
accurate estimate than the standard EKF [3]. 

Next, we will describe how the standard measurement model 
for the H-PMHT algorithm can be modified to include a bear-
ing-dependent psf to model the variation in the beam patterns 
for an active towed array sonar. 

Due to left-right ambiguity issues characteristic of linear 
array systems, when a target is detected by a towed array, it 
will appear as two identical targets symmetrically placed on 
either side of the towed array in the sensor image. An own-
ship manoeuvre is required to identify a real target from the 
ambiguous one. Figure 1 shows representative beam patterns 
and the effect of left-right ambiguity issues for an active 
towed array sonar system at the following receive directions: 

• Broadside: defined as 90 degrees from the heading 
of the array. The beam pattern consists of a narrow 
beam and the two peaks generated by left-right am-
biguity are well-separated,  

• Near Aft of the array: where the beams are wider 
and the left-right ambiguous peaks begin to over-
lap, and  

• Aft of the array: defined as close to 180 degrees 
from the heading of the array, where the left-right 
beam patterns merge into a single wide peak.  

It can be seen that as the receive direction moves from broad-
side to aft of the array, the spread in the beam pattern in-
creases and the ambiguous target in the image merges with 
the real target to form a single target smeared across multiple 
bearing bins in the image sensor. The half-height beamwidth 
for the beam pattern is approximately 8 degrees at broadside, 
50 degrees (across both peaks) in the near aft direction and 
42 degrees at aft. 
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Figure 3. TkBD measurement image for a target SNR return 
value of 24 dB.  

In this paper, the variation in the beam pattern with receive 
direction will be modelled by assuming a bearing-dependent 
psf. Recall that a sensor's psf can be used to describe the 
appearance of the target in the sensor image. For the sonar 
problem, the sensor outputs a measurement in range r and 
bearing θ space such that 
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where hr(r) and hθ(θ) are defined as the psfs for range and 
bearing space respectively, and assumed to be independent of 
each other. Both psfs can be approximated using Gaussians. 
For an active towed array sonar system, the psf function hr(r) 
can be assumed to be consistent across all bearings, however 
the psf in the bearing space hθ(θ will be dependent on the 
receive direction due to the variation of beam patterns with 
bearing. 

In this paper, a bearing-dependent psf using a Gaussian ap-
proximation will be assumed. For a given receive direction, 
the Gaussian psf can be calculated by setting the half-height 
width of the Gaussian pdf to be equal to the half-height 
beamwidth of the current receive direction. The correspond-
ing variance for the Gaussian psf can then be easily calcu-
lated. Figure 2 shows the resulting psfs corresponding to 
broadside, near aft and aft receive directions. Note that for 
the near aft direction, a sum of two Gaussians, one for each 
of the left-right beams is used to model the beam pattern. In 
addition, the images used have been truncated such that when 
the left-right beams are well separated, only the correct beam 
is used.  

Tracks are initiated based on a peak detection thresholding 
process at a given SNR level and the well known M/N logic 
[5] is imposed to upgrade tracks from tentative to confirmed 
status. The transition matrix for the target dynamics is given 
by a constant velocity model which varies depending on the 
time between consecutive transmissions. 

3     COMPARATIVE STUDY USING SONAR 
DATA 

In this section, the performance of the H-PMHT is compared 
with that of IPDA using archived sonar data. Both the H-
PMHT and IPDA performance is quantified for a set of SNR  

 
Figure 4. TkBD measurement image for a target SNR return 

value of 13 dB.  

thresholds. For the IPDA, the SNR threshold will determine 
the number of detections that are passed to the tracker. In the 
case of the H-PMHT, the SNR threshold will be used in a 
peak detector for track initiation. 

The data used in this paper originates from a series of sonar 
trials conducted by the Defence Science and Technology 
Organisation (DSTO) from May to August 2003 using a con-
tainerised active towed array demonstration sonar system 
called CASSTASS. The sonar trials featured a line array 
towed behind a moving surface ship at two different locations 
in the Western Australian eXercise Area (WAXA). The two 
datasets feature characteristics that are unique to the sonar 
detection and tracking problem in a shallow environment 
with water depths from 150-250m and for an intermediate 
ocean environment with depths from 800-1400m. Transmis-
sions were set to detect possible targets with a maximum 
range of 60 km with the majority of transmissions being in 
the aft direction. The datasets feature a fluctuating target and 
persistent clutter detections that are the result of reflections 
from bathymetric features along the continental shelf. Both 
datasets consist of approximately 20 transmissions with the 
time duration between transmissions being approximately 90 
seconds. 

The target is an echo-repeater (ER) made to simulate the 
returns from a simple point-like target in the ocean environ-
ment. During the trial, the ER platform was observed to have 
an average travelling speed of 0-4 knots with varying target 
strengths of 9, 19 and 29 dB. The SNR for the two datasets is 
approximately 29 dB, which is relatively high, and it is ex-
pected that both the IPDA and TkBD will be able to form 
tracks on the ER. However, variations in performance are 
also expected as the SNR for the ER did fluctuate with time, 
with SNR levels as low as 13 dB being observed. 

Both the IPDA and H-PMHT tracked using global Cartesian 
coordinates with an origin fixed at the last recorded ownship 
position in each trial.  

The IPDA algorithm used point-measurement detections 
which were generated from an automated detection scheme 
featuring clustering. To gain an idea of the sensitivity of con-
ventional tracking to thresholding, the IPDA algorithm was 
implemented using three detection thresholding levels at 11, 
13 and 15 dB. The expected number of clutter measurements 
was modelled using a Poisson distribution with parameter λ= 
Nk / Vk where Vk denotes the area of surveillance and Nk was 
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estimated using the average number of point detections which 
varied with the SNR thresholding level. The IPDA algorithm 
initiated tentative tracks using two-point differencing. When 
the probability of existence for a track rose above 0.5, tenta-
tive tacks were upgraded to confirmed status. Tracks were 
terminated when the probability existence fell below a 
threshold of 0.3. 

For the TkBD case, the magnitude of the sensor returns in 
terms of power was collected in bearing and range cells con-
sisting of 181 beam bins at 2 degree intervals from 0 to 360 
degrees and approximately a few hundred range bins, with 
range intervals of approximately 60m. Figure 3 and Figure 4 
show examples of TkBD measurement images across range 
and bearing space for target SNR values of 24 dB and 13 dB 
respectively. The true target position is indicated by the red 
circle. Clearly, when the target SNR is high, the target return 
is easily distinguishable from the background clutter. How-
ever when the target SNR drops, it is more difficult to detect 
the target from the background clutter. It is also important to 
realise that as the resolution of the bearing bins is finer than 
the beamwidth of the sensor, it is expected that the target 
returns will be spread over multiple bearing bins.  

For track initiation, the H-PMHT algorithm applied a peak 
detection threshold to the sensor image according to a certain 
SNR threshold and then used two-point differencing to initi-
ate tentative tracks. In the case when the current position 
estimates of several tentative tracks were within 250 m in 
position, the highest SNR track was retained and all other 
tracks were discarded. A measure for the track quality was 
derived using target SNR calculated from the mixing propor-
tions estimates. Tracks were confirmed and terminated using 
a 3/5 logic rule requiring this track quality measure to be 
above a threshold for 3 out of 5 returns.  

Multi-target implementations were used to compare TkBD to 
conventional tracking. In both algorithms, it was assumed 
that background noise was uniform and measurement noise 
followed a Gaussian distribution. Due to the high volume of 
data, a time-recursive H-PMHT filter was used in the analysis 
rather than processing the sequence as a batch. For the H-
PMHT, a maximum of ten EM iterations were performed at 
each time scan. 

4    RESULTS 

The tracking outputs of the H-PMHT and the IPDA algo-
rithm for the two sets of trials data is now presented. The 
tracks from the two algorithms were compared with truth 
data provided by GPS logs. 

Figures 5, 6 and 7 show the tracking results in both datasets 
at SNR thresholding levels of 11, 13 and 15 dB respectively. 
In these figures, the IPDA algorithm used detections thresh-
olded at the respective SNR level while the H-PMHT algo-
rithm used the same SNR level to initiate tracks using a peak 
detection thresholding scheme. It is important to realise that 
although the H-PMHT initiated tracks on thresholded peaks, 
state estimates were updated using the entire raw image data. 
For the intermediate dataset, manual detections which have 
been visually picked out with the naked eye by a sonar opera-
tor are shown in green. Observe that there is a bias between 
the ground truth given by the GPS logs shown in black and 
the manual detections shown in green in the intermediate 
dataset. The differences are due to effects of current on the 
towed array, which have not been taken into account. Tables 
1 and 2 show the average number of measurements at each 
time frame received by the IPDA at each thresholding level 

for the shallow and intermediate dataset respectively. The 
tables also collate the number of false and divergent tracks 
formed by the IPDA in each dataset. A track is considered 
divergent if it successfully initiated a track on the target, but 
was seduced away due to spurious measurements.  

Table 1. Number of false and divergent IPDA tracks at dif-
ferent SNR thresholding levels for the shallow dataset. 

 
Threshold 

Level  
(dB) 

Average num-
ber of detec-

tions per 
frame 

Number of 
divergent 

tracks 

Number 
of false 
tracks 

11 115.4 0 8 
13 4.4 0 1 
15 0.8 0 0 

Table 2. Number of false and divergent IPDA tracks at dif-
ferent SNR thresholding levels for the intermediate dataset. 

 
Threshold 

Level  
(dB) 

Average num-
ber of detec-

tions per 
frame 

Number of 
divergent 

tracks 

Number 
of false 
tracks 

11 118.5 1 12 
13 5.1 1 0 
15 0.7 0 0 
    

The H-PMHT algorithm was able to track the ER target with 
zero false and divergent tracks formed in all scenarios. 

It can be seen that at SNR thresholding level of 11 dB, on 
average the IPDA processed over 100 detections at each time 
frame. The IPDA algorithm was unable to form sensible 
tracks because of the large number of detections, which 
served to increase the size of the covariance and hence the 
validation gate at each iteration. As a result, the IPDA was 
unable to form a track on the ER target in the shallow dataset 
and although it did form one target track in the intermediate 
dataset, the track rapidly diverged after several time scans. 
Figure 5(a) only displays tracks from the H-PMHT algorithm 
as the IPDA algorithm produced 8 spurious false tracks 
which were not related to the ER target. For similar reasons, 
Figure 5(b) only shows the track from the H-PMHT algo-
rithm and the single divergent track from IPDA, and none of 
the false IPDA tracks.  

At a SNR thresholding level of 13 dB, the IPDA algorithm 
formed a track on the ER target in the shallow dataset but 
was only able to form a divergent track in the intermediate 
dataset. When the SNR threshold level was raised to 15 dB, 
the IPDA was able to form a track on the ER target in both 
datasets with zero false and divergent tracks. The likelihood 
of initiating and maintaining a track on a low SNR target at 
higher thresholds would be negligible as no detections would 
be obtained. Even if the SNR threshold was lowered, it would 
still be difficult to form a track on a low SNR target due to 
the sheer number of detections as observed at the low SNR 
thresholds here. 

5    SUMMARY 

This paper presents a comparison of the tracking performance 
of a TkBD algorithm using H-PMHT with the outputs of a 

conventional IPDA tracker with multi-target logic using point 
detections. The algorithms were tested on archived data from 
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Figure 5. Tracking Results for H-PMHT vs. IPDA using a SNR thresholding level at 11 dB. 

Figure 6. Tracking Results for H-PMHT vs. IPDA using a SNR thresholding level at 13 dB. 

Figure 7. Tracking Results for H-PMHT vs. IPDA using a SNR thresholding level at 15 dB. 
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an active towed array sonar system collected off the coast of 
Western Australia. This paper has demonstrated that for 
multi- target tracking in shallow and intermediate scenarios, 
TkBD can provide significant performance advantages over 
the IPDA implementation. The test data contained a target 
which gave relatively high SNR returns on most scans so the 
IPDA was able to form a reliable track when a high SNR 
threshold was applied during the point-measurement extrac-
tion stage. In contrast the H-PMHT processed the intensity 
map data directly without an explicit SNR threshold (except 
artificially imposed for track initiation) and was able to detect 
the target without forming any false tracks.  

In future work, we will consider testing the algorithms on 
datasets featuring low SNR targets. An extension of the 
TkBD algorithm to include a multi-path target model to aid in 
the detection of targets in deep water scenarios will also be 
considered. 
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