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ABSTRACT

We consider a problem of modelling and tracking dynamic time-frequency spectra where the number of spectral com-
ponents is allowed to vary in time. The proposed approach involves representing spectral densities as mixtures of
normal distributions with an unknown number of components using a time-varying non-parametric Bayesian method.
A multi-target tracking algorithm is applied to track the spectral mixture components, where the inference is done using
a Rao-Blackwellised particle filter. The algorithm estimates the time-varying mean and variance of each spectral com-
ponent using a specifically designed Bayesian filter, and allows for the inclusion of outliers or clutter measurements.
The spectral features extracted in this way can be applied for signal smoothing and classification, or in conjunction with
tracking algorithms to improve data association and filtering.

INTRODUCTION

Nonparametric Bayesian methods avoid often restrictive assump-
tions of parametric models by performing inference on infinite-
dimensional spaces of functions or probability distributions.
If suitably designed, these methods allow for efficient, data-
driven posterior inference. Escobar and West (1995) introduced
the hierarchical Dirichlet process mixture (DPM) model as a
Bayesian non-parametric approach applicable to the problems
of clustering and density estimation. The DPM uses the Dirich-
let process (DP) (Ferguson 1974, Teh 2010) as a prior over
the distribution of its parameters, allowing in this way for the
uncertainty in its parametric form, as well as in the number of
the mixed components.

In this paper a non-parametric mixture model based on the
DPM is used to represent spectral densities as mixtures of nor-
mal distributions with variable number of components. Using
this representation, an approach to tracking variable number of
spectral features corresponding to the peaks in the frequency
spectrum is presented. These spectral features are taken to be
time-varying hidden states, and the estimation is done within a
state-space estimation framework. The resulting spectral repre-
sentation can be used for smoothing and recognition of speech
signals (Ozkan, Ozbek & Demirekler 2009) or in conjunction
with kinematic measurements with an aim to improve data as-
sociation and state estimation (Pace, Mallick & Eldredge 2003,
Wang, La Scala & Ellem 2008).

Markov chain Monte Carlo (MCMC), and more recently se-
quential Monte Carlo (SMC) methods, have provided efficient
and accurate strategies for inference in the DPMs in batch and
sequential processing of data (Neal 2000). A DPM-based Rao-
Blakwellised Gibbs sampling scheme is used for clustering
action potentials, or spikes, that occur in neurophysiological
recordings (Wood & Black 2008) and in non-parametric belief
propagation in graphical models (Sudderth 2006). A MCMC
algorithm and a Rao-Blackwellised particle filter (RBPF) are
proposed for state estimation in dynamic systems with unknown
noise probability density (Caron et al. 2008). Recently, a DPM
model-based RBPF for tracking unknown number of formants
in the speech spectrum is proposed (Ozkan, Ozbek & Demirekler
2009). A drawback of this method is that it estimates only the
means of the normal mixture components, and takes that the
distribution variances are known and equal for all components.
Moreover, it does not take into account the possibility of the
presence of outliers in the data.

The approach proposed in this paper is motivated by, and im-

proves on, the methods described above. First, an extension to
the DPM is presented that allows for the inclusion of a known
distribution (e.g. outlier distribution) into the mixture. Next, a
Bayesian filter that simultaneously estimates the kinematic tar-
get state and the measurement error variance is appllied. We
also present an outline of a non-parametric model-based RBPF
that estimates time-varying means and variances of the spectral
mixture components. It is conjectured that, with an appropriate
choice of prior parameters, the proposed algorithm can be used
to model and track both broadband and narrowband spectra. In
this paper we present some results obtained by applying the
algorithm to simulated and real narrowband spectra.

BAYESIAN NON-PARAMETRIC DENSITY ESTIMA-
TION

The DP is a stochastic process that defines a distribution over
probability measures on potentially infinite parameter spaces
Θ. It is uniquely defined by two parameters: a base measure
G0 on the parameter space Θ, and a concentration parameter
α , and is denoted by DP(G0,α). It can be shown that reali-
sations from a DP are discrete with probability one. Namely,
using the so-called stick-breaking representation (Sethuraman
1994), a random probability measure (RPM) G drawn from a
DP, G ∼ DP(G0,α), is equivalent to an infinite sum of atomic
measures:

G(θ) =
∞

∑
j=1

π jδθ j θ j ∼ G0(⋅), j = 1,2, . . . (1)

where δθ j is a Dirac delta function located at θ j , and π j =

β j ∏ j−1
l=1 (1−βl), β j ∼ Beta(1,α).

The DPs are widely used in statistics in classification and mix-
ture density estimation applications where the number of clus-
ters or the mixture components is unknown a priori. In partic-
ular, for an unknown density F(⋅), we use the following non-
parametric model that allows us to estimate F :

F(y) =
∫

Θ
f (y∣θ)dG(θ) (2)

where θ ∈Θ is a latent variable (or cluster variable), f (⋅∣θ) is a
mixed pdf, and G(⋅) is a mixing distribution. Under a Bayesian
framework, G(⋅) is taken to be a RPM distributed according to
a DP prior distribution, G ∼ DP(G0,α). Substituting (1) in (2)
we can formulate F as:

F(y) =
∞

∑
j=1

π j f (y∣θ j) (3)
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This DPM model can be equivalently specified by the follow-
ing equations:

G∣G0,α ∼ DP(G0,α), and for k = 1,2, ... (4)
θk∣G ∼ G(⋅) (5)
yk∣θk ∼ f (y∣θk), (6)

The DPM model is a mixture model with a countably infinite
number of clusters. However, because π j’s decrease exponen-
tially quickly, only a small number of clusters is used to model
the data a priori. The actual number of clusters is not fixed and
can be inferred from the data.

Composite Dirichlet Mixture Model

In some cases it may be more appropriate to use a model where
the variates can be drawn either from a DPM model or from an-
other specified (known) distribution. This situation occurs, for
example, when the data that we want to model by the DPM
is contaminated by outliers. Denote by ξ the prior probabil-
ity that a variate is generated by a DPM. Then this composite
DPM (CDPM) model can be defined as:

yk ∼ ξ F(⋅)+(1−ξ )u(⋅) (7)

where F is the DPM model defined in (3) and u is the specified
distribution. In the case of an outlier, u is usually modelled as
an uniform pdf u = 1/V , where V is the volume of the mea-
surement space.

Define by λk ∈ {0,1} an auxiliary discrete random variable
distributed according to a Bernoulli distribution with Pr(λk =
1) = ξ . If the random draw λk = 1, we sample θk from G,
where G ∼ DP(G0,α), and if λk = 0, we set θk = (0,0) (with-
out loss of generality it is assumed that θk ∼ G(⋅) is always
different from (0,0)). Supposing that the probability ξ is a ran-
dom variable with a prior distribution p(ξ )=Beta(γ ,τ), where
γ and τ are known parameters, an alternative formulation for
the CDPM model is then given by

G∣G0,α ∼ DP(G0,α), ξ ∣γ ,τ ∼ Beta(γ,τ) (8)
λk∣ξ ∼ B(ξ ) (9)

θk∣G,λk ∼ λkG(⋅)+(1−λk)δ0,0 (10)
yk∣θk ∼ f (y∣θk), k = 1,2, ... (11)

where B denotes Bernoulli distribution. In (11), if θk = (0,0),
f (y∣θk) = u, otherwise f (y∣θk) is one of the mixed pdfs related
to the DPM model.

Similarly as the DPM model (Teh 2010), the CDPM model is
characterised by the clustering property. Let θ1, . . . ,θn be n ran-
dom i.i.d. samples from λkG(⋅)+(1−λk)δ0,0 in (10) obtained
as described above. Among θ1:n, there are θ∗

j , j = 0, . . . ,m dif-
ferent (unique) values (corresponding to clusters). We denote
by θ∗

0 the dummy parameter representing the specified distribu-
tion u, and by θ∗

j , j = 1, . . . ,m, the parameters of the mD clus-
ters related to the DPM model. Next, we define the association
variables c1, . . . ,cn, such that ck = j if θk = θ∗

j , j = 0, . . . ,m.
Note that ck = 0 denotes a realisation from u (e.g. an outlier),
while ck = j, j > 0, are related to the DPM model. The random
variable ξ can be integrated out, and the predictive distribution
of the association variable cn+1 conditional on the previous val-
ues c1:n can be defined as a function of the prior parameters α ,
γ and τ as follows

p(cn+1 = 0∣c1:n)=
τ +n0

γ + τ +n
, j = 0 (12)

p(cn+1 = j∣c1:n)=
γ +nD

γ + τ +n
⋅ n j

α +nD
, j ∈ {1, . . . ,m}(13)

p(cn+1 = cnew∣c1:n)=
γ +nD

γ + τ +n
⋅ α

α +nD
, j ∕∈ {0, . . . ,m}(14)

where n0 = ∑n
k=1 δ0,ck is the number of outliers among n sam-

ples, n j = ∑n
k=1 δ j,ck is the number of repeats of θ∗

j , nD =

∑m
j=1 n j is the total number of samples associated with the

DPM model, and n = n0 +nD.

The choice of the concentration parameter α in (14) is impor-
tant for the performance of the DPM-based models, since this
parameter tunes the number of clusters mD. For a large nD (Teh
2010),

E(mD∣α,nD) = α log(1+nD/α). (15)

So, α controls the number of clusters directly, with larger α
implying a larger mD a priory, while mD grows only logarith-
mically with the number of observations.

BAYESIAN TRACKING OF SINGLE TARGET WITH
UNKNOWN MEASUREMENT ERROR VARIANCE

We describe a single target tracking algorithm that simultane-
ously estimates the kinematic target state and the measurement
error variance that is assumed unknown. The measurements are
taken to be one-dimensional, yt ∈ R1, t = 1,2, . . ., and the state
vector is updated after one measurement is received. A method
for tracking an extended object or cluster, where the state vec-
tor is updated using several simultaneously received measure-
ments and where the measurements are multidimensional, is
proposed by Koch (2008).

Let xt and R denote, respectively, the state vector and the un-
known error variance, or extent, of the measurements to be es-
timated. The tracking algorithm is derived as a recursive updat-
ing scheme for the joint conditional probability density

p(xt ,R∣Y t) = p(xt ∣R,Y t)p(R∣Y t)

= N(xt ;xt∣t ,Pt∣tR)IG(R;νt ,Σt) (16)

at each time t, where N(⋅ ;m,C) is normal pdf with mean m and
covariance matrix C, and IG(⋅ ;a, b) is inverse-gamma distribu-
tion with shape parameter a> 0 and scale parameter b> 0. Pt∣t
is the estimation error covariance, and Y t = {yi}t

i=1 denotes the
set of measurements up to time t.

The time dynamics of the system is described using a linear
state-space representation defined as follows:

xt = Ftxt−1 +vt with vt ∼ N(⋅ ;0,Q̃t) (17)
yt = Htxt +wt with wt ∼ N(⋅ ;0,R) (18)

and

x0 ∼ N(x ; x0∣0,P0∣0R), R ∼ IG(R ; ν0,Σ0) (19)

where Ft is the state transition matrix, Ht is the observation
matrix, and Q̃t = QtR is the process noise covariance that is
controlled by the parameter Qt and the variance R.

Similar to the standard Kalman filter, the filtering equations for
the state vector xt are given by

xt∣t−1 = Ftxt−1∣t−1 (20)

Pt∣t−1 = FtPt−1∣t−1FT
t +Qt (21)

xt∣t = xt∣t−1 +Wt
(
yt −Htxt∣t−1) (22)

Pt∣t = Pt∣t−1 −WtStWT
t (23)

where
St = HtPt∣t−1HT

t +1, (24)

is the innovation factor, S̃t = StR is the variance of the innova-
tion term (yt −Htxt∣t−1), and

Wt = Pt∣t−1HT
t S−1

t (25)
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is the Kalman gain. Note that,

p(xt ∣R,Y t) = N(xt ;xt∣t ,Pt∣tR)

where the actual uncertainty P̃t∣t = Pt∣tR is influenced by R.

The update for the variance R is given by

νt = νt−1 +
1
2

(26)

Σt = Σt−1 +
(yt −Htxt∣t−1)

2

2St
. (27)

For νt > 1, the posterior expectation and mode of R can be
computed as

E(R∣Y t) =
Σt

νt −1
, mode(R∣Y t) =

Σt

νt +1
. (28)

The predictive distribution of a new measurement yt given the
previous measurements up to time t −1, Y t−1, is the Student-t
distribution with 2νt−1 degrees of freedom and with the param-
eters µ and σ2 defined by

µ = Htxt∣t−1 and σ2 =
StΣt−1

νt−1
, (29)

so that,

p(yt ∣Y t−1) = t2νt−1

(
yt ; Htxt∣t−1,

StΣt−1

νt−1

)
. (30)

MODELLING AND TRACKING OF DYNAMIC SPEC-
TRA

Our aim is to model frequency spectra and track their domi-
nant features as they evolve in time. The approach is to rep-
resent spectral densities as mixtures with an unknown number
of components and where the number of components can vary
over time. We use the non-parametric Bayesian model based
on a DP defined by (8)-(11), where the mixed pdfs of the DPM
model are taken to be normal distributions characterised by two
parameters, the mean and the variance.

At each time step t we have a set of Nt measurements yk,t ,k =
1, . . . ,Nt . The measurements are obtained by sampling from
the pdf that is proportional to the magnitude of the spectrum;
in this way, the spectral magnitude becomes the target density
to be approximated by a mixture. The problems to be solved
are: 1) the estimation of the number of mixed pdfs, 2) the as-
sociation of the measurements with the mixed pdfs, and 3) the
recursive estimation of the mixture parameters.

We attempt to solve these problems by using a multi-target
tracking approach, where the inference is done via a Rao-Black-
wellised particle filter motivated by (Sarkka, Vehtari & Lampinen
2007), and where the dependance of the association variables
on their past values is given by (12)-(14). The motions of in-
dividual mixed pdfs (or targets) are assumed to be indepen-
dent from all other pdfs. The time dynamics of each compo-
nent is modelled using a constant velocity linear state-space
model based on (17)-(19). The state vector is defined as x j,t =
[x j,t ẋ j,t ], where x j,t and ẋ j,t are, respectively, the mean of the
jth normal mixed pdf at time t, and its first derivative.

The Rao-Blackwellisation is accomplished by decomposing the
joint density of the state vectors x0:t , the variances R and the
association variables c1:t related to the multitarget system up
to time t, in the following manner:

p(x0:t ,R,c1:t ∣y1:t) = p(x0:t ,R∣c1:t ,y1:t)p(c1:t ∣y1:t) (31)

where y1:t denotes the set of all related measurements. Condi-
tioned on the association variables c1:t , the sufficient statistics
of the parameters of the normal mixed pdfs in x0:t and R can
be estimated using the Bayesian filter described in the previ-
ous section. The marginal density of the association variables
p(c1:t ∣y1:t) can be approximated using a particle set {ω(i)

t ,c(i)1:t}Q
i=1,

as

p(c1:t ∣y1:t)≈
Q

∑
i=1

ω(i)
t δ

c(i)1:t
(c1:t) (32)

where the weights ω(i)
t and the variables c(i)1:t depend on y1:t .

Each particle represents a hypothesis on the association be-
tween the measurements and the mixture pdfs. In addition to
the weights and the past values of the association variables, a
particle also keeps the sufficient statistics of the parametric rep-
resentation of the mixed pdfs.

Let there be Q particles. We give an outline of the processing
related to the ith particle; all other particles are processed in
the same way. A detailed description of the algorithm will be
presented in a separate document.

At time t we receive Nt measurements, yk,t , k = 1, . . . ,Nt . The
measurements are processed sequentially. For each yt,k an op-
timal importance distribution is computed. This is a discrete
distribution which gives the (normalised) probabilities of re-
lating the variable ck,t to each of the existing mixed pdfs, to
a new pdf, and to clutter, conditioned on the current measure-
ment yk,t , the previous measurements, and the previous values
of the association variables. For each value of ck,t this proba-
bility is computed using the appropriate prior in (12)-(14) and
a posterior predictive probability of yk,t (given by the general
formula in (30), for ck,t related to a pdf, and being equal to u
for clutter assignment).

The association of the measurement yk,t is sampled from the
importance distribution. If the measurement is assigned to one
of the existing mixed pdfs, the sufficient statistics of this pdf
are updated using the Bayesian filter described in the previous
section. If the association is to the new pdf, its sufficient statis-
tics are similarly updated, and this pdf is added to the list of
the established mixed pdfs.

After the measurement yk,t is processed for all Q particles, a
weight corresponding to each particle is computed. In this pa-
per, a particle with the highest weight at a time t is used to
represent the modelled dynamic spectrum up to that time.

We note that it is possible to model short-term changes in the
prior distributions of ck,t . Based on this model we can decide
which of the mixed pdf ceased to exist, and should be removed
from the list. We also use a similar model to estimate nonsta-
tionary measurement variances.

EXPERIMENTAL RESULTS

This section presents results obtained by applying the proposed
algorithm to simulated and real narrowband spectra. A sim-
ulated spectrum is generated in the time domain and is sub-
sequently transformed to the spectral domain using the Fast
Fourier Transform (FFT). Each narrowband spectral compo-
nent at time t is represented as a complex exponential as

s j,t(n) = A j,t exp
[
i(2π f j,tn+φ j,t)

]
, n = 1, . . . ,N (33)

where f j,t is the normalised frequency related to the jth spec-
tral component. A j,t is the random amplitude A j,t ∼UA j , where
UA j is the uniform distribution in the interval [0,A j], φ j,t is the
random phase φ j,t ∼N(0,σ2

φ j
), and i=

√−1. The noise is mod-
elled as a complex white Gaussian process with zero mean and
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the variance σ2
v . The expected average signal-to-noise (SNR)

ratio for each spectral component can be estimated as

SNR j = 10log10
E(A2

j,t)

2σ2
v

(34)

where E(A2
j,t) = A2

j/3.

Fig. 1 shows the original simulated time-frequency spectrum
(or spectrogram), where the narrowband spectral components
are buried in noise at the average SNR of -10 dB. In this ex-
ample all spectral components are linear. The spectrum recon-
structed using the sufficient statistics of the spectral compo-
nents corresponding to the particle with the highest weight is
shown in Fig. 2, where the total number of particles is Q = 40.
Fig. 3 shows the true frequencies (tracks) of the spectral com-
ponents, and Fig. 4 shows the tracked frequencies estimated
using the proposed RBPF algorithm corresponding to Fig. 2
(note that the y axis in Figs. 3 and 4 is reversed as compared to
the y axis in Figs. 1 and 2). It can be seen that there are several
false tracks. The pruning of the false tracks can be done based
on their length and their relative energy, which is expected to
be much smaller than that of the true tracks.

The real data is recorded using an underwater sensor array. The
signal is first beamformed, and the bearings in the beamformed
data related to a target are tracked manually. For each bear-
ing/time corresponding to the target detection, the underlying
frequency spectrum is extracted. Such spectra are stacked to-
gether to form the target time-frequency spectrum. Each spec-
trum is next processed using the ‘order-truncate-average’ (OTA)
algorithm (Nielsen 1991). This algorithm applies a robust pro-
cessing based on median filtering, and separates the spectrum
into two components: the smoothed (broadband) spectrum, and
the narrowband spectrum. In this paper we apply the proposed
RBPF algorithm to the resulting narrowband time-frequency
spectrum shown in Fig. 5. Fig. 6 shows the reconstructed real
data spectrum obtained using the results of the proposed RBPF
algorithm. Fig. 7 shows the estimated frequency tracks related
to Fig. 6, and Figs. 8 and 9 show the original and the estimated
real data spectrum, respectively, plotted in 3-D. Note that the
y axis in Fig. 7 is reversed as compared to the y axis in Figs. 5
and 6.

Time 

N
or

m
al

iz
ed

 F
re

qu
en

cy

10 20 30 40 50 60 70 80 90 100

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 1: The original simulated time-frequency spectrum.

CONCLUSION

In this paper we proposed a multi-target tracking approach
for the estimation and tracking of dynamic spectral compo-
nents, where the inference is done via a Rao-Blackwellised
particle filter. The dependance of the association variables on
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Figure 2: The spectrum in Fig. 1 reconstructed using the suffi-
cient statistics of the spectral components corresponding to the
particle with the highest weight.
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Figure 3: True tracks of the spectral components related to the
simulated data in Fig. 1.
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Figure 4: Estimated tracks of the spectral components related
to the reconstructed spectrum in Fig. 2.
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their past values is modelled using an extension to the standard
Dirichlet process model that allows for an outlier distribution
to be included in the mixture. The sufficient statistics of the
unknown means and variances of the tracked probability den-
sity functions are simultaneously estimated using a specifically
designed Bayesian filter. The results obtained by applying the
algorithm to simulated and real narrowband spectra are also
presented.

The results obtained to date are encouraging and show that
there is merit in further investigation of this approach. Further
work is required to characterise the performance of the algo-
rithm in real scenarios. There is also a need to understand the
computational load imposed by this approach compared to the
more conventional processing in order to assess the cost effec-
tiveness of using the approach in practical systems.
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Figure 5: The original time-frequency spectrum obtained using
real data.
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Figure 6: The real data spectrum reconstructed using the suffi-
cient statistics of the spectral components corresponding to the
particle with the highest weight.
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