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ABSTRACT 
Engineering structures are complex and structural uncertainties are generated from variability in the material or geo-

metric properties, or in the manufacturing and assembly process. Such variations generate differences in the dynamic 

responses of the structures across an ensemble of nominally identical systems, for example, vehicles off the produc-

tion line. This work describes the theory and application of polynomial chaos expansion to examine the natural fre-

quencies and modeshapes of structures with uncertainties. The modal statistics of a two degree-of-freedom mass-

spring chain is examined. The structural uncertainty across an ensemble of nominally identical mass-spring chains is 

generated using mass and stiffness perturbations. The parameter uncertainty is constructed using log-normal and uni-

form distributions. Results obtained using the polynomial chaos expansion method are compared with Monte Carlo 

simulations. 

INTRODUCTION 

Typical engineering structures include bridges, buildings, 

offshore structures, ships, vehicles and aerospace structures. 

These structures generally possess randomness due to varia-

bility in their geometric or material parameters. The difficulty 

in attempting to predict the dynamic responses of engineering 

structures with uncertainties is immense, due to the large 

amount of physical variables which might be uncertain and 

the lack of data regarding the statistical distribution of these 

variables. Furthermore, for an ensemble of nominally identi-

cal structures such as vehicles off the production line, varia-

bility in the dynamic responses of each ensemble member 

occurs because of uncertainties in the manufacturing and 

assembling process, for example, due to spot welding. This 

phenomenon has been demonstrated by measuring structural-

acoustic transfer functions in 98 nominally identical automo-

tive vehicles and observing significant differences in the 

interior noise levels (Kompella and Bernhard, 1993). 

Generally the first step to predict the dynamic responses of a 

structure is to determine its natural frequencies and 

modeshapes. Hence, modal analyses can be combined with 

parameter uncertainties to examine their influence on the 

dynamic characteristics. Models of uncertainty are usually 

based on either a parametric or non-parametric description of 

uncertainty, or sometimes, on a combination of both. A par-

ametric description of uncertainty means that the parameters 

of the dynamic system are taken to be uncertain variables that 

can be described statistically. Uncertainty is then propagated 

through the equations of motions using various techniques, 

including the perturbation method (Adhikari and Manohar, 

1999), interval analysis (Moens and Vandepitte, 2005) and 

fuzzy theory (Soize, 1993). The inherent limitation of a par-

ametric method is that for acceptable accuracy, the analytical 

model can be quite complex resulting in significant computa-

tional cost.  

A non-parametric analysis of uncertainty assumes that re-

gardless of their detailed nature, the uncertainties in the sys-

tem can be described using a ‘universal uncertainty’ model. 

Recently, random matrix theory and the polynomial chaos 

expansion method have been implemented to investigate the 
dynamic characteristics of structures with uncertainty. To 

apply random matrix theory, the system should be sufficient-

ly random for statistical overlap to occur (Kessissoglou and 

Lucas, 2009), and as such is more suited to the study of high 

frequency dynamics involving the higher order modes. The 

polynomial chaos expansion was first introduced as the ho-

mogeneous chaos (Wiener, 1938).   

The polynomial chaos expansion method represents the un-

certain variables by orthogonal polynomials of standard ran-

dom variables and can be applied to examine low frequency 

dynamics. An uncertainty model using polynomial chaos 

expansion theory was first applied to solid mechanics using a 

combined finite element and Hermite chaos method (Ghanem 

and Spanos, 1991). Since then the polynomial chaos expan-

sion method has been widely implemented in many disci-

plines, including solid mechanics (Ghanem, 1999), fluid me-

chanics (Rupert and Miller, 2007), thermodynamics (Lin and 

Karniadakis, 2006), structural dynamics and random vibra-

tions (Sepahvand et al., 2007) and fluid-structure interaction 

problems (Witteveen et al., 2007). 

This paper examines application of the polynomial chaos 

expansion method to investigate the modal analyses of struc-

tures with uncertainties. The natural frequencies and 

modeshapes of a two degree-of-freedom mass-spring chain 

randomized by mass and stiffness perturbations are studied. 

Parameter uncertainty was constructed using log-normal and 

uniform distributions. For each mass-spring chain, uncertain-

ty across an ensemble of nominally identical mass-spring 

chains was generated in order to observe the probability dis-

tribution of the modal statistics. The modal results predicted 

using the polynomial chaos expansion method are compared 

with Monte Carlo simulations. 

NUMERICAL MODEL 

Polynomial chaos expansion theory 

The basic methodology using polynomial chaos (PC) expan-

sion involves replacing the stochastic system equations with 

deterministic equations. The solutions of the deterministic 

equations then approximate the solutions of the stochastic 

system equations. The first step in applying the polynomial 

chaos expansion theory is to project the uncertain variables 

onto a stochastic space spanned by a set of mutually orthogo-
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nal polynomials     , which are functions of a multi-

dimensional random variable               . Every ran-

dom variable has a corresponding random space          
        . Then the uncertain variable   can be expressed as 

(Xiu and Karniadakis, 2002) 

  ∑        
 
                                    (1) 

where    are the deterministic coefficients. The random base 

functions    are a set of multi-dimensional polynomials in 

terms of   with the orthogonal relation of 

 (     )         
                                (2) 

where     is the Kronecker delta and   represents the ex-

pected value in the probability space. Selection of the random 

base function    depends on the probability density function 

of random variables (Xiu and Karniadakis, 2002). 

According to the orthogonal feature, the unknown coeffi-

cients     can be determined by stochastic Galerkin projection 

(Sepahvand et al., 2010) 

   
 

    
  

∫  
 

                                 (3) 

where       is the probability measure in the random space 

 . If the random variables    are continuous and mutually 

independent, then       can be expressed as 

                                             (4) 

where      is the probability density function of the random 

variable. 

Modal analysis using polynomial chaos expansion 
theory 

The equation of motion of the undamped mass-spring chain 

is given by 

                                           (5) 

where   and   are the global stiffness and mass matrices, 

respectively. For an n degree-of-freedom system and assum-

ing     , we have 

                                         (6) 

with the normalization condition 

  
                                           (7) 

For the mass-spring systems with uncertain parameters, the 

eigenvalue problem can be expressed by 

                                            (8) 

  
                                            (9) 

where       ,       ,          . 

In this work, the uncertain parameters are represented by the 

truncated PC expansions with a limited number of polynomi-

als: 

      ∑           
  
                         (10) 

      ∑           
  
                          (11) 

      ∑          
  
                                (12) 

      ∑          
  
                               (13) 

where   ,   ,   ,    are respectively the number of poly-

nomials to represent the stiffness matrix, mass matrix, natural 

frequencies and modeshapes. 

Substituting the expansion equations given by Eqs. (10)-(13) 

into Eqs. (8) and (9), multiplying by a random base 

tion       and then using Galerkin projection results in: 

∑ ∑                      
  
         

  
    

∑ ∑ ∑                               
  
   

  
   

  
           

                                               (14) 

∑ ∑      

      
     

      
   

  
    

  
                     

                                               (15) 

where    is the number of base polynomials. 

In this paper, to simplify further analysis we assume that 

          . Thus Eqs. (14) and (15) consist of 

            separate equations. The deterministic 

coefficients of the polynomial chaos expansion for the ith 

natural frequency are given by                 .The deter-

ministic coefficients of the polynomial chaos expansion for 

the ith modeshape are given by                 . The de-

terministic coefficients are solved for each mode, which con-

sists of             elements.  

To solve the system of nonlinear equations, the Newton-

Ralphson algorithm is adopted (Ghanem and Ghosh, 2007). 

To start the iterative process, the natural frequency and 

modeshapes of the nominal mass-spring chain are set as the 

initial estimate. 

TWO DEGREE-OF-FREEDOM MASS-SPRING 
CHAIN WITH UNCERTAIN STIFFNESS 

Using the PC expansion method, modal analysis of a two 

degree-of-freedom mass-spring system shown in Fig. 1 with 

variability in its stiffness is initially examined. The nominal 

values of the parameters for the mass-spring chain are listed 

in Tab. 1. The nominal natural frequencies are 1 rad/s and 

2.34 rad/s, with corresponding modeshapes [0.71 0.71] and 

[0.89 -0.45], respectively. 

The uncertain stiffness of each spring is assumed to follow 

log-normal and uniform distributions, which are represented 

by the Hermite and Legendre polynomials (Sepahvand et al., 

2010). The probability density function,     , mean and 

variance value of a log-normal distribution are given by Eqs. 

(16)-(18). 

 

Figure 1. Two DOF mass-spring chain 
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Table 1. Parameters of the mass-spring chain 

Parameter Value 

   1 kg 

   2 kg 

   1 N/m 

   3 N/m 

   2 N/m 

     
 

  √  
 

         

                                 (16) 

                                                (17) 

                                                (18) 

The uniform distribution can be represented exactly by the 

first-order Legendre polynomial expansion. In this paper, the 

log-normal distribution is represented by a third-order Her-

mite polynomial expansion. Good agreement between the 

probability density functions (PDFs) obtained using the exact 

theoretical solution and the 3rd order polynomial chaos ex-

pansion is achieved, as shown in Figure 2. 

Uncertain stiffness by the same base random vari-
able 

In this case, the uncertain stiffness are assumed to follow log-

normal distribution with different mean and variance values, 

which are listed in Tab. 2.  

 

(a) 

 

(b) 

Figure 2. Probability density function of uncertain parameter 

(a)   , mean = 2 N/m, var = 0.25 N2/m2 (b)   , mean = 1 kg, 

var=0.1 kg2 

 

Table 2. Parameters of the uncertain stiffness 

Parameter Mean Variance 

   1 N/m 0.5 N2/m2 

   3 N/m 0.36 N2/m2 

   2 N/m 0.25 N2/m2 

The log-normal distributions for the three springs are repre-

sented by the same base random variable   . Thus the system 

base random vector becomes        . The stiffness can be 

expressed by a Hermite polynomial chaos expansion as 

(Sepahvand et al., 2010): 

       ∑    

 
                                (19) 

       ∑    

 
                                (20) 

        ∑    

 
                                (21) 

The natural frequencies and modeshapes can be expressed 

using the third-order Hermite polynomial chaos expansion as 

       ∑           
 
                           (22) 

       ∑           
 
                          (23) 

The PDFs of the natural frequencies from polynomial chaos 

(PC) expansion theory and Monte Carlo (MC) simulations 

are shown in Fig. 3.                 

                  

 

(a) 

 

(b) 

Figure 3. Probability density function of the natural frequen-

cies       of the mass-spring chain with uncertain stiffness 

represented by the same base random variable 
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The Monte Carlo results were obtained from sampling 10000 

sets of natural frequency data from the mass-spring chain, 

whose stiffness parameters were generated from the log-

normal distributions specified above. The natural frequencies 

of the mass-spring chain were obtained in Matlab by solving 

          . 

There are obvious differences between the PC and MC re-

sults. Hence, representing the three different stiffness by the 

same base variable is not accurate enough. In the MC simula-

tions, the three stiffnesses are defined as mutually independ-

ent. In the PC expansion, the three different stiffness are ap-

proximated by the same base variable, which are not mutual-

ly independent and results great differences from MC results. 

Uncertain stiffness by different base random varia-
bles 

Uncertain stiffness using uniform and log-normal 
distributions 

In this case, the uncertain stiffness       are assumed to 

follow a log-normal distribution with different mean and 

variance values, which are listed in Tab. 3.  

Table 3. Parameters of the uncertain stiffness 

Parameter Mean Variance 

   1 N/m 0.5 N2/m2 

   2 N/m 0.25 N2/m2 

The uncertain stiffness    is assumed to follow a uniform 

distribution U(2,4) with a mean value of 3 N/m. The two log-

normal distribution are represented by the same base random 

variable   . The uniform distribution is represented by the 

base random variable   . Thus the system base random vec-

tor becomes           . The stiffness can be expressed 

using the PC expansion as 

       ∑    

 
                             (24) 

       ∑    

 
                              (25) 

       ∑    

 
                              (26) 

The natural frequencies and modeshapes can be expressed by 

a third-order PC expansion as 

          ∑              
 
                    (27) 

          ∑              
 
                    (28) 

To simplify the analysis, the interaction polynomial terms in 

        , which in this case is the product of Legendre and 

Hermite polynomials, are ignored. The PDF of the natural 

frequencies from the PC and MC simulations are shown in 

Fig. 4. The PDF of the first natural frequency is not well 

predicted by the PC theory, which is attributed to represent-

ing       by the same base random variable and ignoring the 

interaction polynomial terms. 

 

(a) 

 

(b) 

Figure 4. Probability density function of the natural frequen-

cies       of the mass-spring chain with uncertain stiffness 

using uniform and log-normal distributions 

Uncertain stiffness using different log-normal dis-
tributions 

In this case, the uncertain stiffnesses          are assumed 

to follow log-normal distributions with different mean and 

variance values, which are listed in Tab. 2. The three log-

normal distributions are represented by three different base 

random variables         . Thus the system base random 

vector becomes              . The stiffness can be ex-

pressed using the Hermite PC expansion as 

       ∑    

 
                              (29) 

       ∑    

 
                              (30) 

       ∑    

 
                              (31) 

The natural frequencies and modeshapes can be expressed by 

a third-order PC expansion as 

             ∑                 
 
               (32) 

             ∑                 
 
                  (33) 

In this case the interaction polynomial terms in             

are ignored. The PDFs of the natural frequencies and 

modeshapes from PC and MC simulation are presented in 

Figs. 5 and 6, respectively. 
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(a) 

 

(b) 

Figure 5. Probability density function of the natural frequen-

cies       of the mass-spring chain with uncertain stiffness 

using different log-normal distributions 

 

(a) 

 

(b) 

Figure 6. Probability density function of the modeshapes 

      of the mass-spring chain with uncertain stiffness using 

different log-normal distributions 

 

The PDFs of both natural frequencies are well predicted by 

the third-order PC expansion with different base random 

variables. In the modeshapes analysis, the PC expansion re-

sults are not accurate enough. Greater accuracy could be 

achieved by including the higher order PC expansion and the 

interaction polynomial terms, which would result in a signifi-

cantly higher computational cost.  

TWO DEGREE-OF-FREEDOM MASS-SPRING 
CHAIN WITH UNCERTAIN MASSES 

The uncertain masses in the mass-spring chain are assumed 

to follow log-normal and uniform distributions. The PDFs of 

the natural frequencies and modeshapes predicted using the 

PC theory are compared with MC simulations. 

Uncertain masses using uniform and log-normal 
distributions 

In this case, the uncertain mass    is assumed to follow a 

uniform distribution U(0.5,1.5) with a mean value of   kg. 

The uncertain mass    is assumed to follow a log-normal 

distribution with mean and variance values listed in Tab. 4.  

Table 4. Parameters of the uncertain mass 

Parameter Mean Variance 

   2 kg 0.25 kg2 

The uniform distribution is represented by the base random 

variable   .The log-normal distribution is represented by the 

base random variable   . Thus the system base random vec-

tor becomes           . The masses can be expressed by 

the PC expansion as 

       ∑    

 
                            (34) 

       ∑    

 
                               (35) 

The natural frequencies and modeshapes can be expressed by 

a third-order PC expansion as 

          ∑              
 
                   (36) 

          ∑              
 
                  (37) 

To simplify the analysis, in this case the interaction polyno-

mial terms in          are ignored. The PDFs of the natural 

frequencies from the PC and MC simulations are shown in 

Fig. 7. The PDF of the second natural frequency is not well 

predicted by the PC theory, which is attributed to ignoring 

the interaction polynomial terms. 

Uncertain masses using different log-normal distri-
butions 

In this case, the uncertain masses       are assumed to 

follow log-normal distributions with different mean and vari-

ance values, which are listed in Tab. 5.  

Table 5. Parameters of the uncertain masses 

Parameter Mean Variance 

   1 kg 0.1 kg2 

   2 kg 0.25 kg2 
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(a) 

 

(b) 

Figure 7. Probability density function of the natural frequen-

cies       of the mass-spring chain with uncertain masses 

using uniform and log-normal distributions 

The two log-normal distribution are represented by two dif-

ferent base random variables      . Thus the system base 

random vector is           . The masses can be expressed 

by the Hermite PC expansion as 

       ∑    

 
                              (38) 

       ∑    

 
                                 (39) 

The natural frequencies and modeshapes can be expressed by 

a third-order PC expansion as 

          ∑                     
              (40) 

          ∑              
 
                   (41) 

In this case the interaction polynomial terms in             

are ignored. The PDFs of the natural frequencies and 

modeshapes from the PC and MC simulations are shown in 

Figs. 8 and 9, respectively. 

The PDFs of both natural frequencies are well predicted by 

the third-order PC expansion with different base random 

variables. However for the modeshapes results, the differ-

ences between PC and MC are obvious. To improve the accu-

racy of the PC expansion theory in the modeshape analysis, 

one extra interaction polynomial term      is taken into ac-

count. The PDFs of the modeshapes from the PC simulation 

with one interaction term and from the MC simulations are 

shown in Fig. 10. 

 

 

 

(a) 

 

(b) 

Figure 8. Probability density function of the natural frequen-

cies       of the mass-spring chain with uncertain masses 

using different log-normal distributions 

 

(a) 

 

(b) 

Figure 9. Probability density function of the modeshapes 

      of the mass-spring chain with uncertain masses using 

different log-normal distributions 
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(a) 

 

(b) 

Figure 10. Probability density function of modeshapes       

with uncertain masses predicted using polynomial chaos 

theory with one interaction term and from Monte Carlo simu-

lations 

When one extra interaction term is involved, the PC expan-

sion theory can approximate the PDF of the modeshapes 

more accurately, especially for the second modeshape as 

shown above. However, the computational cost for the PC 

simulations increases exponentially when the interaction term 

is included, and takes more time than the MC simulations. 

CONCLUSIONS 

This paper examines the modal statistics of a 2 degree-of-

freedom mass-spring chain with several uncertain parameters 

using the polynomial chaos expansion method. The uncertain 

masses and stiffness are constructed using uniform and log-

normal distributions and represented by different base ran-

dom variables. As the number of base random variables in-

creases, the natural frequency results can be well approxi-

mated by polynomial chaos expansion. To improve the 

modeshape analyses using polynomial chaos, the interaction 

polynomial terms should be taken into account. However, 

more base random variables and interation polynomial terms 

result in much higher computational cost, and becomes sig-

nificantly slower compared with Monte Carlo simulations. 

Thus the polynomial chaos expansion method is not suitable 

for complex structures with many uncertain variables. 
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