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ABSTRACT 
A study has shown that misfire causes angular rotations of the engine in its mounts, dominated by roll motions 
around an axis parallel to the crankshaft, and that it is possible to detect and quantify misfire using this. This can be a 
viable alternative to measuring torsional vibration of the crankshaft, possibly using accelerometers already mounted 
for other monitoring purposes. By making a kinematic/kinetic model of the engine as a rigid body in the engine 
mounts, and updating it on the basis of a small number of measurements, it has been found possible to simulate mis-
fires of different severities and locations, and use the simulated angular accelerations to train neural networks to rec-
ognise a much wider range of faults than the small number of measurements used to validate the model. The paper 
describes the successful use of this approach for misfire detection and diagnosis in a 4-cylinder spark ignition engine.

INTRODUCTION 

Vibration based condition monitoring techniques have long 
been successfully applied to rotating machines, typically 
operating at constant speed and load in various industries. 
However, the application of condition monitoring on IC (in-
ternal combustion) engines or similar reciprocating machin-
ery developed slowly. That is partly because they often oper-
ate at variable speed and load, and remotely from a central 
monitoring station. Another source of difficulty with engines 
is that the signals are fundamentally different from those of 
high speed rotating machines, with information about faults 
carried not only by patterns of frequency content, but also by 
variations in temporal patterns. Misfire is a very common 
combustion fault in IC engines and over a number of years 
there have been continuing advances in vibration signal based 
misfire detection. There are mainly two approaches: one is 
based on torsional vibration of the crankshaft (eg  Williams 
1996, Yang 2001), and the other is based on translational 
acceleration signals measured on the engine block (eg Ball 
2000, Macian 2009). The first requires special transducers to 
be mounted, the simplest being some kind of shaft encoder, 
which can be as simple as a proximity transducer detecting 
passage of teeth on the ring gear.  

On the other hand accelerometers are often mounted on the 
engine to detect other faults such as piston slap, bearing 
knock or combustion knock and it could be convenient to use 
them as an alternative to detect misfire. A small number of 
studies have shown that misfire causes angular rotations of 
the engine in its mounts, dominated by roll motions around 
an axis parallel to the crankshaft, and that it is possible to 
detect and quantify misfire using this.  

A general problem with automated diagnosis, for example 
based on artificial neural networks (ANNs) is that the latter 
require large amounts of data to train them, and this cannot 
be acquired from experiencing actual failures in practice 
(because these do not cover the full range of fault types, loca-
tions and severities to be guarded against) in particular at 
different stages of the failure process. Artificial faults can be 
seeded in the laboratory, but once again it is not feasible or 

economical to generate a sufficiently wide range of cases to 
cover all eventualities. Walters of Rolls-Royce pointed this 
out in a paper in 2011 (Walters 2011), and stated that it was 
becoming much more economical to use numerical simula-
tion instead. Numerical simulation is proving to be a viable 
way of generating data to train neural networks to diagnose 
and make prognosis of faults in machines. In reference (Ran-
dall 2009), the main examples given were for simulation of 
faults in gears and bearings in rotating machines. There was 
also a small section on faults in reciprocating machines, in 
particular IC engines, but this was basically limited to com-
bustion faults, which had been shown to affect the torsional 
vibrations of the crankshaft. An example was given for simu-
lation of misfire in a large 20-cylinder diesel engine (Desba-
zeille 2010). 

The current paper takes up the possibility of using block rota-
tions for the diagnosis and classification of IC engine com-
bustion faults, using simulated data to train the networks and 
then test them on real response data. 

SIMULATION MODEL 

Engine kinematic/kinetic model 

The engine used for testing and simulation was a Toyota 3S- 
FE 4-cylinder 4-stroke spark ignition engine, shown mounted 
in its test rig in Fig. 1.  

The PhD project of the lead author (JC) was carried out in the 
context of an ARC (Australian Research Council) Linkage 
project, supported by the Belgian company LMS Internation-
al, now part of the Siemens group. LMS software was used 
for much of the modelling in the project, both the 1D package 
AMESim, and the 3D package Virtual.lab. These LMS pack-
ages are normally used for designing new machines, and the 
application to fault simulation is novel. AMESim was used 
for the two misfire models, one using torsional vibration of 
the crankshaft and the other using angular acceleration of the 
engine block. The latter is the only one considered here. 
AMESim provides a number of templates for different ma-
chines, and the one used here was for an IC engine with 
standard kinematics, where the subcomponents, engine block, 
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Figure 1 The engine test rig at UNSW 

crankshaft, connecting rods, pistons, were modelled as rigid 
bodies with perfect joints. The engine block was supported in 
three engine mounts, modelled as linear springs and dampers, 
whose rotational DOFs (degrees of freedom) were considered 
negligible in their effect on the engine. The inputs to the 
model were the time-varying cylinder pressures in each cyl-
inder, and a flywheel was attached to the end of the crank-
shaft to limit torsional vibrations. The actual load was applied 
by a Froude fluid dynamometer, with controllable speed and 
load.  

The dynamic properties of the engine and its components 
were determined from a mixture of experimental methods 
and computations. The rotational inertias of the engine block, 
connecting rod, and whole assembled engine were measured 
experimentally using the so-called “mass-line method” (eg 
Lee 1999). The inertial properties are estimated from an over-
determined set of equations by a least-squares method, based 
on the constant mass lines between the highest rigid body 
mode of the support and the lowest elastic mode of the test 
object (Fig. 2) for a range of FRFs between reference DOFs 
in all three directions. 
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Figure 2. Showing a typical mass line in an FRF 

The inertia matrix of the whole engine, as mounted on the rig 
with attachments, was estimated again using the modal 
property method, with which the stiffness matrix of the 
supports could be estimated at the same time from the 

identified rigid body modes of the mounted engine. The 
damping matrix, assumed proportional, was also estimated 
from the modal analysis of the rigid body modes. The inertias 
of minor components were estimated from CAD drawings. 
The final dynamic model was adjusted slightly by trial and 
error to give a good match between measured and calculated 
rigid body mode frequencies, and response amplitudes. Note 
that the position of the global centre of gravity could not be 
determined very accurately by the mass-line or modal  
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Figure 3. Accelerometer layout on the engine. 

property methods, although it is known exactly for the 
computational model. For this reason it was decided to use 
“pseudo angular acceleration” of the block rather than the 
actual angular acceleration about the crankshaft axis. The 
pseudo angular acceleration was determined as the difference 
between the linear accelerations measured at the top and 
bottom of the engine (points 5 and 7 in Fig. 3) divided by the 
vertical difference between them. The outputs of the 
AMESim model were the linear accelerations of the centre of 
gravity of the engine, and the rotational accelerations  about 
it, but these were transformed into linear accelerations at the 
measurement points, from which the pseudo angular 
accelerations could be calculated. 

Simulations of cylinder pressure 

During the compression and expansion phases of the engine 
cycle, the cylinder pressure is given by: 

 0
0( )
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where P(θ) and V(θ) are the instantaneous cylinder pressure 
and volume, respectively, and P0(θ) and V0(θ) are the pres-
sure and volume at the start of the process. γ is the polytropic 
exponent, which is typically 1.3 for compression and 1.25 for 
expansion (Kuo 1996). 

During the combustion phase, use was made of Wiebe’s em-
pirical functions for burn rate w(θ) and heat release Q(θ) as 
functions of crank angle θ (Ghojel 2010), viz: 
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where mv is Wiebe’s combustion characteristic exponent, θd 
is the combustion duration in degrees, rcomb is the combustion 
efficiency, mfuel is the fuel injection quantity which can be 
looked-up from the fuel injection map of the engine, LHV is 
the lower heating value of the fuel, normally 43.9MJ/kg for 
petrol. 

Figure 4 shows simulated pressure curves for normal com-
bustion, 50% misfire and 100% misfire. 

 

Figure 4. Estimated cylinder pressure for different  
amounts of misfire  

EXPERIMENTAL MISFIRE TESTS 

Tests were carried out on the engine mounted as shown in 
Fig. 1. The injection and firing of the engine was managed by 
a special engine control unit (ECU) Motec M800. By control-
ling the dynamometer, three constant speed conditions were 
selected: 1500rpm, 2000rpm and 3000rpm. For each speed, 
there were three different load conditions: 50Nm, 80Nm, 
110Nm. Removing the ignition lead from the spark plug is 
the most direct way to simulate 100% misfire, but 50% mis-
fire was simulated by controlling the ECU. Cylinder pressure 
could be measured (in one cylinder at a time) using a Kistler 
measuring spark plug, with integrated cylinder pressure sen-
sor, type 6117B. Measured pressures were reasonably con-
sistent in all cylinders, and were used to validate the simulat-
ed pressures, as in Fig. 4, for different speeds and loads. The 
pressure was not significantly reduced even in the case of 
oversize piston clearance, which was used in another series of 
tests for the effects of piston slap. 

There were 15 cases in the normal condition and 21 cases for 
misfire conditions (including 2 cases with 50% misfire), as 
shown in Table 1. 

Table 1. Details of misfire tests 

 

COMPARISON OF SIMULATION WITH 
MEASUREMENT 

Normal condition 

Figure 5 compares measured and simulated pseudo angular 
accelerations in normal condition for two different speeds 
and loads (note that the x-axis is crank angle degrees, not 
time). The simulation is lacking some higher harmonic in-
formation, but the first harmonic is very similar. 
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Figure 5. Experimental and simulated pseudo angular accel-
erations of engine block under normal conditions 

In fact, on the basis of the experimental measurements it had 
been decided that the most appropriate parameters to use for 
detecting and evaluating misfires were the amplitude and 
phase of the low harmonics of the motions, with the ampli-
tude (ratios) indicating severity of the misfire, and the phase 
indicating the affected cylinder. Phase was measured relative 
to a datum of TDC (top dead centre) cylinder 1, firing stroke. 
In normal condition the fourth harmonic (firing frequency) 
dominates (as in Fig. 5), while with misfire in a single cylin-
der the first harmonic (cycle frequency or half rotational 
speed) dominates. This was found to be appropriate for anal-
ysis of the torsional vibration signals (inspired by Desbazeille 
2010), and with very similar results for the pseudo angular 
acceleration. It will be seen in what follows that the simula-
tions are even closer to the measurements in terms of these 
dominant harmonics. 
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Results with misfires 

Figure 6 compares measured and simulated pseudo angular 
accelerations for two different speed and load conditions. The 
waveforms seem somewhat different, but it will be seen that 
the low harmonics are more similar. Note that there is a 
change in phase of the maximum reponse with speed, even 
though the misfire is always in cylinder 1. This is because the 
frequency response functions between forces (moments) and 
responses are constant because of the fixed rigid body modes, 
but the forcing frequencies (harmonics of the cycle frequen-
cy) vary directly with the speed. This was not the case for the  
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Figure 6. Experimental and simulated pseudo angular accel-
erations of engine block for misfire in Cylinder 1. 

torsional vibrations measured at the same time as the rota-
tional accelerations, because the crankshaft was effectively 
rigid, but something similar was found for torsional vibra-
tions in (Desbazeille 2010), as the crankshaft was flexible on 
that large engine, and its torsional modes were within the 
range of excitations. 

Figure 7 shows that the amplitudes and phases of the critical 
first and fourth harmonics of cycle frequency for the two 
speeds 1500 rpm and 3000 rpm are more similar than might 
appear from the waveforms of Fig. 6. 

DIAGNOSIS USING ANNs 

As mentioned in the Introduction, much research has shown 
that ANNs are a very efficient method to differentiate various 
faults in rotating machines (eg McCormick 1997, Samanta 
2001).   After training networks using a considerable amount 

of data, the ANNs can make judgments about inputs never 
before presented, based on the training data. However, large 
amounts of training data are required. In this paper it is 
proposed to use simulated data for this purpose, specifically 
based on the (pseudo) angular accelerations of the engine 
block. As discussed above, the input features to the networks 
are based on the amplitudes and phases of the low harmonics 
of the response waveform signals.  

A potential problem with simulations is that they are 
inherently deterministic, whereas real measurements have a 
certain amount of variability for a numbr of reasons. The  
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Figure 7. Polar diagrams of the experimental and simulated 

pseudo angular accelerations for misfire in Cylinder 1. 

aprosach to that problem taken here is to use the limited 
number of actual measurements not only to validate the 
simulation models, but also to obtain a measure of the 
random variability, which is then applied to the feature 
vectors used to train the networks. In some cases, the data 
from a number of different situations, for example of speed 
and load, do not vary too greatly, and therefore this 
variability (also in the simulations) is included. 

The system for the automated misfire diagnostics (as shown 
in Figure 8) was designed as a three-stage system. The first 
stage is to determine whether a misfire exists. The second 
stage identifies the cylinder which has a misfire, while in the 
third stage, based on the detection results, the severity of a 
misfire can be identified.  

Amplitude   Phase Amplitude

MLP1 MLP2PNN1

Detection Localization Severity

MLP-Multi-layer Perceptrons (output 0-1)
PNN-Probabilistic Neural Networks (output 1 or 2 or 3…)

Figure 8. Structure of the three-stage ANN system 

As is seen in Fig. 8, two different types of ANN are em-
ployed, MLP (multi-layer perceptron) networks and PNN 
(probabilistic neural networks). The MLP networks have a 
continuous output between 0 and 1, while the PNNs have 
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discrete integer outputs (1, 2, 3…) to indicate the cylinder. In 
the initial study, it was desired not to restrict the measure-
ment conditions more than necessary, so a fairly coarse limit 
was placed on severity identification. Since the only test cas-
es were 50% and 100%, the ANNs were trained to recognise 
these two values. It would be possible to have finer grada-
tions in severity identification, but this would probably in-
volve making tighter restrictions on speed and load when the 
measurements are taken.  

MLPs are described in many references and have the basic 
form shown in Figure 9. Two MLPs were designed: one for 
the fault detection (MLP1) and the other for the severity iden-
tification (MLP2). The MLPs consist of three layers: input, 
hidden and output. The number of hidden neurons of the 
MLPs was determined using a trial and error procedure (that 
shown in Figure 9 has 30 hidden neurons). Iw and b are re-
spectively the weight and bias factors distributed to the  

Iw1

b1
+

Iw2

b2
+

Input Hidden Layer Output Layer

30 1  

Figure 9. Typical layout of an MLP network 

individual elements of the input feature vectors. Identifiers 1 
and 2 indicate the different weight vectors and bias vectors 
for the hidden layer and the output layer. During the training 
stage, MLPs were led to a specific target output by adjusting 
the values of the connections (weights and bias) among the 
elements of the input vectors. The output of the MLPs is from 
0 to 1.  In the MLP1, output 0 means normal condition and 
output 1 for 50% and 100% misfire. In the MLP2, the output 
0.5 represents 50% misfire and the output 1 represents 100% 
misfire. 

The PNN is based on the weighted-neighbour method and 
was proposed by (Specht 1990). The distance is computed 
from the point being evaluated to each of the other points, 
and a radial basis function is applied to the distance to 
compute the weight for each point. The structure of a typical 
PNN is shown in Figure 10. The outputs of the PNN for the 
misfire diagnostics are the integer numbers 1, 2, 3 and 4, 
which directly indicate the cylinder number. 
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Figure 10. Typical layout of a PNN 

Initially, the diagnosis was done with a mixture of test and 
simulated data. As discussed above, the amplitudes of the 1st 
and 4th harmonics were thought to be suitable input features 
for the MLP1. In order to investigate the effect of speed/load 
on the success of the networks, especially for the MLPs. Two 
input conditions were tried for MLP1; one was a four-
element input condition (two amplitude features plus two 
speed/load elements) and the other was a two-element input 
condition (only two amplitude features). A fitness criterion 
was introduced to evaluate the performance of the MLP1: 

 
1

( ( ) ( )
N

i
Error ANN i VAL i

=
= −∑  (4) 

where ANN is the output of the MLP and VAL is the corre-
sponding target number. N is the total number in the test 
group (33). A higher fitness criterion means poorer MLP 
performance. Even though both feature sets gave excellent 
results, 100% correct, the 2-element set gave lower error, so 
the training of the MLPs purely by simulated data was re-
stricted to the 2-element set. For the angular acceleration, as 
opposed to torsional vibration, the phases of the 1st harmonic 
with misfire are only fixed at a certain speed, so the inputs to 
the PNNs also contained two elements, phase and speed. 

Finally, the networks were trained using only simulated cases 
and tested with the experimental cases. Thus, in the MLP1, 
the training group consisted of 84 simulated cases and the test 
group consisted of all 36 experimental cases. The final results 
for the MLPs and the PNN, with two input elements, are 
shown in Table 2. 

Table 2. Diagnostic results 

 Detection (MLP1) 100%  

Localization (PNN) 100%  

 50% misfire 100% misfire 

Severity (MLP2) Output range 

0.849 - 1.000 

Output range 

0.409 - 0.412 

Restricting the maximum output of MLP2 obviously gives a 
bias, so this approach needs refinement. As mentioned above 
it should be possible to narrow the output range by restricting 
the allowable range of speed and load for the measurements. 

CONCLUSION 

A number of studies have shown that misfire causes angular 
rotations of the engine in its mounts, dominated by roll mo-
tions around an axis parallel to the crankshaft, and that it is 
possible to detect and quantify misfire using this. The loca-
tion of the misfire is given by the phasing of the motion with 
respect to a cyclic reference (eg top dead centre, cylinder 1, 
firing stroke). Rather than measuring the actual angular ac-
celeration about the longitudinal axis through the centre of 
gravity (which in general is not known exactly) it is possible 
to use a “pseudo angular acceleration” based on subtracting 
two linear accelerations measured near the top and bottom of 
the block. By making a kinematic/kinetic model of the engine 
as a rigid body in the engine mounts, and updating it on the 
basis of a small number of measurements, it has been found 
possible to simulate misfires of different severities and loca-
tions, and use the simulated pseudo angular accelerations to 
train neural networks to recognise a much wider range of 
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faults than the small number of measurements used to vali-
date the model. 

In this paper, it is demonstrated that it is possible to use simu-
lated data to train ANNs to detect and diagnose misfires usu-
ing a 3-stage process: detection, localization, and determina-
tion of severity, with a separate ANN for each. The networks 
were trained entirely with simulated data, and tested entirely 
with measurement data, with 100% success rate on detection 
and localization, and a good result for severity determination. 
It shuld be possible to improve the latter by restricting the 
range of speeds and loads for which the measurements can be 
taken. 
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