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ABSTRACT 

Interest in the use of metamaterials has increased considerably in recent years as these materials exhibit unu-
sual properties due to their internal structure. In this paper, a periodic multilayered medium formed by the alter-
nation of stiff and soft materials is analytically examined, whereby the multilayered medium is modelled as a 
one-dimensional wave propagation problem. The transfer matrix method is used to determine the reflection and 
transmission coefficients on the incident and transmitted sides of the multilayered medium, respectively. The 
effective acoustic properties of the periodically layered medium in terms of the properties of an equivalent ho-
mogeneous medium are also derived using the transfer matrix method. These effective parameters, corre-
sponding to the effective speed of sound and effective density, are compared to those obtained using a quasi-
static approach. Dispersion curves for the periodically layered medium and results for the transmitted and re-
flected pressure are presented. 

1 INTRODUCTION 
Acoustic metamaterials are artificial materials which have been receiving growing interest in the last decade due 
to their capacity to exhibit unusual properties such as sub-wavelength band gaps, negative refraction and strong 
variations for the effective parameters. These unusual properties arise from the collective manifestation of the 
internal constituent units in the structure, such as resonant inclusions arranged in a host matrix (Ma and Sheng, 
2016). A multilayered medium formed by the periodic alternation of stiff and soft layers is considered here. The 
material properties for this multilayered design can be derived in terms of effective parameters of an equivalent 
homogeneous medium, corresponding to the effective speed of sound and effective density. Effective parame-
ters and dispersion relations for 1D longitudinal wave propagation in a periodic layered composite have been 
derived analytically (Rytov, 1956) and using approximation methods (Nemat-Nasser et al., 2011; Meresse, 
2015). Metamaterials based on homogenisation of layered structures comprising two alternating materials in air 
have been designed as a broadband acoustic cloak (Torrent and Sanchez-Dehesa, 2011). For underwater ap-
plications, metamaterials have been employed as underwater acoustic barriers and as anechoic coatings ap-
plied to the outer hull of a submerged marine vessel. Leroy et al. (2015) numerically and experimentally exam-
ined a metamaterial comprising an elastic medium with bubble metascreens submerged in water, for broadband 
absorption in the ultrasonic frequency range. Sharma et al. (2016, 2017) developed a semi-analytical model 
based on homogenisation theory to examine the acoustic performance of a periodically voided soft elastic me-
dium, without and with a steel backing, for underwater applications. 
 
In this work, a periodic multilayered medium comprising alternating stiff and soft material layers is analytically 
examined for underwater applications. One-dimensional wave propagation through the multilayered pattern is 
derived in terms of the transfer matrix method. Reflection and transmission coefficients for the acoustic pressure 
on the incident and transmitted sides of the layered medium are obtained. The transfer matrix method is also 
implemented to compute the dispersion curves as well as the effective parameters corresponding to the effec-
tive speed of sound and effective density of an equivalent homogenised layer. Different configurations of the 
periodic unit are studied and the corresponding effective parameters are examined.  

2 THEORETICAL METHODOLOGY 
In this study, a multilayered medium comprising alternating layers of two materials whereby one layer is soft and 
the other layer is stiff is examined. The transfer matrix for one-dimensional sound propagation through the multi-
layered structure is initially derived, from which the reflection and transmission coefficients are obtained. The 
effective speed of sound and effective density of an equivalent homogeneous medium are then obtained from 
the constituting  periodic unit comprising one stiff layer and one soft layer, also based on the transfer matrix 
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method. Figure 1(a) represents a multilayered medium comprising three units of the symmetric periodic unit de-
sign shown in Figure 1(b) and immersed in water, while alternative periodic units (which are equivalent if the 
material was infinite) are shown by Figures 1(c), 1(d) and 1(e). For the multilayered medium examined in this 
work, the stiff material is aluminium and the soft material is silicone rubber. 

 

 
Figure 1: (a) A multilayered medium immersed in water and formed by three units of the periodic unit design 

given by (b). Alternative designs for the periodic unit are given by (c), (d) and (e). The silicone is represented by 
the yellow layers and aluminium is represented by the green layers. 

2.1 Determination of the reflection and transmission coefficients using the transfer matrix method 
The transfer matrix for 1D acoustic wave propagation through a layer relates the acoustic pressure and normal 
particle velocity of the fluid on either side of the medium and is given by (Munjal, 1987) 

𝐓 = [
cos(𝑘ℎ) i𝜌𝑐sin(𝑘ℎ)
i.sin(𝑘ℎ)

𝜌𝑐
cos(𝑘ℎ)

] (1) 

 

where i = √−1 is the imaginary number, 𝜌 is the density of the material, 𝑐 is the speed of sound in the material, 

𝑘 = 𝜔/𝑐 is the longitudinal wavenumber, 𝜔 is the radian frequency and ℎ is the thickness of the layer.  
 
For the case of a multilayered structure, the input acoustic pressure and normal particle velocity to a successive 
layer (layer 𝑛 + 1) corresponds to the output acoustic pressure and normal particle velocity of the previous layer 

(layer 𝑛). As such, the global transfer matrix of a structure comprising multiple layers is the product of the trans-
fer matrices of each layer, that is 

𝐓g = ∏ 𝐓𝒏
𝑛=1
𝑛=𝑁  (2) 

 

where the subscript ‘g’ denotes global and 𝑛 = 1,… ,𝑁 corresponds to the number of layers. The acoustic pres-

sure and normal particle velocity on the transmitted side of the multilayered medium due to an incident acoustic 
pressure can then be obtained using 
 

[
𝑝t
𝑣t
] = 𝐓g [

𝑝inc
𝑣inc

] (3) 

 
where the subscript ‘t’ and ‘inc’ respectively correspond to transmission and incidence. The multilayered medi-
um of global thickness ℎg, represented by Figure 1(a), is immersed in water and subjected to a plane wave of 

unity amplitude at normal incidence. Once the transfer matrix of the multilayered medium is derived, its reflec-
tion and transmission coefficients are obtained as follows 
  

[
𝑇𝑒−i𝑘fℎg

𝑇𝑒−i𝑘fℎg

𝑍f

] = 𝐓g [
1 + 𝑅
1−𝑅

𝑍f

] (4) 

 
where 𝑍f and 𝑘f are respectively the impedance and wavenumber of the surrounding water, obtained by 

𝑍f = 𝜌f𝑐f and 𝑘f = 𝜔/𝑐f.   
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2.2 Determination of effective parameters using the transfer matrix  
In what follows, the periodic unit design represented by Figure 1(b), comprising a layer of aluminium followed by 
a layer of silicone and then another layer of aluminium, is now considered. The periodic unit is denoted by the 
subscript ‘u’. A theoretical infinite repetition of this periodic unit can be described by an equivalent homogene-
ous medium with effective properties. These effective properties are derived from the transfer matrix 𝐓u of the 
periodic unit. The effective longitudinal wavenumber 𝑘eff is obtained from the eigenvalues of the transfer matrix 

of the periodic unit 𝐓u using the following expression 

𝜆 = 𝑒i𝑘effℎu  (5) 
 
where ℎu is the thickness of a single periodic unit, which in this case corresponds to the thickness of one layer 
of silicone plus the thickness of the two half layers of aluminium. Once the effective wavenumber is obtained by 
solving equation (5), the effective complex speed of sound is obtained using 

𝑐eff =
𝜔

𝑘eff
 (6) 

 
Furthermore, using the real and imaginary parts of the effective speed of sound, the effective loss factor can be 
determined by 

𝑐eff = 𝑐′ − i𝑐′′ = 𝑐′(1 − i𝜂eff) (7) 
 
The effective density 𝜌eff can be deduced from the transfer matrix of the periodic unit using either 

𝐓u(1,2) = i𝜌eff𝑐effsin(𝑘effℎu)    or    𝐓u(2,1) = i
sin(𝑘effℎu)

𝜌eff𝑐eff
. (8) 

 
The effective impedance 𝑍eff is then obtained by  
 
 𝑍eff = 𝜌eff𝑐eff.               (9) 
 
The same method can be used to determine the effective parameters of other periodic patterns as shown in 
Figures 1(c), 1(d) and 1(e), whereby Figures 1(d) and 1(e) involve two layers of material instead of three. 

2.3 Quasi-static effective parameters 
At low frequencies, the thickness of the multilayered structure is small compared to the acoustic wavelength, 
resulting in low values for the longitudinal wavenumber. Using a quasi-static approach, the effective parameters 
of a periodic unit comprising two layers of material as represented by Figures 1(d) and 1(e), are obtained and 
compared with those effective properties obtained using the transfer matrix method at low frequencies. The 
quasi-static effective density is given by the average density for the various layers in the equivalent homogene-
ous medium as follows 

𝜌eff
QS

=
∑ ℎ𝑙ρ𝑙
𝑁
𝑙=1

ℎu
 (10) 

The effective wavenumber can be obtained using the dispersion relation as described in the previous section. 
The boundary condition at the interface between two consecutive layers is given by (Meresse, 2015) 
 

cos(𝑘eff(ℎ1 + ℎ2)) = cos(𝑘1ℎ1) . cos(𝑘2ℎ2) −
1

2
(𝛾 +

1

𝛾
) . sin(𝑘1ℎ1) . sin(𝑘2ℎ2) (11) 

 
where ℎ1, 𝑘1, 𝑍1 and 𝑘2, ℎ2, 𝑍2 are respectively the thickness, wavenumber and impedance of layers 1 and 2 of 

the periodic unit, and 𝛾 =
𝑍1

𝑍2
. At low frequencies, corresponding to low values of the reduced wavenumber, a 

polynomial approximation of equation (11) leads to  
 

(𝑘eff
QS
)2(ℎ1 + ℎ2)

2 ≅ (𝑘1ℎ1)
2 + (𝑘2ℎ2)

2 + (γ +
1

γ
) 𝑘1ℎ1𝑘2ℎ2 (12) 

 

Using 𝑘 =
𝜔

𝑐
, an explicit expression for the effective sound speed is obtained as follows 
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𝑐eff
QS

≅
ℎ1+ℎ2

√(
ℎ1
c1
)2+(

ℎ2
c2
)2+(γ+

1

γ
)
ℎ1ℎ2
c1c2

. (13) 

 
The quasi-static effective impedance 𝑍eff is then obtained by  
 

 𝑍eff
QS

= 𝜌eff
QS
𝑐eff
QS

.                        (14) 

3 RESULTS  
Results for a multilayered medium formed by periodic layers of silicone and aluminium are presented. The com-
plex speed of sound and density for silicone are given by 𝑐silicone = 1000(1 − i𝜂silicone)m/s where 𝜂silicone is the 

loss factor and 𝜌silicone = 1250kg/m3. Similarly, the speed of sound and density for aluminium are given by 

𝑐aluminium = 6200m/s and 𝜌aluminium = 2700kg/m3. The speed of sound and density in water on the incidence 

and transmission sides of the multilayered medium are 𝑐f = 1500m/s and 𝜌f = 1000kg/m3. 

3.1 Dispersion curves 
Figure 2 presents the dispersion curves of the equivalent homogeneous medium representing an infinite period-
ic medium using the expressions for the effective parameters derived in section 2.2. The periodic unit corre-
sponds to Figure 1(b) and consists of a layer of aluminium of 5 mm thickness followed by a layer of silicone of 
30 mm thickness and then another layer of aluminium of 5 mm thickness. In the generation of the effective pa-
rameters for the equivalent homogeneous medium, different values of the silicone loss factor 𝜂silicone were ex-

amined. Dispersion curves in terms of the dimensionless (reduced) wavenumber denoted by 𝑘reduced = 𝑘effℎ𝑢 
are presented for a frequency range up to 40 kHz. For the frequency range considered, two complete band 
gaps appear. Assuming zero damping, distinct frequency ranges corresponding to stop bands occur where the 

real part of the effective reduced wavenumber is equal to 0 or . This is attributed to the fact that at the interface 
between the layers of aluminium and silicone, an incoming wave is transferred into a reflected wave which con-
structively interferes with the incoming wave. Figure 2 shows that as the loss factor of the silicone is increased, 
the band gap vanishes and the imaginary part of the wavenumber is not zero outside the initial stop bands. This 
finding was recently reported by Meresse et al. (2015) who showed that the increase of damping reduced the 
clear bound of band gaps in periodic structures.  

 
 

Figure 2: Dispersion curves of the equivalent homogeneous medium for different values of the loss factor for 
silicone.  
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3.2 Effective parameters 

Figure 3 presents the real part of the effective sound speed 𝑐eff, the effective loss factor 𝜂eff, the magnitude of 

the complex effective density 𝜌eff and the corresponding effective impedance 𝑍eff of the equivalent homogene-

ous medium for the same periodic unit represented by Figure 1(b), for a silicone loss factor of 𝜂silicone = 2%. 
The blue shaded areas represent the band gaps created by the equivalent homogeneous medium for the case 
of zero damping for the silicone layer, corresponding to the blue curve in Figure 2. Within the band gaps in Fig-
ures 2 and 3, the effective parameters exhibit distinct behaviour which is summarised as follows. 
 
In Figure 2, the imaginary part of the wavenumber (which represents the wave attenuation per unit distance) 
reaches a local maximum, corresponding to greater attenuation of acoustic waves in the stop bands than in the 
pass bands. Furthermore, the local maxima increase with frequency, resulting in greater attenuation of the 
acoustic waves with increasing frequency. In Figure 3, it is clear that the real part of the effective speed of 
sound is lower within the second stop band than for the surrounding pass bands. This implies that the propaga-
tion of the waves in the effective medium is slow within the stop band. In Figure 3, the effective loss factor 
reaches a local maximum centred in the stop bands and becomes a very high value in the second stop band 
(although not shown in the figure for a clearer view of the first peak), implying that the effective medium is signif-
icantly intrinsically damped. This indicates that the wave amplitude rapidly decreases such that the propagating 
wave becomes an evanescent wave, thus characterising the band gap. The effective impedance exhibits similar 
characteristics for each band gap, having a local minimum at the first branch of the band gap and then growing 
to a local maximum at the end of the band gap. Consequently, variations of the effective impedance determine 
the bounds of the band gaps which may not be easy to distinguish in the dispersion curves when the loss factor 
for the silicone damping is not zero. In the graph for the effective impedance, the water impedance is represent-
ed by the horizontal dashed-dotted line.  
 
The dispersion curves and effective parameters for the four configurations of the periodic units shown in Figures 
1(b) to 1(e) were compared, whereby for each case, the thickness of the equivalent homogeneous layer ℎu is 
the same. Further, the overall thickness of silicone for each case is the same, and similarly, the overall thick-
ness of aluminium for each case is also the same. As described previously, the first case of the equivalent ho-
mogeneous medium as shown in Figure 1(b) corresponds to a 5 mm thick layer of aluminium is followed by a 30 
mm thick layer of silicone and then another 5 mm thick layer of aluminium. In the second case shown in Figure 
1(c), the layers of aluminium and silicone are reversed such that the periodic unit consists of a 15 mm thick lay-
er of silicone followed by a 10 mm thick layer of aluminium and then followed by another 15 mm thick layer of 
silicone. The third case shown in Figure 1(d) corresponds to a layer of aluminium of 10 mm thickness followed 
by a layer of silicone of 30 mm thickness. The fourth case shown in Figure 1(e) corresponds to one layer of sili-
cone of thickness 30 mm, followed by one layer of aluminium of 10 mm thickness. Note that the first two cases 
shown by Figures 1(b) and 1(c) are symmetric configurations whereas the last two cases shown by Figures 1(d) 
and 1(e) are non-symmetric cases in which the two layers are reversed. 
 
For all four cases, dispersion curves for the non-dimensional wavenumber are the same. Furthermore, the ef-
fective speed of sound is deduced from the effective wavenumber and as such it is also not affected by the 
choice of the periodic unit design.  
 
The effective density of the equivalent homogeneous material was calculated using either 𝐓u(1,2) or 𝐓u(2,1) of 
the global transfer matrix for each design, as given by Eq. (8). For a symmetric periodic unit represented by ei-
ther Figure 1(b) or 1(c), it was observed that the effective density is the same using either 𝐓u(1,2) or 𝐓u(2,1) of 
the global transfer matrix. However, for a non-symmetric periodic unit represented by Figure 1(d) or 1(e), the 
effective density obtained using 𝐓u(1,2) or 𝐓u(2,1) of the global transfer matrix was not the same (although the 
results are not shown here). As such, the effective density depends on the design of the periodic unit, which 
leads to the conclusion that the transfer matrix method is not suitable to determine the effective density for the 
case of a non-symmetric periodic unit.  
 
In Figure 3, the horizontal dashed lines correspond to the quasi-static values of the effective parameters and are 
the same for all four designs of the periodic unit represented by Figures 1(b) to 1(e), thus validating the effective 
parameters of the equivalent homogeneous medium at low frequencies. It can be observed that at low frequen-
cies, the quasi-static effective impedance is almost equal to the impedance of water.  
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Figure 3: Effective parameters for the symmetric periodic unit represented by Figure 1(b), corresponding to 
the real part of the effective sound speed, the effective loss factor, the modulus of the effective density and 
the effective impedance. The blue shaded areas represent the band gaps in the dispersion results in Figure 
1 for zero loss factor of the silicone layer (represented by the blue curve results in Figure 1). The horizontal 
dashed lines correspond to the quasi-static values of the effective parameters. In the graph of the effective 

impedance, the horizontal dashed-dotted line represents the water impedance. 
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3.3 Transmission and reflection coefficients 
The transmission and reflection coefficients are computed using the effective properties obtained from the two 
unit designs represented by Figures 1(b) and 1(c), for which both designs are symmetric but the soft and stiff 
layers are reversed. The transmission and reflection coefficients of the multilayered media in water have also 
been obtained analytically using the methodology described in section 2.1. The coefficients have been calculat-
ed for multilayered media comprising one, three and ten units of a periodic unit design. The effective density 
was calculated using 𝐓u(2,1) of the transfer matrix for each design. With regards to Figures 4 and 5, the follow-
ing observations are made. 

 For the symmetric unit designs represented by Figures 1(b) and 1(c), the transmission and reflection coeffi-
cients obtained analytically for the multilayered media are identical to those obtained for an equivalent ho-
mogeneous medium.  

 As the number of periodic units increase, the presence of the band gaps becomes apparent, whereby band 
gaps associated with low transmission coefficient values corresponds to high reflection coefficients. 

 The results for the two designs become similar to each other as the number of periodic units increase. This 
implies that for the choice of aluminium and silicone to respectively represent the stiff and soft layers, the co-
efficients are less sensitive to the material on the incidence and transmission sides of the multilayered medi-
um. 

4 SUMMARY 
In this work, a multilayered medium comprising alternating layers of a soft material corresponding to silicone 
rubber and a stiff material corresponding to aluminium is examined. Four different configurations of a periodic 
unit are studied, whereby two designs correspond to symmetric periodic units and the other two designs corre-
spond to non-symmetric periodic units in which the soft and stiff layers are reversed. For each periodic unit con-
figuration, the effective parameters and reflection and transmission coefficients are obtained using the transfer 
matrix method. For all four periodic unit designs, dispersion curves for the effective wavenumber and the effec-
tive speed of sound were the same. However, differences in the effective density between the symmetric and 
non-symmetric periodic units were found to occur. For the symmetric periodic designs, results for the reflection 
and transmission coefficients of the effective homogeneous medium were identical to those obtained from the 
analytical model. Furthermore, results for the two symmetric designs for which the soft and stiff layers were 
reversed were observed to converge with increasing number of periodic units. 
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Figure 4: Comparison of transmission coefficients obtained analytically for a multilayered medium (green dotted 
line) and for the equivalent homogeneous medium (orange dashed line) comprising 1 unit (top), 3 units (middle) 

and 10 units (bottom) of the symmetric unit designs represented by Figure 1(b) (left column) and Figure 1(c) 
(right column). 

 
 

1 x Figure 1(b) 

10 x Figure 1(c) 10 x Figure 1(b) 

3 x Figure 1(b) 3 x Figure 1(c) 

1 x Figure 1(c) 
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Figure 5: Comparison of reflection coefficients obtained analytically for a multilayered medium (green dotted 
line) and for the equivalent homogeneous medium (orange dashed line) comprising 1 unit (top), 3 units (middle) 

and 10 units (bottom) of the symmetric unit designs represented by Figure 1(b) (left column) and Figure 1(c) 
(right column). 

1 x Figure 1(b) 

10 x Figure 1(c) 10 x Figure 1(b) 

3 x Figure 1(b) 3 x Figure 1(c) 

1 x Figure 1(c) 




