
 

ACOUSTICS 2019 Page 1 of 10 

The Effects of Mass-Air-Mass Resonance on the RW + Ctr           

Performance of Wall Systems 

Peter Pirozek 

Senior Acoustician, R&D Engineering Services Group,  
USG Boral Building Products Pty Ltd, Port Melbourne, Australia 

ABSTRACT 

The Building Code of Australia (BCA) forms part of the National Construction Code (NCC) and stipulates a mini-
mum requirement for inter-tenancy walls between dwellings expressed in terms of "R

W
 + C

tr
 not less than 50" for 

airborne noise (BCA, 2019). 
Inter-tenancy walls come in a range of configurations, including lightweight plasterboard wall systems (with timber 
or steel studs), pre-cast concrete walls, concrete block walls (core-filled and unfilled), Autoclaved Aerated Con-
crete (AAC) panels and brick walls.  In these latter wall systems, the walls are generally finished with a layer of 
plasterboard on both sides, either direct (daub) fixed, fixed on furring channels or on a separate stud. 
This paper presents some laboratory test results conducted by USG Boral on AAC block and core-filled lightweight 
masonry block wall systems.  The results are analysed in terms of the effect of the Mass-Air-Mass resonance on 
the RW + Ctr of the wall system.  Injudicious / poor / unlucky choice of air cavities and plasterboard weight can 

result in Mass-Air-Mass resonances that can significantly reduce the RW + Ctr performance of the wall system, so 

that even though additional weight is added to the wall system it never-the-less reduces the RW + Ctr value. 

1 INTRODUCTION 
The effect of the Mass-Air-Mass resonance and its ability to reduce the sound transmission loss is relatively well 
known to most acoustic consultants and others in the building industry.  However, the magnitude of the effect on 
the RW + Ctr performance of masonry wall systems with a cavity to each side is often not appreciated.   

A cavity to each side of a masonry wall (or AAC panel) is desirable as it allows for services to be easily run in the 
wall (electrical, data, plumbing etc).  Cavity sizes are usually nominated based on the types of services to be 
accommodated rather than acoustic requirements.  This form of construction is very common in many parts of 
Australia.  Unfortunately, this type of approach often results in undesirable Mass-Air-Mass resonances that sig-
nificantly reduce the RW + Ctr performance of the wall system, often to less than the BCA minimum requirement 

of RW + Ctr 50 dB for inter-tenancy walls between sole-occupancy units. 

The following paper provides some analysis of laboratory tests on wall systems with gypsum plasterboard lining 
to each side of a central masonry panel (core-filled lightweight concrete block and AAC panels) in terms of the 
Mass-Air-Mass resonance of these systems. 

2 MASS-AIR-MASS RESONANCE 
The Mass-Air-Mass (MAM) resonance of a double or cavity wall system is a well know phenomenon and has been 
taken into account in many theories of sound transmission loss.  The resonance has the effect of reducing the 
sound transmission loss at the Mass-Air-Mass (f

mam
) resonant frequency and is given by the following equation; 

 

𝑓𝑚𝑎𝑚 =  
1

2𝜋
√

𝜌0𝑐2(𝑚1+ 𝑚2)

𝑑𝑚1𝑚2
 (1) 

 
Where ρ0 is the density of air (kg/m3), c is the speed of sound in air (m/s), d is the distance between the two wall 

leaves (m) and m1 and m2 are the surface densities of the wall leaves (kg/m2) respectively. 
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The formula is based on the simple mass spring system consisting of two masses connecting by a spring.  As 
applied to wall systems, the spring is the air cavity between the two wall leaves and the respective masses are 
the surface densities of each wall leaf.   
When insulation is added, the f

mam
 resonant frequency is found to be reduced.  Narang (Narang, 1993) has sug-

gested that the reason for this is that the sound propagation through the insulation in the cavity is isothermal rather 

than adiabatic which introduces a factor of 
1

√1.4
 and so reduces the f

mam
 resonant frequency by about 15.5%. 

Depending on the choice of values for the above variables, slight differences may be found in the literature but 
Equation (1) appears to be the most accepted form for calculating the f

mam
 resonant frequency. 

3 AAC AND PLASTERBOARD WALL SYSTEMS 
Davy and others (Davy et al, 2017) have reported on the acoustic performance of Autoclaved Aerated Concrete 
(AAC) panels for a number of different systems with gypsum board lining to both sides of the panel, either directly 
adhered, on furring channels or on separate steel studs, with and without insulation in the cavity. 
A total of 27 tests were conducted at the CSIRO acoustic testing laboratories in Clayton, Melbourne, in June, 
October and November 2016.  The AAC panels were 75 mm thick tongue & groove panels with a nominal stated 
density of 510 kg/m3 (nominal surface density of 38.2 kg/m2).  The gypsum plasterboard lining was 13 mm thick 
with various surface densities (7.2 kg/m2, 8.5 kg/m2 and 10.5 kg/m2). 
The intention of the tests was to determine the acoustic performance of these systems, preferably achieving 
RW + Ctr 50 dB, within an overall wall width of 243 mm. 

The following section summarises some of these findings and highlights the effect of the f
mam

 resonant frequency 

on the overall acoustic performance of a number of these wall systems. 
A typical configuration for these wall systems, acting as an inter-tenancy wall between sole occupancy units 
(SOUs) and therefore requiring an acoustic performance of not less than RW + Ctr 50 dB is – 

• 13 mm gypsum plasterboard on 

• 28 mm furring channel to create a 30 mm cavity 

• with or without insulation 

• 75 mm thick AAC panel 

• 20 mm (minimum) gap 

• 64 mm (typically) steel stud 

• Insulation in the cavity 

• 13 mm gypsum plasterboard 

This provides a cavity for services to each side of the AAC panel and the minimum 20 mm gap provides a discon-
tinuous construction (which is required in some circumstances to comply with the BCA). 
Figure 1 shows the laboratory measured sound transmission loss curves of a number of wall systems with a 
30 mm cavity on one side of the AAC panel created by use of a furring channel (with and without insulation) and 
112 mm cavity on the other side, created by using a 64 mm steel stud and 48 mm gap (with 110 mm thick glass-
wool insulation (11 kg/m3) in both cases).  A schematic diagram is shown in the figure that shows the general 
arrangement. 
The red lines show the test results with no insulation in the 30 mm cavity.  The dashed red line shows the results 
using a lighter 13 mm gypsum board (7.2 kg/m2) and the solid red line shows the results with a heavier 13 mm 
gypsum board (8.5 kg/m2).  In both cases, the result was RW + Ctr 49 dB, although the system with the heavier 

board was very slightly higher at most frequencies (the differences were greater below 100 Hz). 
Since this result is just below the BCA requirement of RW + Ctr 50 dB, it would be tempting to assume that adding 

insulation to the furring channel side of this system would be sufficient to increase the acoustic performance to 
achieve RW + Ctr 50 dB. 

However, adding insulation to the furring channel side of these systems (25 mm thick glass wool with a density of 
24 kg/m2) actually reduces the acoustic performance to RW + Ctr 46 dB for the lighter gypsum plasterboard system 

(7.2 kg/m2) and RW + Ctr 48 dB for the heavier gypsum plasterboard (8.5 kg/m2). 

Figure 1 shows that adding the insulation into these systems increases the acoustic performance between 160 Hz 
and 500 Hz, but reduces the acoustic performance below 125 Hz. 
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Figure 1: Laboratory measured sound transmission loss of AAC and gypsum plasterboard wall system with a 
30 mm cavity to one side and 112 mm cavity to the other side. 

Figure 1 also shows the calculated f
mam

 resonant frequency for the smaller cavity (higher frequency) and the larger 

cavity (lower frequency) with the associated 1/3 octave band in brackets.  For the purposes of this exercise, it has 
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been assumed that the resonant frequency of each cavity is associated with the panels/lining to each side of the 
cavity and that there are no interactions with the cavity system on the other side of the AAC panel (ie, two double 
panel systems rather than a single triple panel system). 
The curves clearly show the reduction in the f

mam
 resonant frequency with the addition of acoustic insulation in the 

30 mm cavity.  It is less clear that the calculated f
mam

 resonant frequency correlates to a dip in the curve.  There 

is a clear dip at 125 Hz as predicted by the calculation for both curves with no insulation (red curves) for the higher 
resonant frequency, but there is no apparent dip at 63 Hz.  With the insulation in the cavity, the dips are at lower 
frequencies and although the solid blue line has a dip at 100 Hz, the blue dashed line seems to have a larger dip 
at 80 Hz or 100 Hz, rather than 125 Hz, as predicted by the MAM calculation.   
It is possible that since there are two resonant frequencies relatively close to each other in the case of the system 
with insulation in both cavities (blue lines), that they cannot be clearly independently identified, or, contrary to the 
assumption, the central AAC panel is not sufficiently heavy compared to the gypsum linings (38.2 kg/m2 compared 
to 7.2 kg/m2 and 8.5 kg/m2) and the system should not be analysed as two separate two mass systems, but a 
more complicated triple mass (two spring) system. 
The calculation of the f

mam
 resonant frequency is useful in identifying potential issues associated with the impact 

on the acoustic performance of the wall system at low frequency, which in turn can have a significant influence 
on the overall RW + Ctr value.  In the example above, given that the initial system without insulation in the furring 

channel cavity achieved RW + Ctr 49 dB, it would be tempting to assume that adding insulation in this cavity would 

increase the acoustic performance slightly and so meet the BCA requirement of RW + Ctr 50 dB.  Adding insulation 

actually made the RW + Ctr value lower (although there was an improvement in many other frequencies).  In 

addition, it is noted that the weight of the gypsum board did not make a significant difference to the acoustic 
performance. 

4 MASONRY AND PLASTERBOARD WALL SYSTEMS 
Another set of laboratory tests were conducted on a similar system but using a core-filled masonry wall as the 
central panel.  This construction is common in Queensland and parts of NSW where the 190 mm thick lightweight 
concrete block wall is core-filled with concrete to create a structural wall with a nominal surface density of 
360 kg/m2.  These walls are usually constructed with furring channels to each side for services.  A separate stud 
to one or both sides is often not preferred as the wall width becomes unfeasibly large. 
The tests were conducted in September 2017 at the CSIRO acoustic testing laboratories in Clayton, Melbourne, 
and consisted of a number of different configurations including, daub fixing gypsum plasterboard, steel studs and 
furring channels, with and without insulation. 
Figure 2 shows the sound transmission loss curve for a number of results, including the base masonry wall with 
no linings.  This base wall achieved RW + Ctr 49 dB (black line), and it is tempting to believe that the BCA require-

ment of RW + Ctr 50 dB may be achieved by adding a layer of plasterboard (on a furring channel for convenience) 

to one side of this wall. 
The dashed blue line shows the test results when a layer of 13 mm gypsum plasterboard (7.2 kg/m2) is daub fixed 
to one side and fixed to 28 mm furring channels on the other side of wall (to create a 30 mm cavity), with no 
insulation in the cavity.  The acoustic performance reduces to RW + Ctr 45 dB.  Again, it may be expected that 

adding insulation to the furring channel cavity would increase the acoustic performance to RW + Ctr 50 dB. 

The solid blue line shows the result with the same construction as the dashed blue line, but with insulation in the 

furring channel cavity (25 mm thick glass wool of density 24 kg/m3).  The acoustic performance is almost identical 
to the previous result but shows an improvement at 125 Hz, 160 Hz and 200 Hz, but a reduction at 100 Hz.  The 
overall performance increases only slightly to RW + Ctr 46 dB, which is still well below the base masonry wall. 

By adding the same furring channel construction (with insulation) to the other side of the masonry wall, the result 
shown by the green curve is obtained.  There is a significant improvement (increase) in the sound transmission 
loss at the 200 Hz 1/3 octave band and above, a slight decrease at 125 Hz and a significant reduction at 100 Hz.  
This is sufficient to reduce the overall RW + Ctr of the wall system to 42 dB. 

This same wall system was re-tested using a heavier gypsum plasterboard, which was 13 mm thick with a density 
of 8.5 kg/m2.  The result is the red line shown in Figure 2, which is almost identical to the result using the lighter 
gypsum plasterboard (7.2 kg/m2) and also achieved RW + Ctr 42 dB. 

Analysis of the f
mam

 resonant frequency of these systems shows that the system with the cavity to one side only 

and no insulation (dashed blue line) had a f
mam

 resonant frequency of 130.3 Hz which is in the 125 Hz 1/3 octave 

band.  The curve has a sharp reduction at this frequency, and smaller reductions to each side. 
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Figure 2: Laboratory measured sound transmission loss of core-filled lightweight block with 13 mm gypsum 
board daub fixed or on 28 mm furring channels to each side of the block wall, with and without insulation. 
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Adding insulation to the cavity reduces the f
mam

 resonant frequency to 110.7 Hz (in the 100 Hz 1/3 octave band), 

and the result is the solid blue line which is almost identical to the dashed blue line, but with the f
mam

 dip moved 

across to the 100 Hz 1/3 octave band. 
By adding the same construction (furring channel, gypsum board and insulation) to the other side of the masonry 
wall and creating a symmetrical system, the result shown by the green line was obtained.  This shows a large 
increase in the acoustic performance at 200 Hz and above, but the f

mam
 resonant frequency dip at 100 Hz appears 

to be twice as deep.  So, even though most frequencies improved, the reduction at 100 Hz meant that the RW + Ctr 

value dropped by 4 dB. 
Repeating this test with a heavier board did not significantly alter the f

mam
 resonant frequency. The resonant 

frequency only moved from 110.7 Hz to 102.1 Hz, and since this too is within the 100 Hz 1/3 octave band the 
overall acoustic performance was very nearly identical. 
These results are in line with the findings from others, especially as shown by Warnock (Warnock, 1991), who 
has shown this effect on concrete block walls, including the additional reduction in acoustic performance at the 
Mass-Air-Mass resonant frequency when lining on one side of the block wall is replicated on the other side. 

5 DISCUSSION OF RESULTS 
The effect of a f

mam
 resonant frequency at or around 100 Hz on the RW + Ctr of a wall system has been demon-

strated in the above test results.  The relationship between the acoustic performance, RW + Ctr as a function of 

the Mass-Air-Mass resonance frequency cannot easily be demonstrated in the set of measurements with the AAC 
block as there were two cavities that were not the same (non-symmetrical systems), so even though there may 
have been a significant detrimental effect of one cavity having a resonance at or around 100 Hz, this may have 
been negated, at least in part, by having the second cavity well below 100 Hz. 
Figure 3 shows the f

mam
 resonant frequency of the smaller cavity and the resultant RW + Ctr of the wall system, for 

the aggregate of all of the AAC panel wall systems tested in this series of tests (30 mm, 43 mm and 58 mm, with 
or without insulation, and different gypsum board weights, 7.2 kg/m2, 8.5 kg/m2 and 10.5 kg/m2). 
 

 

Figure 3: Mass-Air-Mass resonant frequency (Cavity 1) vs measured RW + Ctr of AAC wall systems. 
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Although there is not a strong relationship and a large spread of results for any given resonant frequency, Figure 3 
shows that lower RW + Ctr values are expected for f

mam
 resonant frequency between approximately 98 Hz - 125 Hz 

than for frequencies above or below this range. Figure 4 shows the same information as Figure 3, but plots the 
RW + Ctr as a function of the f

mam
 resonant frequency of the second, larger, cavity. 

 

 

Figure 4: Mass-Air-Mass resonant frequency (Cavity 2) vs measured RW + Ctr of AAC wall systems. 
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mam
 resonant frequency and the 

RW + Ctr value of the wall system, possibly because the system is symmetrical and so the acoustic performance 
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mam
 resonant 
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Figure 5: Mass-Air-Mass resonant frequency vs measured RW + Ctr  performance of masonry walls - Cavity 1. 

 

Figure 6: Mass-Air-Mass resonant frequency vs measured RW + Ctr  performance of masonry walls - Cavity 2. 
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Figure 7: MAM resonant frequency vs measured RW + Ctr performance of masonry walls - symmetrical systems. 
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RW + Ctr value increase by 0.90 dB.  This is almost a 1:1 correspondence which shows that the acoustic perfor-

mance at 100 Hz is very much lower than the rest of the sound transmission loss spectrum (compared to the 
reference curve).  Corrections to the RW (Ctr value), in the order of -15 to -17 are common for these systems. 

The results also show that even relatively heavy wall systems, such as the masonry wall system reported here 
with a surface density of more than 360 kg/m2, may still not achieve the minimum BCA standard of RW + Ctr 50 dB 

if there are linings applied to both sides that have a Mass-Air-Mass resonant frequency at or around 100 Hz.   
Given that these and similar systems generally achieve an RW value in the high 50’s or low 60’s, it may be a valid 

question as to whether a single value requirement in terms of RW + Ctr (DnT, w + Ctr) is the most appropriate method 

of measuring the BCA performance requirement to “prevent illness or loss of amenity to the occupants” of sole-
occupancy units (BCA, 2019).  Especially if compliance with this requirement means that the large reduction in 
acoustic performance is moved to a higher or lower frequency.  Smith et. al. (Smith et. al., 2007) have previously 
raised the question of whether the RW + Ctr (or DnT, w + Ctr) on its own is sufficient to effectively provide a sustain-

able environment and whether a combination of RW (or DnT, w) and RW + Ctr (or DnT, w + Ctr) would be more appro-

priate, although this too may entail other complications. 

6 CONCLUSIONS 
The laboratory sound transmission loss tests on AAC panel and masonry wall systems with plasterboard lining to 
one or both sides may exhibit a strong Mass-Air-Mass resonance at or around 100 Hz that significantly reduces 
the RW + Ctr performance of the overall wall system.  The tests show that wall systems that would otherwise be 

expected to easily comply with the BCA requirement of RW + Ctr 50 dB, may actually be significantly below this 

minimum requirement.  This is true of even relatively heavy wall systems.  The examples provided are by no 
means unusual constructions, but common constructions used throughout the building industry. 
Calculation and analysis of the Mass-Air-Mass frequency (which can be easily calculated) can provide useful 
information on the potential impact of lightweight linings to relatively heavy central panel or wall, on the overall 
RW + Ctr performance of the system. 

Symmetrical systems with the same Mass-Air-Mass resonant frequency to each side cavity compounds the issue, 
resulting in a deeper reduction of the sound transmission loss at the resonant frequency. 
The acoustic performance of non-symmetrical systems are more difficult to predict due to the potential interaction 
of two resonant dips at low frequency. 
Based on the limited test data, it is recommended that wall systems with cavities are designed so that the Mass-
Air-Mass resonant frequency is less than approximately 70 Hz. 
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