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ABSTRACT 
Time reversibility of waves within a periodic structure constrains their properties but allows both elastic and ine-
lastic scattering. Time reversible elastic scattering leads to Bloch-Floquet waves (BFW) exhibiting passing and 
stopping bands for an infinite periodic structure, and time reversible inelastic scatterers likewise exhibits passing 
and stopping bands but only for a particular domain of parameters.  Physical realizations of time reversible ine-
lastic scatterers have exploited parity-time (PT) symmetry with two parts, each of which is time irreversible while 
mirrored such that their PT combination is symmetric. The second propagation domain for inelastic scattering 
(called “broken” PT-symmetry) is entirely a passing band that transmits and reflects more wave energy than in 
the input wave. In the “broken” domain for m=2n scatterers, where n is any odd integer, amplification peaks at 
the same discrete wavenumbers as well-known Bragg reflections. A property of PT-symmetric scatterers at the 
boundary of its two domains is unidirectional “invisibility” where there are no reflections for one of the two possi-
ble incident wave directions. A PT-symmetric periodic structure is shown here to also have bidirectional “invisi-
bility” at certain discrete wavenumbers. 

1 INTRODUCTION 
The problem of wave propagation in a periodic structure is long standing (Brillouin 1953) and solved most simp-
ly for an infinite structure without boundary effects. More general solutions for any length periodic structure are 
determined from the eigenvalues and eigenvectors for scattering by just one cell within the structure  (McMahon 
2018a,b). The most general possible 2x2 complex scattering matrix S consists of 8 independent parameters. In 

this form wave propagation for periodic structure waves (PSW) allows deviations from common simplifying 
properties. One such property is reciprocity for a linear medium meaning both the amplitude and phase at a re-
ception point are unchanged by swapping the source and receiver positions (Pierce,1981). For reflections by a 
scatterer in a 1D system, reciprocity is assured since the source and receiver points are on the same side so 
that interchanging their positions makes no difference to the wave amplitude and phase irrespective of scatterer 
properties. For forward transmission however, reciprocity nontrivially constrains the scatterer phase shifts to be 
the same for both incident wave directions. 

In recent years there has been a growing realization that nonreciprocal wave propagation has some practical 
advantages (Fleury et al 2015). A potential application is increased attenuation of waves propagating along a 
periodic structure (McMahon  2017b). It is highly desirable that such an application of nonreciprocity only need 
wave-scatterer dissipative energy losses. However satisfying both nonreciprocity and passive system energy 
losses only gives incoherent wave solutions (McMahon 2017a, 2018a), equivalent to waves whose phases are 
randomized by scatterers. This is a significant limitation since scatterers with thicknesses much smaller than a 
wavelength are unlikely to randomize wave phases. Nonreciprocal scattering of coherent waves in a periodic 
structure entails phase sensitive inelastic scattering (McMahon 2018b) and carries the implication that nonrecip-
rocal scatterers are active systems.  This is manifested in a practical realization of a 1D nonreciprocal acoustic 
scatterer which consists of a nonlinear material sandwiched on one side by an amplification layer and the other 
side by an attenuation layer, hence is an active system (Gu et al 2016).  

Another relatively recent development in wave theory and experimentation are PT-symmetric systems (see re-
view El-Ganainy et al 2018). The concept was originally inspired by the discovery of physically realizable non-
Hermitian Hamiltonians in quantum mechanics, with real energy levels in one domain and complex energy lev-
els in a second domain called broken PT-symmetry (Bender 2007, El-Ganainy et al 2018). Experimental realiza-
tions of PT-symmetric acoustic systems are internally asymmetric with two parts, each of which is time irreversi-
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ble while mirrored such that their PT combination is symmetric. (Shi et al 2016, Auregan and Pagneux 2017). 
The theory and properties of PT-symmetric 1D periodic structures are topics of this paper.  

Section 2 derives for a single scatterer the 1D scattering matrixS constrained to satisfy time-reversal symmetry 
for both elastic and inelastic scattering. Inelastic scattering reproduces known results for PT-symmetry when 
forward scattering reciprocity is added, and differs from elastic scattering by allowing two scattering domains . 
Related theoretical work has been published by Ge et al (2012) and Schomerus (2013). The transfer matrix M , 

reflection matrix N and wave-scatterer energy exchanges are derived for waves impinging on a “bare” PT-

symmetric scatterer. Subsection 2.1 extends PT scatterer theory to single cells defining matrices M andN . 

Formulae for the eigenvalues and eigenvectors of M and N written in a form that clearly expose the cell scatter-

ing conditions for passing and stopping bands ( terminology used here for finite periodic structures although ac-
tually stopping waves requires an infinite periodic structure ), a wave feature that PT-symmetry has in common 
with elastic scattering giving rise to BFW. Subsection 2.2 discusses how the scattering properties of finite peri-
odic structures are derived from the eigenvalues and eigenvectors of a single cell, and discusses analytical fea-
tures of m=2 PT-symmetric scatterers. 

Section 3 demonstrates various features of wave propagation in a PT-symmetric periodic structure. This paper 
shows that the two domains are distinguished by amplified or damped scattering in the PT-symmetric domain 
and always amplifying in the broken PT-symmetric domain. Further the PT symmetry domain exhibits passing 
and stopping bands in a periodic structure, whereas the broken domain is entirely a passing band. PT-

symmetric scattering makes the difference of average reflection and forward transmitted phase shifts      

an odd multiple of / 2 , hence causing passing & stopping bands (McMahon 2015, 2016a). For the broken 

domain   are even multiples of / 2 . Any deviations of  from integer multiples of / 2 make scattering ine-

lastic and generally nonreciprocal (McMahon 2018b). At the boundary of the two domains one of the two possi-
ble incident wave directions has zero reflectivity (unidirectional invisibility). A new feature of PT-symmetric peri-
odic structures shown in this paper is bidirectional invisibility at certain discrete wavenumbers. Also shown, for a 
particular value of forward scattering gain, are wavenumbers in the broken PT-symmetric domain with very high 
gain (infinite in the absence of dissipation), essentially periodic structure resonances at the same wavelengths 
as Bragg reflections. This effect only exists for an even number m=2n of scatterers where n is an odd integer. 

2 THEORY OF WAVES IN A FINITE PT-SYMMETRIC PERIODIC STRUCTURE 
This section specializes the general scattering theory (McMahon 2018b) to PT-symmetric systems. Consider 
wave scattering by the “bare” scatterer in the nth cell of a 1D periodic stucture. The thickness of a scatterer is b 
and the distance of the back surface of the nth scatterer from the front surface of the n+1th scatterer is d. Hence 

a cell length is d+b. The complex 2x2 transfer matrix M transforms any complex wave vector  
T

n nA B on one 

side to    1 1

T T

n n n nA B A B  M on the other side of the nth scatterer (where superscript T denotes matrix 

transpose). The “A” component is the complex amplitude of a plane wave travelling in the +x direction from a 
source at x  while the “B” component travels in the –x direction from a source at x . The 8 parame-

ters of M are easiest understood in terms of 4 complex scattering coefficients  
T

 and  
R

 where  
T

 and  
R



are forward transmission and reflection coefficients of the “A” component, and  
T

 and  
R

 apply to the  “B” 

component. From M written in terms of  
T

 and  
R

 the reflection matrixN can be defined by simply interchang-

ing forward and backward scattering coefficients in M . Further, the scattering matrixS has the property of trans-

forming waves heading towards a scatterer into waves heading away i.e.    1 1

T T

n n n nA B A B  S . S has the 

form 

   

   

T R

R T

 

 

 
 
 
 

S  (1) 

Time reversal symmetry is the condition 1 *=
S S which can be satisfied for both elastic (Maznev et al 2013) and 

inelastic scattering.  Time reversible inelastic scattering can exist externally even though processes within a 
scatterer may be time irreversible, such as two internal nonlinear parts with mirrored geometry. This makes en-
ergy transfers reversible between scatterers and waves (e.g. waves are not phase randomized).  
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We define phase shifts
 


and
 


by      iT e T
 

 and      iR e R
 

 ,      / 2  
 

  ,      / 2  
 

  . 

From 1 *=
S S we find    

2 2
2

T T T
 

  and        * *R R R R
   

 . Forward scatter phase shifts are unconstrained 

while the reflection phase shifts satisfy
   

sin( )=0 
 
 . Two reflection phase shift types can exist,     

 


and        
      which can be rewritten as

  

 and      / 2  

     where two independent 

sign ambiguities are indicated. Then * SS 1 has two possible solutions such that 

   2 2 1iT e R R  
    (2a) 

   
  22 2

i
iT e R R e

 

 

     (2b) 

A time reversible scatterer must satisfy both Eq.(2a) or (2b).  The domain
  

 applies when 2 1ie     (i.e. 

/ 2, 3 / 2     ) and the domain      / 2  
     applies when 2 1ie   (i.e. 0,   ). Deviations from 

these two domains of   imply inelastic nonreciprocal scattering (McMahon 2018b). 

An energy flux includes an impedance factor but for convenience we assume units where it can be set to one. 

The net energy flux incident onto the nth scatterer is   
2 2 * *

1 1 1

T

n n n n n nA B A B A B     and the net output 

energy flux is   * *
1 1

T

n n n nA B A B 
. The difference of the input and output fluxes is the wave-scatterer energy 

exchange    * * *
1 1

TT
ex n n n nF A B A B  1 S S . For elastic scattering 0exF   giving 1 *T S S which is the 

special case of time-reversibility where * *T S S  (i.e. S symmetric). Hence time reversible elastic scattering re-

quires
     
 
  but allows 

    
 
 which is nonreciprocity. From    *det det 1S S  for elastic scattering,

   
2 2

T T
 

 ,    
2 2

R R
 

 and    
2 2

1T R
 

  . These are equivalent to  
2

2

0T T


 ,  
2

2

0R R


 and

2 2

0 0 1T R  . From 1 *T S S we find      * 2det / iT T e  
 S and      * 2det / iR R e  

   S which are both 

satisfied for the case 2 1ie    . Consequently elastic scattering constrains phase shifts to / 2, 3 / 2    

which is the single domain giving rise to BFW in a periodic structure. Reciprocity of forward scattering is the 
same thing as a separate condition P (parity) or mirror symmetry on opposite sides of a scatterer. Then PT-

symmetric elastic scattering only needs 2 independent parameters such as 0  & T  from which 0  & R  can be 

derived. 

Assume that inelastic scattering allows both of the two domains, one with 2 1ie    giving rise to passing and 

stopping bands, and the other with 2 1ie   which is a passing band. Similar to McMahon 2018b, introduce 

wave-scatterer energy exchange factors 0 and
 

0


where    

0 0
iT e T 


 and      

0 0
iR e R 

 
 where 

2 2

0 0 1T R  . Equations (2a,b) allow the two domains 

2 22 2
0 0 0 0 0 01,  1, / 2, 3 / 2 T R T            (3a) 

2 22 2
0 0 0 0 0 01,  >1, 0,T R T         (3b) 

where
   2

0 0 0  
 

 . Elastic scattering is the case 
   

0 0 0 1  
 

   satisfying 0 0 1T  only. Domain 

0 0 >1T only exists for inelastic scattering. Close to the boundary of the two domains where 0 0 1T  it is pos-

sible for
2

0 0  by either 
 

0 0

 or 

 
0 0

 . Zero reflection for only one of the incident wave directions 

has been termed variously “unidirectional invisibility”,  “unidirectional tranparency”, “unidirectional reflectivity” 
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and “unidirectional cloaking” (Lin et al 2011, Longhi 2011, Regensburger et al 2012, Feng et al 2013, Mosta-

fazadeh 2013, Sounas et al 2015, Shi et al 2016,). The condition 2
0 0 0=1, 0T   is an exceptional point (EP) 

(Shi et al 2016, El-Ganainy et al 2018), a term used in quantum mechanics where Hamiltonians go from Hermit-

ian to non-Hermitian. The transition from 
0 0 <1T to 

0 0 >1T has been called a exact PT to broken PT phase 

transition (phase as analogous to a state of matter), but also named domains in this paper. Eqs.(2a,b) and 

(3a,b) are only T-symmetric since reciprocity
    
 
 is not needed to derive them. PT-symmetry in Ge et al 

2012 and Schomerus 2013) are equivalent to the reciprocity
    
 
 together with Eqs.(2a,b,3a,b). 

Transfer matrix M relates the vector  
T

n nA B on one side of the nth  scatterer to the vector  1 1

T

n nA B 
on 

the other side by    1 1

T T

n n n nA B A B  M . S given by Eq.(1) can be used to construct M . The reflection 

matrix N can be thought of as the transfer matrix for a vector  
T

n nX Y  but N is constructed from M by trans-

formation 
   

T R
 

 and
   

T R
 

. Then (McMahon 2018b) 

 

         

   

         

 

1 1
,  

1 1

T T R R R R R T T T

T RR T

         

  

    
    
       

M N  (4) 

A useful property of N is that its eigenvalues give the eigenvectors ofM and vice-versa (McMahon 2018b). This 
simplifies expressions for wave transmission, reflection and energy exchanges in periodic structures. Applying 
Eqs.(4) and Eqs.(3a,b) to the two domains of the T-symmetric scattering model we find  

           

      

    

 

    

    

/2 /2/2 /2

0 0 0 0

/2 /2
0 0 0 0

0 0 0 0

,   

i ii ii i ii

i i
i i i

e e e R e e Te e e

T R
e e R e e T e

        

     

 

 
 

      

   

     

   

   
   

    
       

M N
(5) 

The wave-scatterer energy exchange for the two domains of T-symmetry require evaluating the energy ex-

change matrix *T X 1 S S  giving 

    
 

    

      

    
   

    

 
      

/ 2

0 0 0 0

0 0 0 0 0
/ 2

0 0 0 0

/ 2

0 0 0 0

0 0 0 0 0
/ 2

0 0 0 0

,  1, / 2, 3 / 2 

,  >1, 0,  

i

i

i

i

R e T
R T

e T R

R ie T
R T

ie T R

 

 

 

 

 
     

 

 
    

 

 

 

 

 



 

  



 

  

 
 

       
   

 
  

     
  

X

X

 (6) 

The wave-scatterer energy exchanges are a sum of incoherent ex incohF  (diagonal X terms) and coherent ex cohF 

(off-diagonal X terms): 

             
          

             
        

2 2 2 2

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 1 0 0

2 2 2 2

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1

,  1

2 cos / 2 ,  1

,  1

2 sin

ex incoh n n

ex coh n n n n

ex incoh n n

ex coh n n

F R A R B T

F T R A B T

F R A R B T

F T R

      

       

      

      

     

 

   

  

     

 

  

 

     

     

     

     
    1 0 0/ 2 ,  1n nA B T


 

 (7) 

where 1

1 1,  n ni i
n n n nA A e B B e

  

   . ex cohF  is phase dependent, requiring two simultaneous opposite travelling 

input waves, and involves interference of both reflections and forward transmissions (McMahon 2018b). Sup-

pose 
   

0 0 
 
 . From Eqs.(7) for 0 0 1T   “A” wave reflections contribute to a gain of incoherent wave ener-

gy while “B” wave reflections contribute an incoherent energy loss. For symmetric inelastic reflection
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   
0 0 
 
  net incoherent energy exchanges are zero for 

0 0 1T  while nonzero and negative for 
0 0 >1T . 

In the latter case the scatterer is a source of energy stimulated by the input waves.  

For nonreciprocal forward scattering where 
 


and 
 


are uncorrelated and random, ensemble averaging 

gives 0ex cohF   which is similar to the incoherent energy wave (IEW) model (McMahon 2015, 2016b). If the 

random phases preserve the difference    , it is similar to the non-BFW model (McMahon 2017a,b).  

2.1 Wave scattering by cells of a periodic structure 
A cell is defined as a nondispersive wave medium of length d in front of a “bare” scatterer of length b. The trans-

fer matrix M for a cell introduces an explicit wavenumber dependence from propagation in the distance d 
whereas other parameters of “bare” scatterer M are implicitly wavenumber dependent. Wave propagation in a 

finite periodic structure of m identical cells is proportional to the mth power ofM . Wave propagation for any m is 

solved using the eigenvalues of M noting that powers of M have the same eigenvector (McMahon 2018a,b). 

The derivation of M is almost identical to that of M̂ (McMahon 2018b) except both components of the wave vec-

tor  
T

n nA B are at the entrance to the nth cell, and both components of the wave vector  1 1

T

n nA B 
are at the 

exit of the nth cell which is also the entrance to the n+1th cell. This gives for wavenumber sk M MU which 

transforms Eqs.(1,4) by      sik d
T T e T

  
  ,      

R R R
  
  and      2 sik d

R R e R
  
  . The transfor-

mations are asymmetric in sik d
e because the “bare” scatterer is located at the exit of the cell rather than in the 

middle. For brevity the following theory only treats cells but is easily applied to “bare” scatterers by 1sik d
e


 . 

Solutions of the characteristic equations (CE) ofM and N give the eigenvalues
 


 and
 


, and eigenvectors  

  1
T




and   1
T




as discussed in McMahon 2018b. This section writes 
 


 and
 


 in a form that clear-

ly shows their relations to passing and stopping bands of an infinite periodic structure (McMahon 2015).  

It is convenient to symmetrize M  by defining    
/ det( ),  det( ) / , det( ) 1T T

 
  M M M M M with eigenvalues

 


and property 
   

1 
 

 . Similarly    
/ det( ),  det( ) / , det( ) 1R R

 
  N N N N N with eigenvalues

 


,

   
1 

 
 . The diagonal matrix elements of M define ( ) / 2AA BBM M    determining

 


. Using the abrevia-

tion for any complex quantity qiqq  where q denotes the real part and q  denotes the imaginary part, the 

real and imaginary parts of
 


are 

           
2

2 2 2 2 21 1
1 ,   1 ,  1 4

1 1
 

 
   

                                  
        
   

 (8) 

where  arises from the CE of the energy transfer matrix E  with eigenvalues  
2




(McMahon 2018b). For an 

infinite periodic structure unattenuated passing bands for elastic scattering correspond to 1 (taking the limit 

is needed to find the correct 
 


 ) while stopping bands causing attenuation correspond to 1   (McMahon 

2015). The eigenvalues of N are given by 

           
2

2 2 2 2 21 1
1 ,   1 ,  1 4

1 1
  

 
   

                                    
        
   

 (9) 

where ( ) / 2XX YYN N   ,  arises in the CE of the energy reflection matrix G with eigenvalues  
2




(McMahon 2018b). For an infinite periodic structure passing bands correspond to 1   while stopping bands 
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correspond to 1  (taking the limit is needed to find the correct 
 


 ) (McMahon 2018b).  is a factor that 

depends on the coupling of
 


with
 


and has the value +1 or -1 but can change sign as a function of varying 

parameter values. These mutual constraints on
 


and
 


are derived from generalizing Eqs.(1a) and (2a) of 

McMahon 2018b to cells. Introducing complex functions  and   the general requirement is 

/ / 1                . This is satisfied for the two domains by 

   0 0

1 1
cos sin ,

1 1
T   

 
          

    
 

   0 0

1 1
  sin cos

1 1
T   

 
          

    
 

 (10a) 

   0 0

1 1
sin cos ,  

1 1
R   

 
           

    
 

   0 0

1 1
 cos sin ,  

1 1
R   

 
          

    
 

0 0 1 T   (10b) 

   0 0

1 1
cos sin ,   

1 1
R   

 
          

    
 

   0 0

1 1
 sin cos ,  

1 1
R   

 
          

    
 

0 0 1 T   (10c) 

2.2 Wave propagation in a finite periodic structure of m cells 
Solving wave scattering by a finite periodic structure of m cells is equivalent to finding the forward transmission 

coefficients   m
T


and backward reflection coefficients   m

R


for use in matrices  m
S ,  m

M and  m
N . This can 

be done using the eigenvalues
 


and
 


for a single cell (McMahon 2018a,b). Defining m cells as the start of 

the first “bare” scatterer to the end of the mth “bare” scatterer then   1m m M M U which gives 

                 2
,  ,  s s

m m m m m mik d ik d
T e T R e R R R

      
   that generalizes m=1 of subsect. 2.1. Applying the 

symmetrizing procedure of subsect. 2.1, the scattering coefficients for m cells are 
        ( ) ( ) ( )/2 ( ) /2 ( ) 1/2 ( ) 1/2 ( )det( ) ,   det( ) ,   det( ) ,   det( )

m m m mm m m m m mT T T T R R R R
       M M N N . Note prop-

erties 
   ( ) ( )( ) m mmT T T
 

 and
   ( ) ( )( ) m mmR R R
 

 . The symmetrized transmission and reflection coefficients 
for m cells, in terms of single cell eigenvalues, can be derived from the eigenvalue/eigenvector equations for 

m
M noting that its eigenvectors   1

T




do not depend on m. This gives 

   

       
( ) ,m

m m
T

 

   

 

   






   

       
( )  

m m
m

m m
R

 

   

 

   





 (11) 

There is no m dependence for 
 


terms because  m
N is not simply proportional to the mth power ofN . Intro-

ducing the phases  and  where     ie  
   
 and     ie  

   
 Eqs.(11) leads to 

   

       

2 2

2
( )

2 2 2 2

2cos(2 )
,

2cos(2 )2

m

m m
T

m

 





    


 

 
   



 








 

   

       

2 2

2
( )

2 2 2 2

2cos(2 )
  

2cos(2 )2

m m

m

m m

m
R

m

 

   



 


 

 
   

 

  





 (12) 

where   equivalence applies since        
1,  1   

   
  . 

2
M is easily evaluated for m=2 by direct multiplication and gives the analytical results 

 

   

442
2 0 0

4 24 2 2
0 0 0 0

,
4 1 cos

T
T

T T



  


 

   

   

22 22
2 0 0

4 24 2 2
0 0 0 0

4 cos
 

4 1 cos

R
R

T T

 

  


 

 (13) 
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where sk d   . Direction dependence is given by     
22

2 2
T T


 and         

22
2 2

0 0/R R  
 

 .  At the 

EP    
0 0 0 01,  0T  

 
  and suppose

   
0 00,  0 
 
  .   

2
2

0R


 while   
2

2
0R


 hence is unidirec-

tional invisibility. Transmission is unattenuated in both directions. Despite 
 

0 0

  “B” wave transmission is 

unattenuated because the scatterer injects extra energy. This is seen from wave-scatterer energy exchanges for 

unit incident flux         
2 2

2 2 2
1ex incohF T R

  

    giving   2
0ex incohF



  and 
  2

0ex incohF


  .  In general PT-symmetric 

scatterers at the EP are energy sources for one of the incident flux directions, hence are active systems.  

The domain 0 0 1T  is always a wave energy source and as seen from Eqs.(13), and since damping is not in-

cluded, gives divergent energy emissions for 
0 0 2T  and ,  =0, 1, 2..sk d n n      coinciding with the 

wavelengths of Bragg reflections. These emissions include reflections that are asymmetric for
   

0 0 
 
 and 

can be different to emissions in the same direction as the incident flux. Such large wave amplifications are lim-
ited by the energy supply to PT-symmetric scatterers. Analysis of the denominator of Eqs.(12) shows the diver-

gence condition is 0 0 2T   for all m=2n where n is an odd integer. 

3 NUMERICAL EXAMPLES OF PT SYMMETRY AND BROKEN PT SYMMETRY WAVE EFFECTS 

Reciprocity
     
 
  is assumed for all figures. Figures 1 and 2 demonstrate the features of PT-symmetry 

versus 0 0T for / 0k d
s

  approximating wavelengths much larger than spacing d. For Figs.1 & 2

   
0 00.2564 0.6 1 / ,  cos , 1.95,27  9    


    , for 0 0 1T  , 50.7564/ , / =0.     and for 0 0 1T  ,

00.256/  =4, /    . Parameters 
 

0 0& 


are constant so that  
0 0 & R


depend on 0 0T to conform to 

Eqs.(3a,b). The real and imaginary parts of the eigenvalues
 


 and 
 


 versus 0 0T are plotted in Fig. 1. It 

shows that
 


is real for the stopping band and complex for the passing band, contrasting with
 


which is 

complex for the stopping band and real for the passing band, but only for PT-symmetry 0 0 1T  . For broken 

symmetry 0 0 1T  , which is a passing band,
 


is imaginary. At the EP 0 0 1T 
 


are zeros and negative 

infinities in the real and imaginary parts while 
 


are continuous.  

 

Figure 1: Real and imaginary parts of the eigenvalues
 


 and 
 


. 

Figure 2 compares symmetrized energy transmission 
2

( )mT and reflection
2

( )mR coefficients for different size 

structures m=3 and 6. Maxima and minima are from scattered coherent wave interference.  A general property 
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demonstrated is 
2 2

( ) ( )m mT R =1 for PT-symmetry 
0 0 1T  and 

2 2
( ) ( )m mT R >1 for broken symmetry 

0 0 1T  . 

For all m there is a zero in
2

( )mR at the EP
0 0 1T   caused by the 

 
0 0

  giving unidirectional “invisibility”. 

The other deep minima in
2

( )mR  are also zeros. Analysis of Eqs. (12) shows that these reflection coefficient ze-

ros only occur in a passing band which is 
0 0 0.6927T  in these examples. Since 

0 0 1T  and  
0 0

 these 

zeros can only arise from multiple scattering between scatterers and give bidirectional “invisibility”. Equation 

(12) shows that the reflectivity zeros are at    0 0 ,
cos( ) / cos ,,,/  n=1,.2 ..

m n
n mT  which is confirmed numeri-

cally in Fig. 2 for m=3 and 6 where  0 0 3,1
1.3854T  and    0 0 0 06,1 6,2

0.8,  1.3854T T   . 

Figures 3, 4 and 5 demonstrate the wavenumber dependence of PT and broken PT symmetry. In all cases 

0.2564/   ,
 

0 1

 and 0 1.95  . For PT-symmetry 0 0 0.85T  , 0 0.9R  , 0.7564/   , / =0.5  ,  

 
0 0.3426

 . Broken PT symmetry uses  

0 0 0 0 50. 62, 0.96885, / , / =0, 2.125 4 09T R     


    . 

Passing and stopping bands are clearly distinguished in Fig. 3 that plots the real and imaginary parts of 
 


. 

For passing bands    
1,  1 

 
    whereas stopping bands only occur for PT symmetry and have eigenvalues  

 
Figure 2: PT-symmetry and broken symmetry transmission and reflection coefficients for m=3 and 6. For all m 

unidirectional invisibility for all m occurs at the EP due to 
 

0 0

 . Bidirectional invisibility are reflection zeros at 

wavenumbers that depend on m. 

 

Figure 3: Symmetrized real and imaginary parts of the eigenvalues 
 


of M  versus /  . 



 

Proceedings of ACOUSTICS 2019  
10-13 November 2019 
Cape Schanck, Victoria, Australia 
 
 

ACOUSTICS 2019 Page 9 of 10 

   
1,  0 

 
   . Stopping bands for PT symmetry are centred on the Bragg reflection wavenumbers at 

/ ,  =1,2,..n n n   . Eigenvalues 
 


(not shown) are      
1 or 1,  0  

  
     for PT symmetry passing 

bands and    
1,  1 

 
    for stopping bands, and 

 
0


   for broken symmetry passing band. Broken PT 

symmetry in Fig. 3 shows equal real and imaginary parts of 
 


 at / ,  =1,2,..n n n   Bragg reflection wave-

numbers. This only occurs for 
0 0 2T  and gives rise to divergent scattering coefficients discussed in Sub-

sect. 2.2. 

Figure 4 compares the broken PT symmetry transmission and reflection coefficients for m=3 and 6. This also 

shows that 
2 2

( ) ( ) 1m mT R  generalizing single scatterer properties Eqs.(3a,b). Forward scattering is mostly 

amplified 
2

( ) 1mT  whereas reflection is mostly attenuated 
2

( ) 1mR  . The large amplification of transmission 

and reflection for m=6 but not m=3 at the Bragg wavenumbers exemplifies the divergent gain condition 

0 0 2T  , m=2n for n an odd integer. 

 
Figure 4. Symmetrized transmission and reflection versus  for m=3 and 6 broken PT symmetry. 

 
Figure 5: Wave – periodic structure energy exchanges versus  for m=6 PT and broken PT symmetry. 

Figure 5 compares wave-scatterer energy exchanges for A-wave and B-wave incident onto a m=6 finite periodic 
structure. For PT symmetry there is net energy absorption of the A-wave, and net amplification for the B-wave, 
in the stopping bands centred around the Bragg reflection wavenumbers. All of the broken symmetry domain, 
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nulls at except discrete wavenumbers, gives amplification for both incident wave directions. As discussed previ-
ously the broken symmetry amplification diverges at the Bragg wavenumbers.  

4 FINAL REMARKS 
PT symmetry and broken PT symmetry for waves in periodic structures has two main surprises. One is bidirec-
tional invisibility in passing bands which requires a minimum of 3 scatterers. The other is very large amplification 
of waves at the Bragg wavelengths in the broken PT domain for a minimum of 2 scatterers. It is worth investigat-
ing if the reverse case of very large damping of waves could happen with other scattering models. So far there 
has been no experimentation to test these predicted PT symmetry properties of periodic structures. 
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