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ABSTRACT 

Modelling the vibro-acoustic responses of vehicles in the mid to high frequency range is particularly difficult. This is 
due in part to the structural and acoustic responses of sections of a vehicle being highly sensitive to uncertainties aris-
ing from the assembly process and manufacturing tolerances. For example, the dynamic response of body panels can 
be greatly altered by small variations in spot welds. This leads to significant variation in interior noise levels of suc-
cessive vehicles from a production line. This paper investigates the use of techniques for predicting the responses of 
structures with inherent uncertainties in the medium frequency range. The dynamic characteristics and responses of 
an ensemble of coupled plate structures are examined, where uncertainty is generated by adding small masses at ran-
dom locations. A measure of the uncertainty is obtained by observing the variation in the natural frequencies of an 
ensemble member from their mean value across the ensemble. An ergodic hypothesis is used to compare the fre-
quency averaged response of a single member in the ensemble with the ensemble averaged response. Finally, struc-
ture-borne sound pressure levels obtained experimentally are compared with results obtained from an SEA model. 

INTRODUCTION 

For a deterministic system, it is a relatively straightforward 
task to determine its dynamic response from a known excita-
tion. However, for most practical engineering systems, there 
are degrees of uncertainty about the properties of the system. 
This uncertainty can cause a deterministic approximation of 
the response of the system to be unrepresentative of the ac-
tual case, as two samples of the same product may have 
vastly different responses. Kompella and Bernhard (1996) 
observed this by measuring the frequency response functions 
(FRFs) across 98 identical vehicles. They found that across 
each measurement set, the FRFs differed by up to 20 dB. The 
variation in this case is in part attributed to local material 
property changes due to spot welding, and variation in the 
manufacturing tolerances and assembly process. 

Deterministic modelling methods such as finite element 
analysis (FEA) are also limited in the mid to high frequency 
range by the computational expense required to model a 
structure at these frequencies. For complex models, a very 
large number of degrees of freedom are required to accu-
rately capture the short wavelength deformation at high fre-
quencies. The computational time and power required to 
solve such a model is beyond the range of a current desktop 
computer. Deterministic methods are also unable to easily 
account for variation in structural parameters and material 
properties, which makes them impractical for modelling in 
the mid to high frequency range. The stochastic finite ele-
ment method using Monte-Carlo simulations can account for 
structural uncertainty (Kleiber and Hein, 1992; Papadrakakis 
and Kotsopulos, 1999; Shorter et al., 2003). However, it is 
still restricted by the computational expense and the amount 
of information required to model joints between subsystems 
(Shorter et al., 2003). To reduce the computational effort, a 
number of methods have been recently proposed (Venkites-
waran and Junk, 2005; Helton et al., 2005). Perturbation 
methods based on the finite element method are also often 
used (Kaminski, 2000). Including the second and higher or-
der terms in the perturbation analysis is often necessary how-
ever this increases the time required to obtain solution. An 
improved finite element method which only uses the mean, 

variance and covariance of the properties of the uncertainty 
has been developed to reduce the computation time and in-
crease the accuracy of the results (Stefanou and Papadra-
kakis, 2004). Fuzzy structure theory has been proposed by 
Soize (1993, 2000) to predict the FRF and responses of com-
plex structural acoustic systems in the medium frequency 
range. In this technique, a complex structure is modelled in 
terms of a master structure to which minor subsystems are 
attached. The master structure represents the component of 
the system with properties that are exactly known and the 
minor subsystems represent the uncertainty inherent in the 
structure (fuzzy substructures).  

To overcome the computational expense and amount of de-
tailed required, the dynamic responses of structures in the 
mid to high frequency ranges are generally modelled using 
energy methods such as Statistical Energy Analysis (SEA) 
(Guyader et al., 1982; Lyon and DeJong, 1995; Langley, 
2000; Shorter et al., 2003). Energy flow methods relate the 
total energy in a subsystem to the input power of a subsystem 
by a matrix of energy influence coefficients (Shorter et al., 
2003), where these influence coefficients can be calculated 
experimentally or computationally. 

This paper investigates the vibro-acoustic responses of struc-
tures with uncertainty in the medium frequency range. The 
dynamic characteristics and responses of an ensemble of 
coupled plate structures is both computationally and experi-
mentally examined, where uncertainty is generated by adding 
small masses at random locations. A measure of the uncer-
tainty across the ensemble is obtained using a non-
dimensional parameter called the statistical overlap factor 
(Manohar and Keane, 1991). Statistical overlap occurs when 
there is sufficient random variation in an individual natural 
frequency of a system from its mean value across the ensem-
ble. Using an ergodic hypothesis, the frequency averaged 
response of a single system in the ensemble is compared with 
the response at a single frequency averaged across the en-
semble. The mean energy levels are also compared with those 
obtained from a Statistical Energy Analysis model. 



20-22 November 2006, Christchurch, New Zealand Proceedings of ACOUSTICS 2006 

532 Acoustics 2006 

BACKGROUND METHODOLOGIES 

Statistical Overlap Factor 

There are many causes of uncertainty which will affect the 
vibro-acoustic responses of an ensemble of nominally identi-
cal vehicles. The dynamic response is sensitive to any uncer-
tainty in the system parameters, which may be due to varia-
tion in material parameters, geometry, manufacturing toler-
ances, assembly process, as well as any variation in operating 
conditions (Langley, 2004). In addition, the vibro-acoustic 
responses become increasingly sensitive to any uncertainty in 
the system parameters as the frequency increases. Attempting 
to predict and then model all the various causes of uncer-
tainty in a structure would be a very onerous if not impossi-
ble task. However if the uncertainty becomes large enough, 
then the response of the system under consideration becomes 
independent of the details of the uncertainty (Langley, 2004). 
This would allow the responses of an ensemble of nominally 
identical structures to be predicted from only the gross prop-
erties, which would be the same for each member of the en-
semble.  

A measure of a structure’s uncertainty can be obtained using 
a parameter known as the statistical overlap factor and is 
given by (Manohar and Keane, 1991):  

µ

σ2
=S  (1) 

where σ  is the standard deviation of a particular natural 
frequency of a structure from its mean value measured across 
the ensemble, and µ  is the mean spacing between the natural 
frequencies of the structure. Figure 1 shows the variation of 
natural frequencies between nominally identical vehicles, 
where nω  represents the nth natural frequency and nω  is the 
mean nth natural frequency measured across the ensemble.   

It has been suggested that when S is greater than 1, there is 
sufficient mixing between the modes and veering of the 
modes for the structure to be considered ‘uncertain enough’ 
(Langley, 2004). Statistical overlap will usually increase with 
frequency because the sensitivity of a system to uncertainty 
increases with frequency. For small values of S (much lower 
than 1) the natural frequencies are in well defined positions 
and are mainly unaffected by structural uncertainty. However 
if S exceeds unity then the uncertainty will significantly shift 
these modes. When a structure has a sufficient statistical 
overlap, the probability density function of the spacings be-
tween successive resonant frequencies will follow a Rayleigh 
distribution, as shown in figure 2. A Rayleigh distribution is 
given by (Mehta, 1991): 

22

2
2/)( cse

c
s

sp −=  (2) 

where p(s) is the probability density function and s is the 
spacing between successive natural frequencies. c is de-
scribed in terms of the mean frequency spacing by 

πµ /2=c . The Rayleigh distribution shows that there is a 
low probability of small frequency spacings, which is due to 
the tendency of modes to repel and thereby veer from each 
other. A Rayleigh distribution of the modal spacings of a 
system indicates that there is sufficient uncertainty in that 
system such that the structural response is independent of the 
properties of its uncertainty.  

 
Figure 1. Variation of natural frequencies between nominally 

identical vehicles 
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Figure 2. A Rayleigh distribution 

Statistical Energy Analysis 

Statistical Energy Analysis (SEA) is a high frequency model-
ling method which utilises the property that the response of a 
structure can be independent of the specific type of uncer-
tainty inherent in it (Langley, 2004). SEA is a technique 
whereby a complete system is described in terms of energy 
flow between its various subsystems (Lyon and DeJong, 
1995). Unlike FEA, a complex structure is modelled using 
only a small number of degrees of freedom and only the 
gross system properties are used. The main SEA equation is 
based on a power balance for a particular subsystem and is 
given by (Lyon and DeJong, 1995; Langley, 2000): 
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where the terms iP , iE , iη , ijη  and in  respectively refer 

to the input power into subsystem i, energy in subsystem i, 
loss factor of subsystem i, coupling loss factor between sub-
systems i and j, and the modal density of subsystem i. The 
first term on the right hand side of equation (3) refers to the 
energy dissipated by subsystem i and the second term on the 
right hand side of the equation describes the energy flow 
between adjacent subsystems i and j.  

For the SEA equation to be valid, the excitation of the struc-
ture needs to be high in frequency and random, to ensure 
equal partition of energy between modes. The coupling be-
tween subsystems must also be weak so that no global mode 
dominates, and the modal overlap must be high to allow for 
good mixing between modes (Langley, 2000). The use of 
SEA to model the mean energy levels of a system is consid-
ered reasonably accurate for statistical overlap factors of 1 or 

1−nω nω 1+nω

 

 

 
1+nω

1+nω

1+nω

nω

nω

nω

1−nω

1−nω

1−nω



Proceedings of ACOUSTICS 2006 20-22 November 2006, Christchurch, New Zealand 

Acoustics 2006 533 

greater. The structural response determined using SEA is 
generally both frequency and ensemble averaged. Using an 
ergodic hypothesis, the frequency and spatially averaged 
mean energy levels of a structure obtained using SEA are 
compared with the energy levels averaged across an ensem-
ble of nominally identical structures. This is described in 
more detail in the proceeding section. 

Ergodic Hypothesis 

The ergodic hypothesis states that if a structure has sufficient 
uncertainty, then the ensemble response of nominally identi-
cal structures is equal to the frequency averaged response of 
one member of this ensemble. This is mathematically repre-
sented by (Langley, 2000): 

∫
∆
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where ie  is the kinetic energy density for subsystem i as a 
function of location x, frequency ω  and any uncertainty 
across the ensemble p. The frequency band ω∆  required for 
averaging should be sufficiently wide to encompass three or 
more modes (Langley, 2000). 

The ergodic hypothesis is practically very important to the 
automotive industry as it could allow the mean response of an 
ensemble of similar vehicles at a single frequency to be cal-
culated from the frequency averaged response of a single 
vehicle. It can also be used to compare with and verify the 
mean energy levels predicted using SEA. 

COUPLED PLATE STRUCTURE WITH 
UNCERTAINTY 

Computational Model  

To investigate implementation of the various aforementioned 
methods to a structure with uncertainties, a coupled plate 
structure consisting of two plates connected at right angles in 
an L-shape with small added masses has been examined. An 
ensemble of L-shaped plates with uncertainty has been simu-
lated by adding small masses at random locations on the 
plates. Due to the low damping properties of aluminium, a 
large number of modes can be obtained in the measured re-
sults.  

The modes of an L-shaped plate were computationally de-
termined by using a finite element model, as shown in figure 
3. The two aluminium plates were modelled by quad 8, plate 
elements of 10mm in length. Simply supported boundary 
conditions were applied to the four long edges with the re-
maining two edges left free. Twenty 3 gram masses have 
been randomly located, 10 across each plate. 50 different 
configurations of these masses have been solved. The natural 
frequencies of the L-shaped plate were determined in the 
frequency range up to 4000 Hz, which includes 380 modes. 
The frequency spacings between each successive mode were 
then obtained. The probability density function of the spac-
ings between successive natural frequencies has been com-
pared with a Rayleigh distribution calculated using the mean 
frequency spacing of the L-shaped plate. It is worthwhile to 
note that the mean frequency spacing does not vary signifi-
cantly between each ensemble member. The mean and stan-
dard deviation of the natural frequencies across the ensemble 
have also been determined, allowing the statistical overlap 
factor to be calculated.  

 
Figure 3. Finite element model of an L-shaped plate with 

masses attached at random locations 

Experimental Set-up  

Experiments were conducted on an L-shaped plate with small 
added masses to validate the various methodologies and 
computational results. The L-shaped plate was constructed 
from two 2mm thick aluminium plates welded together at 
right angles. The simply supported boundary conditions were 
constructed using 0.9mm thick aluminium Z-sections. The 
top flange of the Z-section was screwed at regular intervals 
along the four long edges of the L-plate, and the lower flange 
of the Z-sections was clamped between concrete blocks. 
These Z-sections have been shown to give a good approxima-
tion of simply supported boundary conditions as they are stiff 
for in plane vibration but allow rotation of the plate edges 
(Farag, 1979). The remaining two plate edges were left free, 
as shown in figure 4.  

 
Figure 4. Photograph showing the experimental set-up of the 

L-plate with masses attached at random locations 

Twenty 3 gram masses were attached to the two plates in 
random locations. A schematic diagram of the experimental 
set up is shown in figure 5. A shaker was used to excite the 
plate and was driven by random noise generated through a 
Pulse FFT analyser. The shaker was mounted vertically over 
the horizontal plane to simulate a point force excitation. A 
microphone was mounted behind the vertical plate, as shown 
in figure 5. The structural and acoustic responses were simul-
taneously measured. Frequency response functions were 
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obtained between the force transducer at the shaker input and 
an accelerometer located on plate 2. Vibro-acoustic transfer 
path functions have been determined between the force trans-
ducer and the microphone (Transfer Path Analysis, 1995). 
The signals from both the accelerometer and force transducer 
passed through a charge conditioning amplifier before being 
sampled by the FFT analyser. 50 different configurations 
have been measured by randomising the locations of the 
small masses.  

 
Figure 5. A schematic experimental set-up for the L-shaped 

plate measurement 

RESULTS 

Modal Spacing Distribution and Statistical Overlap 
Factor 

In the computational results obtained from the FE model, it 
was found that for a modal range of 200 to 380 modes, the 
distribution of the spacings between successive natural fre-
quencies followed a Rayleigh distribution, as shown in figure 
6. The lower modes were discarded as they are in well de-
fined positions and are therefore much less susceptible to the 
uncertainty in the plates. The results showing a Rayleigh 
distribution of modal spacings for a single plate loaded by 
masses has been previously reported (Langley and Brown, 
2004).  

Figure 7 presents the statistical overlap factor as a function of 
mode number, obtained computationally. A trend line ap-
proximated by a second order polynomial which approaches 
unity is also shown. The statistical overlap factor shows a 
steady increase with mode number. The levelling off of the 
statistical overlap factor is attributed to the inertia of the 
masses increasing as frequency increases, to the degree that 
each mass is acting as a clamped point such that no further 
increase in statistical overlap factor will occur with increas-
ing frequency. It is interesting to note that the Rayleigh dis-
tribution in figure 6 is clearly observed for a modal range 
occurring before the statistical overlap factor approached 
unity, implying that very little uncertainty in a system is re-
quired to result in a Rayleigh distribution of successive mo-
dal spacings. 

Figure 8 presents the probability density function of the spac-
ings between successive natural frequencies obtained ex-
perimentally, for modes 40 to 155. A Rayleigh distribution of 
the mean frequency spacing for this modal range is also 
given. The statistical overlap factor for the mass loaded L-
shaped plate ensemble is given in figure 9. A linear trend line 
was shown to better approximate the statistical overlap fac-
tor. 
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Figure 6. Probability density function of successive fre-

quency spacings for modes 200 to 380 (dashed line) and a 
Rayleigh distribution of the mean frequency spacing (solid 

line) – computational results 
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Figure 7. Statistical overlap factor (solid line), trend line 

(dashed line) – computational results 
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Figure 8. Probability density function of successive fre-
quency spacings for modes 40-155 (dashed line) and a 

Rayleigh distribution of the mean frequency spacing (solid 
line) – experimental results 
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Figure 9. Statistical overlap factor (solid line), trend line 

(dashed line) – experimental results 
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The results obtained through experimental measurement have 
restrictions which are described in what follows. Firstly, as 
the frequency range increases, the damping in the plates, 
though very low, does cause each resonant peak to spread 
into its neighbouring one. In this case it was found that above 
2500 Hz, it was impossible to distinguish the individual reso-
nances as the modal density of the plates was so high that 
many resonances were merging together. It was however 
possible to determine the statistical overlap factor up to this 
frequency and obtain a meaningful spread of information. 
Another restriction to the experimental measurements is that 
not each of the resonant modes was observed for each ran-
domised mass configuration. This has reduced the population 
size used for determining both the frequency spacing distri-
bution and statistical overlap factor, increasing the error in 
both cases.  

Despite the two limitations mentioned above, the experimen-
tal results match well with the simulated results. The fre-
quency spacing distribution shows a clear Rayleigh distribu-
tion below the expected statistical overlap factor of unity. 
Results for the statistical overlap factor suggest that the level 
of uncertainty in the practical situation increases more 
quickly than the simulated case, attributed to uncertainty 
inherent in the measurements for each ensemble member. 

Comparison of Frequency Averaging and Ensemble 
Averaging 

In an attempt to validate the ergodic hypothesis, response 
measurements taken from the L-shaped plate are used to 
compare the mean levels found by frequency averaging 
(Plunt, 1999) and ensemble averaging. Both structural and 
acoustic measurements were simultaneously taken. The fre-
quency response function (FRF) was measured between two 
points on the structure. The excitation was random and the 
frequency range was measured up to 3.2 kHz. The frequency 
response function has been converted into a velocity by inte-
grating with respect to time and assuming a unit force input. 
The second measurement was of the vibro-acoustic transfer 
path between the excitation point and a microphone located 
behind the plate, as shown in figure 5. The transfer path 
measurement has been converted into an energy density re-
sponse. A unit input force has been assumed. The frequency 
averaged response of a single ensemble member was ob-
tained by averaging the response using a proportional fre-
quency bandwidth of 4% of the frequency range. The ensem-
ble averaging has been achieved by averaging the response 
measurement for each ensemble member at each discrete 
frequency. 

From the experimentally measured FRFs, it was found that 
the frequency averaged result of the single ensemble member 
gives a close match to the ensemble averaged result, as 
shown in figure 10. Ensemble averaged and frequency aver-
aged results have also been calculated using FEA for the 
structural response. Very similar results were obtained com-
putationally in comparison to those determined experimen-
tally as shown in figure 11, again a 4% proportional averag-
ing bandwidth was used. 

Vibro-acoustic measurements obtained experimentally were 
also used to compare the ensemble averaged acoustic energy 
density at each frequency and the frequency averaged acous-
tic energy density (figure 12). In this case a wider averaging 
band of 10% bandwidth was used.  
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Figure 10: Ensemble averaged velocity at each frequency 

(solid line), frequency averaged velocity with a 4% propor-
tional averaging bandwidth (dashed line) – experimental 

results 
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Figure 11: Ensemble averaged velocity at each frequency 

(solid line), frequency averaged velocity with a 4% propor-
tional averaging bandwidth (dashed line) – computational 

results 
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Figure 12: Ensemble averaged acoustic energy density at 
each frequency (solid line), frequency averaged acoustic 

energy density with a 10% proportional averaging bandwidth 
(dashed line) – experimental results 

Frequency Averaged Experimental Results com-
pared with SEA Results 

The frequency averaged vibro-acoustic response obtained 
experimentally and shown in figure 12 is compared to the 
mean structurally radiated acoustic response of an L-shaped 
plate calculated using SEA. A unit input force was applied to 
the SEA model. The SEA response was calculated using the 
PAM-VA One software (Langley, 2004; Langley et al., 2005; 
Shorter et al., 2005), by means of the predefined properties of 
an aluminium plate. Figure 13 shows that the frequency aver-
aged acoustic response converges towards the SEA predic-
tion as frequency increases. SEA tends to slightly over pre-
dict the mean vibro-acoustic responses of the structure, al-
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though this is not the case in figure 13. This discrepancy is 
attributed to the fact that the experimental results were ob-
tained out in a semi reverberant field whilst the SEA calcula-
tions assume an anechoic chamber.  
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Figure 13. Frequency averaged sound energy level calculated 

experimentally (solid line), SEA prediction (dashed line) 

CONCLUSIONS 

Several statistical methodologies corresponding to the statis-
tical overlap factor, probability density function of modal 
spacings and statistical energy analysis have been investi-
gated both computationally and experimentally for an L-
shaped plate. It was found that in the presence of structural 
uncertainty, the spacings between successive natural frequen-
cies of the structure followed a Rayleigh distribution, indicat-
ing that the response of the structure is independent of the 
properties of the uncertainty. An ergodic hypothesis was 
employed which compared the mean response of an ensemble 
of structures at each frequency with the frequency averaged 
response of a single ensemble member. The frequency aver-
aged sound energy levels obtained experimentally from 
measuring the vibro-acoustic transfer function of the struc-
ture were compared with the results obtained from a com-
mercially available SEA software. This paper summarises its 
preliminary computational and experimental findings of an 
ongoing body of work into modelling structures with uncer-
tainty in the mid frequency range.  
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