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ABSTRACT 

Dynamic simulations of gears and rolling element bearings have previously been made separately, but cases have 
been experienced in practice where bearing faults show up only because they modulate the gearmesh signal in a way 
that is different from the effects of gear faults. A combined gear/bearing model has been made to obtain a better un-
derstanding of the interaction of the two components. Results have previously been published for simulated local 
faults in the bearings. The simulation model has now been modified to model extended faults of the type that do not 
necessarily produce high frequency impact responses, but do modulate the gearmesh signals. This simulation model 
will be useful to test new diagnostic algorithms, as well as prognostic algorithms by varying the size of the simulated 
faults. A third application is to use the simulated signals to train neural networks to recognize the various faults with-
out having to experience large numbers of failures. The paper compares simulated and actual signals (localized and 
extended inner race faults) from a gear/bearing test rig, and in particular demonstrates that they react similarly to ex-
isting diagnostic techniques. 

INTRODUCTION 

Gears and bearings are kinetically coupled components, 
which interact with each other as the meshing forces of the 
gears are supported by the bearings. 

In the simplest cases (localized bearing faults), this interac-
tion is additive, and the separation of the two signals (bearing 
signal and the gear signal) can be achieved by using synchro-
nous averaging, Self-Adaptive Noise Cancellation (Ho, 1999) 
or Discrete Random Separation (DRS) (Antoni and Randall, 
2004). The basis of separating the two signals is that the gear 
signal is periodic while the bearing signal contains some 
randomness due to the slippage of the rolling elements as a 
result of load angle variation. Moreover, due to the additive 
nature of the interaction, bearing signals prevail over certain 
frequency ranges and can be detected using envelope analysis 
(High Frequency Resonance technique) (McFadden and 
Smith, 1984 A), which has recently been automated using 
spectral kurtosis (Antoni and Randall, 2006, Sawalhi and 
Randall, 2005). Experiments and simulation on the Univer-
sity of New South Wales (UNSW) test rig have clearly sup-
ported this point (Ho, 1999, Antoni and Randall, 2002, Sa-
walhi et al. 2006 A, B). 

Different cases have been encountered where localized faults 
extend beyond the spacing between two rolling elements and 
are smoothened by the successive passing of the rolling ele-
ments, so that no impulses are generated (Antoni and Ran-
dall, 2002). The interaction between the gear signal and the 
bearing signals in such cases is no longer additive, but is 
largely multiplicative, meaning that the separation may no 
longer be straightforward as in the case of localized faults. In 
such cases, the bearing fault manifests itself by modulating 
discrete frequencies, such as gearmesh–related frequencies 
(Antoni and Randall, 2002). Different examples of actual and 
analytically simulated signals from gearboxes were presented 
by Antoni and Randall (2002). The illustrated examples 
showed the differences in the case of localized and distrib-
uted faults, and proposed a way of distinguishing between the 
two using cyclostationarity. 

This paper presents a combined dynamic model for gears and 
bearings, in which an extended fault in the rolling element 
bearing can be studied in the presence of gear interaction. 
The new simulation model is in fact an update of an earlier 
presented model (Sawalhi et al. 2006 A) intended to study the 
interaction in the presence of localized faults (inner and outer 
race). Fault simulation can be very valuable in machine diag-
nostics and prognostics in order to produce signals with well-
defined characteristics rather than waiting until such signals 
arise randomly. For example, such signals could be used to 
train neural networks to perform diagnostics and prognostics 
of developing faults in machines. These usually require so 
much data to train them that it would not be economical to 
actually experience the number of faults of each type re-
quired to accomplish the training.  

The current paper illustrates how the rough surface topogra-
phy of an extended fault can be generated and incorporated in 
the bearing function, reviews the combined bearing/gear 
model and discusses the nature of the bearing signals from 
the perspective of cyclostationarity. The simulated signals for 
an extended inner race fault, a localized inner race fault and a 
good bearing (all with added pink noise) are analysed using 
the procedure (spectral correlation) proposed in Antoni and 
Randall (2002).  

Analytical Models of Localized Faults in Rolling 
Element Bearings  

Rolling element bearings exist in a broad range of applica-
tions across almost all industries. Through their life, they 
support the rotating parts, and interact closely with them. 
This close interaction, along with the background noise, acts 
in most cases as a mask to the vibration signature, and thus 
complicates their health monitoring. 

One important characteristic of the vibration generated by the 
failure in the rolling element bearings in the early stages (lo-
cal surface damage) is that it is impulsive.  Impulses are cre-
ated when a defect (local spall) on a rolling surface impacts 
with another surface.  
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A traditional way of modelling localized bearing faults is as a 
sequence of high frequency bursts, which represent the im-
pulse response of the signal transmission path, repeated at a 
rate given by the fault interacting with the rolling elements, 
whether it is on the inner race, outer race or rolling elements 
(McFadden and Smith, 1984 B). The rolling element and 
inner race faults experience a variation of the load while 
passing through the load zone. This has the effect of modulat-
ing the impulse train by either the cage speed (rolling element 
fault) or the shaft speed (inner race fault) (McFadden and 
Smith, 1984).  

This model was realistically updated by Ho and Randall 
(2000), by varying the spacing between the bursts randomly 
by a small percentage, which happens in practice as a result 
of fluctuations in the load angle, and the tolerances of the 
cage. The importance of this is shown in figure 1, which 
shows the effect of introducing a small random fluctuation 
(0.75 %) using simulated signals (outer race). Note how the 
direct spectrum of the original signal (in terms of accelera-
tion) contains almost no information at the low frequencies 
about the pulse spacing. In the vicinity of the resonance, this 
information can be extracted when no random fluctuations 
exist, but is impossible with a small amount of random fluc-
tuation, as the harmonics smear into one other. Figure 1 also 
shows the advantage of envelope analysis in revealing the 
average pulse frequency, even with some fluctuations. 

Another way of looking at the signals from localized faults is 
through cyclostationarity (a cyclostationary process is a ran-
dom process with a periodic autocorrelation function  
(Gardner, 1986)). Bearing signals with local faults are de-
scribed as being approximately cyclostationary (pseudo-
cyclostationary) due to the fact that they don’t have a defined 
mean period, and consequently their autocorrelation function 
is not truly periodic, because of the nonstationarity in the 
inter-arrival times of the successive impacts (as a result of the 
slippage) (Antoni and Randall, 2002). This has the effect of 
smearing the higher harmonics as previously explained in 
connection with figure 1. 

Although the above models shed light on the nature of the 
vibration signal from a faulty bearing, they do not include the 
physical properties of the system (stiffness, damping, dimen-
sions of the rolling bearings, etc…) and cannot then be incor-
porated dynamically in a given system.  

Dynamic Simulation of Rolling element bearings  

To address the issue of modelling rolling element bearings in 
a dynamic manner, Fukata et.al (1985) introduced a two de-
gree-of-freedom (2 DOF) system, which provides the load-
deflection relationships, while ignoring the mass and the 
inertia of the rolling elements. Contact forces (based upon a 
Hertzian contact relationship (Harris, 1966)) are summed 

over each of the rolling elements to give the overall forces on 
the shaft. The stiffness of the bearing model (Figure 2) is 
both non-linear and time varying, but can still be incorpo-
rated into dynamic models.  

Building on Fukata’s model, Feng et.al (2002) presented a 
bearing–pedestal model (4 DOF model), which took into 
consideration the slippage of the rolling elements and the 
possibility of a localized fault on either the inner or outer 
races. 

The model is based on calculating the deflection jδ  at each 

rolling element j (total number of elements ( bn )). 

 
Figure 2 Rolling Element Bearing Two degree of freedom 

model (Liew et.al, 2002) 

The deflection, which is defined in equation (1), takes into 
consideration the loading status of the rolling elements (rep-
resented by the contact switch γ ), and the location of the 
rolling element with respect to the fault region (fault depth 
defined using a step function dC  and a fault switch β , 
which is activated for the elements in the spall region). More 
over, the clearance (c), and any unbalance can be represented 
in the net force. 

djjpsjpsj Ccyyxx βφφδ −−−+−= sin)(cos)(  (1) 

Where: sx , sy : Displacements of the inner race in the    
horizontal and vertical directions respectively  

px , py : Displacements of the pedestal in the 
horizontal and vertical directions respectively 

jφ : The position of the element j 

The ball raceway contact force ( f ) is calculated using tradi-
tional Hertzian theory (non-linear stiffness) (Harris, 1996) 
from: 

n
bkf δ=   (2) 

 
Figure 1 Bearing fault pulses (outer race fault) with and without random fluctuations (Ho and Randall, 2000) 
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The load deflection factor ( bk ) depends on the contact ge-
ometry and the elastic constants of the material, and exponent 
n = 1.5 for ball bearings and 1.1 for roller bearings. Using 
equation (2) and summing the contact forces in the x and y 
directions for a ball bearing with ( bn ) balls, the total force 
can be calculated as:  

∑
=

=
bn

j
jjjbx kf

1
5.1 cosφδγ   (3) 

∑
=

=
bn

j
jjjby kf

1
5.1 sinφδγ    (4) 

The stiffness of the bearing as presented by this model is 
non-linear, and is time varying in nature as the positions of 
the rolling elements (function of time) determine the overall 
contact.  

The random fluctuation of the ball positions as a result of the 
slippage can be either forward or backward of the mean. This 
was related to the nominal motion of the cage ( dtcω ) and 
was modelled by introducing random numbers of zero aver-
age with evenly distributed fluctuations within 

dtcjrand ωφ 5.1±=  (Feng et.al, 2002).  

Feng’s model was further updated by Sawalhi et.al (2006), by 
introducing an extra degree of freedom (sprung mass system 
to excite a typical high frequency resonance of the system) 
and by changing the way of modelling the spall (the way of 
defining the variable dC ); so that rollers lose and gain con-
tact gradually. The new five degree-of-freedom model is 
shown in figure 3. It was implemented in a gear dynamic 
model using Simulink® as an S-function (special function for 
Simulink®), which was dynamically updated as the simula-
tion proceeded. 

The details of the new model as well as the results for an 
inner race and outer race faults were presented in Sawalhi 
et.al (2006) in two conference papers (IFToMM 2006 and 
COMADEM 2006). The former concentrates on illustrating 
the models and shows how the impulse itself is formed of 
two parts (entry and exit to the spall region), while the latter 
shows how an inner race fault can be separated based on the 
randomness of pulse spacings as a result of the slippage. Both 
papers showed how both simulated and actual results have 
the same behaviour. 

Modelling extended faults 

A rough surface can be treated as a series of discrete points. 
The heights of these points are modelled as a random vari-
able. The distribution of the heights gives important informa-
tion about the surface (a rough surface will have a large stan-
dard deviation) (Wu, 2002). A large number of parameters 
have been proposed for describing the roughness of a surface, 
however the most common of these, the root mean squared 
value (rms) roughness (h) is the standard deviation of surface 
heights (Wu, 2002).  

The procedure of generating the rough surface for this model 
( )(φdC ) includes three main steps, and can be described as 
follows: - 
1. Gaussian noise is generated using the function randn in 

Matlab® and is scaled to the required surface roughness 
by multiplying by h (a value ranging from 10 µ m to 
20 µ m is selected).  

2. The generated random noise is low pass filtered to fit the 
rolling element to the path it can practically reach (rolling 
element touches only at the asperities). The wavelength λ 
(inverse of the low pass filter frequency) is derived as in 
equations (5-8) using the terminology explained in figure 
4. The low pass filtered signal is shown in figure 5 along 
with the original signal (Gaussian noise). 

At 
4

3λ
=x  the curvature is the same for both the rolling 

element (ball) and the surface, which also means that the ball 
can roll between the two peaks. 

The curvature of the ball ( ballk ) can be estimated using 
equation (5), while that of the sinusoidal surface ( sik ) de-

fined in figure 4 at 
4

3λ
=x is given in equations (6 and 7) 

 
b

ball D
k 2

=   (5) 

2/32)('1

)(''

xf

xf
ksi

+
=    (6) 

2

2

)
4

3(
4

λ

ππ ak xsi ==    (7) 

The wavelength (λ) for an equal surface curvature can be 
found by equating equations (6) and (7) as: - 

 
Figure 3 Five degree-of-freedom bearing-pedestal model (Sawalhi et.al, 2006 A) 
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baD2πλ =    (8) 
3. Spalling leaves deep cavities at contact surfaces with a 

depth of 20 µ m to 100 µ m (Bruce, 2004). In order to 
represent this topography, the low pass filtered signal 
generated from the first two steps is superimposed on a 
bucket shaped surface (depth of 20 µ m to 100 µ m) to 
give the final topography of the rough surface as shown 
in figure 6. 

Cyclostationary Analysis 

When an extended fault exists on the inner race, it periodi-
cally enters and exits the load zone, and the resulting signal 
(non impulsive, with randomly distributed phases) is modu-
lated by the shaft speed. This has been described as a purely 
cyclostationary process (Antoni and Randall, 2002) as op-
posed to the pseudo-cyclostationary process associated with 
the localized faults. 

Based on these views of cyclostationarity, an approach based 
on the properties of cyclostationary processes has been sug-
gested by Antoni and Randall (2002), which showed how to 
distinguish the modulation associated with a bearing fault 
from that associated with a gear fault. 

The Autocorrelation function of the signal )(tx  can be de-
fined as (Gardner, 1991): - 

)]2/()2/([),( * τττ −+= txtxEtRx    (9) 

Where E [.] is the mathematic expectation operator, τ is the 
time lag. For stationary signals, there is no variation with the 
time t, and the autocorrelation function can be written as 

)(τxR . For cyclostationary signals, there is a periodic varia-
tion with the time t, and there is an advantage in performing a 
two-dimensional Fourier transform of the autocorrelation 
function with respect to the two time variables ),( τt , to give 
the so called Spectral Correlation Function (SCF) defined by 
(Antoni and Randall, 2002): - 

{ }τα

τ
α

,(),( tRfS xF

f
t

xx

→
→

=   (10) 

The SCF is a powerful tool in distinguishing between the 
different types of signals, viz, stationary, cyclostationary and 
periodic and as a result identifying the source of fault. The 
main characteristics given by this process are as follows: - 
• Stationary random signals - do not change with time t, 

and then will only have a component at zero cyclic fre-
quency (α = 0), which is the normal power spectrum.  

• Periodic signals - these will have discrete components in 
both frequency directions ),( fα , thus being made up of 
a “bed of nails”. 

• Cyclostationary signals - these will be continuously dis-
tributed in the f  direction but discretely distributed in 
the α direction. 

Thus if the SCF is evaluated at a cyclic frequency )(α coin-
ciding with one of the discrete components other than zero, it 
will not be contaminated with stationary noise, but on the 
other hand will be continuous for cyclostationary signals and 
discrete for periodic signals. If discrete frequency compo-
nents are first removed by DRS, only the cyclostationary 
components will be left. 

The UNSW spur gear test rig  

The gearbox test rig (figure 7) under investigation was built 
by Sweeney (1994) to investigate the effects of gear faults on 
transmission error. In this test rig, the single stage gearbox (in 
this case a spur gear set with 1:1 ratio and 32 teeth on each 
gear) is driven primarily by a 3-phase electric motor, but with 
circulating power via a hydraulic pump/motor set. The input 
and output shafts of the gearbox are arranged in parallel and 
each shaft is supported by two double row ball bearings 
(Koyo 1205). The flywheels are used to reduce the fluctua-
tions of the input and output shaft speeds. The couplings are 
flexible in torsion and without stiffness in bending, making 
them very helpful for attenuation of the shaft torsional and 
lateral vibration. 

The UNSW Dynamic simulation Model  

The modelling of the dynamics of the UNSW gear test rig is 
accomplished by translating the physical components of in-
terest into a schematic presentation as shown within the dot-
ted box in figure 7. These have been selected based on previ-
ous recommendations on the importance, relevancy and con-
tribution to the dynamics of the model (Sweeney, 1994, Du, 
1997 and Gao, 2000). 

Figure 6 Wavelength derivation 

Figure 6 Low pass-filtered signal (dark colour) 

Figure 6 Final rough surface plots 
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A lumped mass parameter model was then constructed to 
represent the different parameters of the model (stiffness, 
damping and masses) in both translational and rotational 
degrees of freedom. Both the 5-DOF bearing model and the 
gear model were incorporated in the overall model. 

There are 34 DOF in the new model as opposed to the 16 
DOF in a previous model (bearing modelled as a single de-
gree of freedom system with constant stiffness)]. This is illus-
trated in the schematic diagram of figure 8. The extra (18) 
degrees of freedom are due to the inclusion of the 5 DOF 
bearing model (figure 3), and to the fact that translational 
degrees of freedom are now considered both along the line-
of-action (LoA) and perpendicular to it. 

The main assumptions on which the new model is based are 
as follows: - 
1. Shaft mass and inertia are lumped at the bearings or at the 

gears. 
2. Translational degrees of freedom are considered along 

the LoA and perpendicular to it, with the LoA aligned 
vertically. 

3. Only two resonances of the gearbox casing are consid-
ered.  

4. The static transmission error of the gears (geometric and 
elastic) is included. 

5. Friction between the gear teeth is neglected. 
6. The gearmesh is assumed free from contact loss. 

Matlab® matrix capability, and Simulink® simulation envi-
ronment were employed to solve the set of the equations of 
motion using the ordinary differential equation solver 
(ode45). The bearing model was implemented as an S-
function (special function for Simulink®), which was dy-
namically updated as the simulation proceeded. On the other 
hand, the load dependent non-linearity of the gearmesh stiff-
ness was implemented as a “look-up table” with cubic spline 
interpolation (Endo, 2005) 

Results and Discussion 

Simulated signals for an extended fault (one third of the inner 
race), a localized fault (slot with a width of 0.8 mm) and a 
good bearing were obtained from the gear/bearing simulation 
model. The signals were generated at a sampling rate of 48 
kHz and with a Signal to Noise Ratio (SNR) of 12 dB. The 
shaft speed (Ω) was set to 10 Hz and the rate at which rolling 
elements pass the fault on the inner race (BPFI) is estimated 
at 71.2 Hz. 

Figure 9 shows one complete revolution (4800 samples) for 
the two cases of the fault, viz extended on the left and local-
ized on the right. The separation of the raw signal (top row) 
into a periodic signal (gear related component) – middle row 
- and a bearing related component - bottom row - was 
achieved using DRS. In both cases, it is seen that gear signals 
are well extracted, and the residuals reflect the nature of the 
embedded faults.  

The residual is impulsive for the localized fault (character-
ized by three impulses, with the maximum being centred in 
the load zone). For the extended fault it is no longer impul-
sive, but rather has a randomly distributed phase, since the 
rolling elements are on different positions on the rough sur-
face every revolution.   

Figure 10 explores the cyclostationarity for the residual sig-
nals (bottom row of figure 9) by evaluating the spectral corre-
lation function (SCF) as discussed earlier in the section on 

 
Figure 7 34 DOF dynamic model of the test rig (Vertical direction y aligned with the LoA of the gears)     (Sawalhi et.al, 2006 A) 

 
Figure 8 (a) Spur gear test rig (b) schematic diagram of the spur 

gearbox rig (Sawalhi et.al, 2006 A) 
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cyclostationarity. The presentation of the SCF is plotted as an 
image whose x-axis represents the cyclic frequencies (α) and 
the y-axis represents the frequency range of the signal. For 
the extended fault (left side), it is noticed that the SCF is 
continuous for α = Ω and has its highest value (darkest part) 
near 3 kHz. It is also showing at 15 kHz but with smaller 
values (light colour). It is noticed also that the second and the 
third harmonics of the shaft speed as well as the BPFI at 71.2 
Hz show, but with small values (light colour). On the other 
side, the localized fault shows high components extending 
over a wide range of frequency for α = Ω and its harmonics, 
as well as α = BPFI and its sidebands. 

Figure 10 gives a clear idea about the cyclostationary com-
ponents in the system, and it has been shown (Randall et.al, 
2001) that the integration of the SCF over the whole fre-
quency range (f) is equal to the Fourier transform of the mean 
squared signal (the spectrum of the squared envelope signal). 
It also serves the purpose of choosing the values of the cyclic 
frequency (α) to perform the spectral density comparisons. 
Clearly figure 10 suggests using the shaft speed (α = Ω) for 
both the localized and extended faults. Such comparisons are 
shown next in figure 11 for both the raw and residual signals 
at  (α = 0) and (α = Ω). 

Figure 11.a compares the power spectral density at α = 0 
(normal power spectral density comparison) for the raw sig-
nals, i.e. without removing the periodic part (top row signals 
of figure (9). There is a significant dB difference for the lo-
calized fault case, but not for the extended fault. In both cases 
the low frequency range (up to 5 kHz), which is dominated 
by the gear contribution, isn’t clearly affected as a result of 
the fault. No conclusions could be made at this stage, due to 
the contribution of the noise and the gear signal. 

When comparing the power spectral density for the same raw 
signals but at (α = Ω) as shown in figure 11.b, it is noticed 
that the dB difference is greatly affected in the high fre-
quency region (away from the gear dominance region). The 
improvement is due to the fact that no noise effect is present 
in the signal, as earlier discussed (stationary noise will only 
show at α = 0 but not at any other frequencies). Of impor-
tance also to note is the effect in the lower frequency range 
due to the removal of the noise contribution, which shows 
how the two main resonances at the lower region show an 
increase in the dB difference. However, as the gear compo-
nents aren’t removed yet, no conclusion could be drawn to 
whether this increase of the dB difference is the result of a 
gear or a bearing fault.  

 
Figure 9 Signal Separation for extended and localized inner race faults. Left: Extended, Right: Localized.  

Top row: Raw signals, Middle row: Periodic signals (gear), Bottom row: Faulty bearing signals (Residuals).  

 
Figure 10 Spectral Correlation Function  (SCF). Left: Extended fault. Right: Localized fault. 
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For the cases of the residual signals (Gear components re-
moved by DRS) at α = 0 and at α = Ω (figures 11.c and 11.d 
respectively), it is noticed that, by removing the gear contri-
bution, for the both cases of α, there is a great increase in the 
dB difference, as a result of introducing the faults, but is 
more noticeable at (α = Ω) due to the absence of the station-
ary noise. It is clear for this specific case (spectral correlation 
comparison for the residual signal at α = Ω) that the increase 
of the dB difference is certainly coming from a bearing fault. 
Note that for the localized fault, this increase spreads across 
the whole spectrum  (additive interaction), while that for the 
extended fault mainly affects the resonances in the structure 
and in particular those in the low frequency range (below 5 
kHz), where its effect is due to modulating certain gearmesh 
frequencies (multiplicative interaction). 

Figure 12 compares the spectral correlation at α=0 and α=Ω 
for actual measured signals from the UNSW test rig. The 
comparison is made for the residual signals (periodic parts 
removed using synchronous averaging). The similarities be-
tween the simulated (figures 11.c, 11.d.) and measured sig-
nals (Figures 12.a, 12.b) are clearly seen for both values of α, 
however, a few issues need to be addressed due to the as-
sumptions embedded in the simulation model. The first is the 

high dB difference at α=0 for measured signals compared to 
simulated ones. This is associated with an increase in the 
stationary noise level after the introduction of the faults (note 
that in the simulated signals, the same amount of noise (addi-
tive noise) was added to all signals, while in measured signals 
both additive and multiplicative noise are present in the sig-
nal). The second is the way the bearing fault manifested it-
self. This can be seen clearly from figure 12.b, as a multipli-
cative interaction in the case of the extended fault and an 
additive interaction in the case of the localized fault. In the 
simulated signals (figure 11.d), it is noticed that there is a 
high dB difference in the low frequency region, due to the 
absence of any source of excitation to the structure in the 
good bearing case after the removal of the gear components 
(in the actual measured signals random impacts resulting 
from the imperfect bearing surfaces excite the resonances of 
the structure, and can be traced in the residual signals). 

The conclusions drawn from the simulated and measured 
results from the UNSW test rig, and in particular those pre-
sented in figures 11.c, 11.d and 12.b agree quite interestingly 
with actual measurements as shown in figure 13, which pre-
sents a case from an actual gearbox of a Sea Hawk Helicop-
ter, where evidence of a distributed bearing inner race fault 
was reported (Antoni and Randall, 2002). The comparison is 

 
Figure 12 Spectral Correlation at particular values of α with and without the bearing faults for the measured 

signals. (a) Residual signals at α=0 (b) residual signals at α=Ω 

 
Figure 11 Spectral Correlation at particular values of cyclic frequency α with and without the bearing faults.  
(a) Raw signals at α = 0. (b) Raw signals at α = Ω (c) Residual signals at α = 0.  (d) Residual signals at α = Ω 
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made for the cases of α = 0  (left) and α = Ω (right) for the 
residual signals. For the former, there is little difference be-
cause of the effect of stationary noise, while for the latter, the 
increase and the smoothing over many frequencies, points 
clearly to the presence of a cyclostationary component, which 
most certainly is coming from a bearing fault (as gear com-
ponents were removed, and there is no masking noise).  

Conclusion  

This paper presents the results of simulating an extended 
inner race fault in one of the rolling element bearings in a 
single stage gearbox. The simulated results of the dynamic 
gear/bearing model were compared with a simulated local-
ized inner race fault, and were both subjected to the same 
diagnostic techniques (namely DRS and SCF). The obtained 
results agrees quite well with results obtained from actual 
measurements, and show how the extended fault effect can be 
clearly detected after removing the gear contribution using 
DRS and comparing the power spectra at a cyclic frequency 
that matches the shaft speed. The agreement between the 
simulated and measured signals shows the robustness of the 
developed model and its suitability for testing new diagnostic 
algorithms, as well as prognostic algorithms. 
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