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ABSTRACT 

This talk presents a mathematical model of light weight timber floor/ceiling structures. The structures studied here 
consist of three basic components, upper plate, joist beams and ceiling. The shape of the whole structure is rectangu-
lar with the edges simply supported. Connections between the joist beams, the upper plate and the ceiling are consid-
ered. This connection conditions include the slippage and the springs. The configuration of the structure is made pro-
gressively more complex by adding more components such as cavity air and stiffening battens. 

INTRODUCTION 

In this article, we study vibration of a light-weight 
floor/ceiling structure that has three basic components, upper 
plate, ceiling and joist beams running parallel in one direc-
tion. An advantage of such a lightweight structure is its 
cheaper cost and faster construction time. However, the struc-
ture tends to have poor low-frequency noise insulation per-
formance because of the lightweight components (compare to 
heavy masonry counterpart). In (Blazier and DuPree, 1994) it 
is shown that impact noise, particularly in the low frequency 
range, transmission between the apartments using such 
floor/ceiling structure can be a major problem.  

In recent years there have been numerous theoretical studies 
on the vibrations of walls, floors and ceilings, because these 
building components are the primary source of sounds in a 
room. A difficulty arises from the fact that these building 
components themselves are made up of many components 
with widely varying mechanical properties. Furthermore, the 
connections between different components have not been 
studied in detail. In order to predict the low frequency vibra-
tion of the structure, these components must be individually 
modelled rather than lumped together. In this paper we also 
focus on the interaction between the upper plate and the joist 
beams in particular. 

A series of articles by Hammer and Brunskog (Brunskog and 
Hammer 2002,2003 and Hammer and Brunskog 2000) give 
detailed studies of the modelling of tapping machines and 
floor vibration. Their technique is based on Mace's method in 
(Mace 1980), which deals with a periodically stiffened elastic 
plate. Mace's method is based on (Evseev 1973 and Lin and 
Garrelick 1977). Studies of double leaf wall structures using 
the combination of the above two techniques are given in 
(Yairi et al 2002). Although a great deal of detail of forces 
and moments are described in both papers, the behaviour of 
the two neighbouring components at the joint is not dis-
cussed. The papers mentioned above take advantage of pe-
riodicity of the structures that have either joists or pins lo-
cated in a regular interval. In these articles, the components 
are not physically joined, rather they are simply in contact 
with each other and free to slip. We address this issue in this 
paper because the floor upper plate is usually screwed or 
glued onto the joists. 

The floor/ceiling structures, sometimes called double-leaf 
structure, have also been studied in a different context. In 
(Craik 1996, 2000), the transmission of vibration across a 

plate-beam joint is studied. In (Craik 1996, 2000), the trans-
mission and coupling loss factor are used in statistical energy 
analysis to find the sound transmission through double-leaf 
structured walls with various connecting methods. The con-
nections between two neighbouring components in these 
models are rigidly connected, which is not true for timber 
construction. In more realistic settings the timber-based floor 
structures have been studied in (Emms and Hallows 2002). 

There are various ways to connect the floor to the joists. We 
here consider simple springs to model the resistance when 
there is slippage between the components. The amount of the 
resistance at the connection can be changed by varying the 
spring constants. The resulting solution is computationally 
efficient and robust for a wide range of physical parameters. 
In the following sections, we will show that the interaction 
conditions play an important role in predicting the low-
frequency vibration of the floor/ceiling structure. 

MODELLING PROCEDURE 

We use the following four differential equations for two 
plate, a beam and Helmholtz equations to model the 
floor/ceiling structure. 
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where m0 (m2) and F0 (F2) are the mass density per unit area 
and external force amplitude of the upper plate (ceiling), 
respectively. The derivation of the above equation can be 
found in many structural acoustics text books such as 
(Moorse 1968, Cremer 1973, Fahy 1985). The force from the 
joist beam is denoted by P1. The flexural rigidity, for example 
D0 for the upper plate, is computed by E0h0

3/12(1- ν2), where 
E0 is Young's modulus and ν is Poisson’s ratio for the plate. 
For the beam equation, E1, I1 and m1 are Young's modulus, 
moment of inertia and the mass density (per unit length) of 
the beam, respectively. The moment of inertia is computed 
by h1d1/12, where h1 and d1 are the thickness and the width of 
the beams, respectively. On the right hand side of the beam 
equation, P1 denotes the force acting on the beam. Note that 
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there are more than one joist beams, thus there are the same 
number of separate beam equations in the model. Here we 
have shown only one of them to avoid the clutter. 

The sound pressure in the cavity is denoted by p(x,y,z). In 
Helmholtz equation c denotes the speed of sound. 

In this model we can include the resistance force between the 
upper plate and the joist beams generated by the bending of 
the two components. We model the resistance using a spring 
constant and the slippage distance between the components. 
Hence the force, f, is computed by, 

]
22

[)( 1100

dx
dwh

x
whxf +
∂

∂
= σ  

The following sections show that the inclusion of the above 
force is crucial in predicting the low-frequency vibration of 
the structures. 

COMPUTATION RESULTS 

Simple joist floor 

We here show the computation results of the solution of a 
simple joist-floor consisting only of the upper plate and the 
joist beams. The physical values used in the computation are, 
m0 = 0.015*500Kg/m2, m1 =0.045*0.3*500Kg/m, ν = 0.4, E0 
= 1010Pa, E1=1.4*1010Pa and loss factor for the Young's 
moduli is 0.03. Figure 1 shows root mean square velocity of 
the upper plate when the plate is excited at a point with 1 
Newton of force. The slippage resistance constant is varied to 
show its effect on the structure’s behaviour. The figure shows 
that the slippage coupling in the model makes substantial 
difference to the location of the resonance frequencies.  

In a timber structure, the effects of the damping are impor-
tant. Although, there are many ways to model the damping, 
complex modelling of the damping is outside the scope of 
this paper. We thus consider the damping as complex valued 
Young's module with the loss factor being the ratio of the 
imaginary part to the real part. The results in the figures in 
this section use E0=1010(1+0.03i). One may choose frequency 
dependent damping, that is, the loss factor is a function of the 
frequency. 

Multi-layered floor/ceiling structure 

We here apply the model to more complex structures de-
picted in Figures 2 and 3. The structures in figures 2 and 3 
span 7m in length and 3.2m in width. The upper plate in fig-
ure 2 is 15mm plywood and the upper plate in figure 3 has 
additional 38mm of Gypsum Fibreboard screwed to the ply-
wood. The ceiling consists of two layers of 13mm dense 
plaster boards. The ceiling is connected via rubber resilient 
clips, which are clipped on to steel battens. The battens run 
orthogonal to the joist beams. The cavity is filled with sound 
control fibreglass, which has an average measured flow resis-
tivity of 7250 Rayls/m. The definition of the flow resistivity 
can be found in (Bies and Hansen 2003). The authors are not 
aware of definitive modelling of the porous media, the glass 
fibre filling in the cavity, for the low-frequency range consid-
ered in this paper. One reason may be that models for the 
porous media assume a rigid media, whereas the whole glass-
fibre layer moves with the structure at low-frequencies. 
Hence the flow resistivity is here linearly increased as the 
frequency becomes higher until the resistivity reaches the 
conventionally measured value. The slope of the resistivity is 
determined by the graphs given in appendix 3 of (Bies and 
Hansen 1994). 

The floor upper and joist slippage resistance was experimen-
tally determined by matching the frequencies of the first and 
second modes of the floor vibration when the floor consisted 
only of plywood screwed to joists with no ceiling. This was 
then assumed to be constant for the other floors tested. Val-
ues of other parameters (such as stiffness, density, and loss 
factor) for the floor components were either drawn from the 
manufacturers’ nominal data or determined from measure-
ment of samples of the material. It should be noted that the 
plywood and plasterboard have orthotropic bending stiff-
nesses, whereas the model assumed isotropic bending stiff-
nesses. The model also assumes that the ceiling battens are 
attached to every joist by resilient clips, whereas in practice, 
these clips were attached to every other joist (the stiffnesses 
of the clips in the model were halved to compensate for this). 

The root mean square surface velocities of the ceiling ex-
perimental results are compared to those predicted by the 
model, and are shown in figures 4 and 5 (corresponding to 
the floors of figures 2 and 3, respectively), which are taken 
from (Chung and Emms 2006). The measurements are taken 
using a laser vibr-meter with a sacnning head that can meas-
ure the velocity at multiple points on the surface. The entire 
surface of the ceiling was scanned. The surface velocity of 
the ceiling is averaged over the area. In figure 4 we see good 
comparison of the results until about 80Hz. Observation of 
spatial vibration of the upper surface at frequencies above 
80Hz suggested that the plywood was decoupling from the 
joists between the screws, so that the plywood-joists connec-
tion was no longer a continuous line as assumed in the model. 
In figure 4 we also see resonant peaks in both experimental 
and model results above 60Hz. These are due to ceiling reso-
nances between the ceiling battens and are, in part controlled 
by the ceiling batten bending stiffness. 

The locations of the first few resonant frequencies can be 
matched even better by adjusting the slippage resistance. 
However, the value of the resistance was fixed for the two 
examples here in order to avoid arbitrary adjustments of the 
parameter. In some cases the slippage resistance may have to 
be truly adjusted because of the changing conditions such as 
the weight of the upper layer. We did not consider such an 
adjustment of the slippage resistance because we do not 
know the exact nature of the changes in the contact condi-
tions between the upper layer and the joist beams. The details 
of the experiment program will be available from the 
FWPRDC report (Emms et al 2006). 

CONCLUSIONS 

We have shown that the slippage between the floor and the 
joists has a significant effect on the vibration of the whole 
structure particularly on the locations of the first few resonant 
frequencies. Therefore, it is inadequate to model the coupling 
as either completely rigid or free connections. The method is 
computationally cheap and can be implemented directly into 
computer codes. The method of solution is then extended to 
multi-layered structures with a ceiling and a cavity. The 
equations for the coefficients and the interacting forces are 
arranged in the same order as the real structure. The compari-
son between the theoretical and the experimental results show 
that the trend of the vibration of the structure is well pre-
dicted by the model.  
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Figure 5. Comparison of the root mean square velocity of the 
experimental (solid) and the theoretical (dashed) results from 

the structure in figure 3. 

 
Figure 1. Root mean square velocity of the floor surface for 

various σ =0 (dash), 1.5*106 (dash-dot), 1.5*107 (solid), 
1.5*108 (dotted). 

 
Figure 2. Schematic drawing of the floor/ceiling structure. 

 
Figure 3. Schematic drawing of the floor/ceiling structure. 

 
Figure 4. Comparison of the root mean square velocity of the 
experimental (solid) and the theoretical (dashed) results from 

the structure in figure 2. 
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