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ABSTRACT 

One of the problems associated with the use of Helmholtz resonators to control tonal noise propagation inside a pipe 
or duct is that any slight frequency changes in the tonal noise as a result of environmental changes or load changes on 
the device generating the noise will severely compromise the performance of the resonator. Thus, it is desirable to use 
an adaptive resonator whose volume or neck length can be adjusted to maintain optimal tuning as the excitation fre-
quency or environmental conditions change. The ideal cost function would be a measure of the sound power propa-
gating down the duct so the control system could minimise this quantity by driving motors that change the geometry 
of resonator. In practice, it is highly desirable to have available a self-contained adaptive resonator that does not need 
any external inputs or measures of quantities outside the resonator package. A cost function based on pressure meas-
urements in the resonator, which corresponds to sound power in the duct has been found and verified experimentally 
and numerically. The effect of resonator damping on the cost function and a method to correct for the effect is also 
discussed. 

INTRODUCTION 

Background 

The work presented in this paper is an extension to the work 
reported by the authors in a previous paper (Singh, Howard 
and Hansen 2006). The motivation for the ongoing investiga-
tions is the desire for the development of a self-contained 
adaptive Helmholtz resonator, which does not require any 
external sensors, to attenuate tonal noise propagation in 
ducts.  The current paper is focused on the development of a 
cost function that uses only measurements from transducers 
located on or in the resonator to determine a quantity to be 
minimised.  

Many authors have reported the successful implementation of 
adaptive Helmholtz resonators in small-scale laboratory set-
ups. The optimal tuning of Helmholtz resonators has been 
achieved by using an electronic controller, which drives a 
motor in order to change the dimensions of either the cavity 
or neck of the resonator. The control algorithms reported in 
previous studies (Bedout et al. 1997) for changing the ge-
ometry of the resonators have used pressure measurements 
from microphones located in the duct downstream of the 
resonator. However, there are number of problems related to 
the in-duct mounting of the microphones and these have been 
discussed previously (Singh, Howard and Hansen 2006). 

A cost function based on pressure measurements at the top of 
the closed end of the cavity and at the neck wall in close 
proximity to the neck-duct interface was presented previously 
(Singh, Howard and Hansen 2006). The cost function was 
empirically derived by relating the measured damping of the 
duct-HR system and the phase difference between the two 
pressure measuring locations in the resonator described 
above. 

A new cost function is presented in this paper, which relates a 
different measure of the quality factor of the HR to the phase 
difference between pressure measurements at the top of the 
closed end of the cavity and at the neck wall in close prox-
imity to the neck-duct interface. The quality factor, which is 
the reciprocal of twice the critical damping ratio, is typically 

estimated by using the bandwidth of frequencies bounding 
the resonance. Here the quality factor is estimated by using 
information at a single frequency only, at which the noise 
needs to be attenuated. This is a much more practical ap-
proach because in an actual system, the energy in the duct is 
dominated by the tonal noise to be controlled and it is often 
not convenient to introduce a loudspeaker to excite frequen-
cies around the frequency to be controlled to enable the 3 dB 
bandwidth to be measured. 

In the next section, the theoretical basis for estimating the 
resonance frequency and performance of a Helmholtz resona-
tor is summarised. This is followed by a numerical analysis 
based on finite element analysis (FEA) using ANSYS soft-
ware. Results obtained numerically are then compared with 
the theoretical results and the relationship between the pres-
sures measured in the resonator and the in-duct sound power 
transmission is also discussed. Finally the cost function de-
rived in our previous paper (Singh, Howard and Hansen 
2006) is described and this is followed by the derivation and 
description of the new cost function. 

THEORETICAL ANALYSIS 

The following theoretical analysis is concerned with calcula-
tions of the resonance frequency of a HR as a stand-alone 
device and the acoustical performance of the HR mounted on 
a duct. 

Helmholtz resonators as stand-alone devices 

The resonance frequency, fr, of a HR can be accurately calcu-
lated by using the well known classical formula given by: 
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where, c is the speed of sound, r is the radius of the neck, leff 
is the effective length of the neck, which includes two end-
corrections, one at each end, and V is the volume of the cav-
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ity. However, Panton and Miller (Panton and Miller 1975) 
have shown that equation (1) is no longer valid when the 
dimensions of the HR exceed 1/16 of the wavelength of 
sound at the resonance frequency. Panton and Miller (Panton 
and Miller 1975) derived a new formula to calculate the reso-
nance frequencies of cylindrical HRs, given by: 
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where, LC is the length of the cavity, and An is the cross-
sectional area of the neck. Unlike the assumptions for the 
classical formula, equation (2) is accurate for a length of the 
cavity comparable to or longer than a wavelength but the 
cavity diameter and neck dimensions must be kept smaller 
than a wavelength. Also, for the derivation of equation (2), it 
was considered that the length of the neck was very small 
compared to the length of the cavity. 

As an extension to the work accomplished by Panton and 
Miller (Panton and Miller 1975), Li (Li 2003) proposed an-
other model for calculating the resonance frequencies of cy-
lindrical HRs. His derivation was also based on wave-tube 
theory but was more general than the model derived by Pan-
ton and Miller, and is given by: 
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where, Ac is the cross-sectional area of the cavity, and all the 
other variables have the same meaning as they do in equation 
(2). 

As the dimensions of the HRs used in this study were all 
greater than 1/16 of the wavelength, the neck length was 
comparable or greater than the cavity length, and the other 
conditions related to the dimensions of the resonators con-
formed to those of Li’s model, equation (3) was used to cal-
culate the resonance frequencies. 

Helmholtz resonator attached to a duct 

When a Helmholtz resonator is mounted onto a duct, a cou-
pled system is created whose resonance frequency is different 
to that of the stand-alone HR. HRs work by causing an im-
pedance change in the acoustic system at its point of inser-
tion. Thus, HRs act like passive bandstop filters barring the 
transmission of acoustic power past their location at frequen-
cies in close proximity to their resonance frequencies. 

The transfer matrix method, also referred to as transmission 
matrix or four-pole parameter representation (Munjal 1987), 
was used to calculate the net acoustic power transmission in 
the duct to which the HR was attached. The complete transfer 
matrix equation of the duct-HR system was built by discretis-
ing the duct-HR model into three elements: (1) section of the 
duct upstream of the HR, (2) section of the duct downstream 
of the HR, and (3) the HR. Figure 1 shows a schematic of the 
duct-HR system illustrating the three elements described 
above, along with the neck-cavity and neck-duct interfaces. 

The key issue related to the theoretical analysis of the duct-
HR system was the incorporation of the end-correction fac-
tors of the neck of the HR in addition to the actual dimen-
sions of the elements. The end-correction factor at the neck-
cavity interface, also referred to as interior end correction 
factor, iδ , is well known and is given by (Ingard 1953): 
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where, r is the radius of the neck, and R is the radius of the 
cavity. However, there exists some uncertainty concerning 
the estimation of the end-correction factor at the neck-duct 
interface.  

 
Figure 1. A schematic of the duct-HR system highlighting 

the neck-cavity and neck-duct interfaces. 

Onorati (Onorati 1994) suggested that an end-correction fac-
tor of 0.3a, where a is the radius of the duct, should be added 
to the physical length of the neck in order to incorporate the 
mass loading of the fluid at the neck-duct interface. Ji (Ji 
2005) presented an empirical value of the neck-duct interface 
end-correction factor that is related to the dimensions of the 
neck and the duct. 

Figure 2 shows two plots of the in-duct net acoustic power 
transmission downstream of a HR calculated by using two 
measures of the neck-duct interface end-correction factor as 
per Onorati’s (Onorati 1994) and Ji’s (Ji 2005) model. The 
dimensions of the duct-HR system were: duct diameter = 
0.1555 m, duct length = 3 m, cavity diameter = 0.131 m, 
cavity length = 0.070 m, neck diameter = 0.0525 m and 
physical neck length = 0.093 m.  
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Figure 2. Theoretical results of the net acoustic power trans-
mission in the duct downstream of the HR estimated by using 
estimates of the neck-duct interface end-correction factor as 

per Onorati’s and Ji’s models. 

The frequency at which the maximum reduction of in-duct 
net acoustic power transmission was calculated as 220 Hz 
when Onorati’s estimate of the neck-duct interface end-
correction factor was used in the transfer matrix equation of 
the duct-HR system. This frequency changed to 224 Hz when 
Ji’s model was used to estimate the neck-duct interface end-
correction factor. It can be seen that using different values of 
the neck-duct interface end-correction factor results in differ-
ent estimates of the in-duct net acoustic power transmission 
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and in particular it leads to errors in the estimate of the fre-
quency corresponding to the minimum sound power trans-
mission. Therefore, the transfer matrix method was not con-
sidered a reliable option for analysing the duct-HR system. 

To overcome the limitations of the transfer matrix method 
and the associated uncertainty in the neck-duct interface end-
correction estimate, a numerical analysis of the duct-HR 
system was conducted and this is described in the next sec-
tion. 

NUMERICAL ANALYSIS 

Numerical analysis of the duct-HR system was facilitated by 
using the ANSYS FEA software package. Unlike the theo-
retical analysis in which the end-correction factors have to be 
calculated, ANSYS automatically determines and incorpo-
rates the end-correction factors during its solution phase. It 
will be seen that the effective end-correction factor deter-
mined using ANSYS is different to both theoretical estimates 
described previously and used in the transfer matrix analysis.  

One limitation with numerical analysis is associated with 
difficulty in obtaining an accurate estimate of system damp-
ing to include in the analysis. For the analysis undertaken 
here, the inclusion of damping is discussed following equa-
tion (5). The dimensions of the duct analysed were identical 
to those used for the transfer matrix analysis and are stated in 
the previous section. 

In the ANSYS model, the source end of the duct was mod-
elled as being driven by a piston by applying unit volume 
acceleration (denoted by the label FLOW in ANSYS). The 
other (right) end of the duct was modelled as open and radiat-
ing into free space. This was done by applying the frequency 
dependent complex radiation impedance boundary condition 
for the unflanged open end of a duct (Imaoka 2004). The 
theoretical expression used for the calculation of radiation 
impedance was that of the radiation impedance of an un-
flanged open duct with plane waves propagating inside it, and 
can be found in acoustic text books (Munjal 1987, Kinsler et 
al. 1982): 
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Also, the frequency dependent viscous losses, which occur in 
the neck due to the oscillations of the fluid particles, were 
incorporated in the finite element model in order to model the 
damping in the HR. The estimate of the viscous losses was 
calculated by using the following expression for the resis-
tance of the fluid in the neck (Bies and Hansen 2003): 
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The physical meaning of each term and definitions of each 
variable can be found in Bies and Hansen (2003). 

Figure 3 shows a schematic of a circular duct with an at-
tached cylindrical HR, including the locations of the micro-
phones ‘A’, ‘B’, ‘1’ and ‘2’ used for pressure estimates using 
ANSYS, which correspond to the locations used for the ex-
perimental work. The descriptions of the microphone loca-
tions are listed below. 
• microphone ‘A’ - located at the top of the closed end of 

the cavity, 

• microphone ‘B’ - located at the neck wall at a distance of 
5 mm from the neck-duct interface, 

• microphones ‘1’ and ‘2’ - flush mounted onto the duct 
wall downstream of the HR. Microphone ‘1’ was located 
at a distance of 1.2 m from the mounting location of the 
HR and distance between microphones ‘1’ and ‘2’ was 
0.3 m. 

 
Figure 3. A schematic of the duct-HR system showing pres-

sure measurement locations. 

The sound pressures at these microphone locations were used 
to estimate power transmission in the duct (mic. ‘1’ and mic. 
‘2’) and also the transfer function between locations ‘A’ and 
‘B’ in the resonator, which is discussed in the next section. 
The duct and resonator dimensions used for the numerical 
and experimental analyses are identical to those used for the 
theoretical analysis in the previous section. 

RESULTS 

The experimental setup and procedure was described previ-
ously (Singh, Howard and Hansen 2006) and is not repeated 
here. 

Figure 4 shows the experimental, numerical and theoretical 
results of the in-duct net acoustic power transmission down-
stream of the HR along with the experimental net acoustic 
power in the duct without the HR. The net acoustic power 
transmission in the duct was calculated using the in-duct 
modal decomposition of the sound field by measuring the 
acoustic pressure at the downstream microphones ‘1’ and ‘2’ 
(Chung and Blaser 1980, Åbom 1989). 

The experimental results show a reduction of 18 dB at 226 
Hz in the in-duct net acoustic power transmission as a result 
of mounting the HR onto the duct. A reduction of 22 dB at 
226 Hz and 23.5 dB at 224 Hz was predicted by using 
ANSYS and the transfer matrix model, respectively. 

The transfer matrix estimates of the in-duct net acoustic 
power shown in figure 4 were calculated by using the neck-
duct interface end-correction factor as per Ji’s model (Ji 
2005). As stated earlier, because ANSYS automatically in-
corporates end-corrections based on first principles, the 
ANSYS results are considered more reliable than the transfer 
matrix results. However, the transfer matrix estimates can be 
made to exactly match the ANSYS results in the vicinity of 
the resonance frequency by adjusting the value of the neck-
duct interface end-correction factor to 0.6a. It is likely that 
this relation may change for different duct and resonator 
dimensions. 
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The numerical and theoretical estimates of the net acoustic 
power transmission shown in figure 4 compare favourably 
with the experimental results except at the peaks, at their 
corresponding frequencies of minimum acoustic power (226 
Hz and 224 Hz) and below 120 Hz. The reason for the differ-
ences of numerical and theoretical estimates from the ex-
perimental results at peaks is the inaccuracy in damping es-
timates for the theoretical and numerical models of the duct-
HR system. At 226 Hz the difference is due to an inaccurate 
estimate of the neck-duct interface end correction used in the 
theoretical analysis. Below 120 Hz, the experimental results 
differ from the numerical and theoretical results due to the 
poor quality of the signal generated by the loudspeaker, lead-
ing to significant noise contamination of the signal and sub-
sequent large errors in phase measurements between micro-
phones ‘1’ ans ‘2’, which translates to large errors in the 
power transmission estimates. 

For a stand-alone HR with the same dimensions as the one 
used in the duct-HR system, the resonance frequency meas-
ured in an anechoic chamber was found to be 222 Hz. This 
indicates that the presence of the duct has a significant effect 
on the HR resonance frequency, moving it from 222 Hz to 
226 Hz. 

Also for the same duct-HR system, the experimentally meas-
ured acoustic pressure at the top of the closed end of the cav-
ity (microphone ‘A’) was a maximum at 218 Hz, and the 
amplitude of the pressure transfer function between micro-
phone ‘A’ and microphone ‘B’ was a maximum at 246 Hz. 

It was shown previously (Singh, Howard and Hansen 2006) 
that the dimensions of the HR (cavity length = 70 mm) which 
correspond to the maximum reduction of in-duct net acoustic 
power transmission differs from: 

(1) the dimensions of the HR which correspond to the maxi-
mum acoustic pressure at the top of the closed end of the 
cavity (cavity length = 63 mm), and  

(2) the dimensions of the HR which correspond to the maxi-
mum amplitude of the pressure transfer function between 
microphone ‘A’ and microphone ‘B’ (cavity length = 84 
mm). 

COST FUNCTION 

Previous Cost Function 

The cost function presented in our previous paper (Singh, 
Howard and Hansen 2006) was based on the measured damp-

ing of the duct-HR system and the measured value of the 
phase difference between microphone ‘A’ and microphone 
‘B’ corresponding to the frequency at which the maximum 
reduction of the in-duct net acoustic power transmission was 
measured by microphones ‘1’ and ‘2’. The damping of the 
duct-HR system was measured by using the half-power 
points method on the frequency response curve correspond-
ing to the acoustic pressure at the top of the closed end of the 
cavity of the HR (microphone ‘A’). 

Figure 5 shows a schematic of a typical frequency response 
curve in the vicinity of a system resonance (Tse, Morse and 
Hinkle 1978). The solid circular markers on either side of the 
resonance peak denote the frequencies that correspond to 
half-power points. These half-power points occur at 1/ 2 of 
the maximum response, maxR . 
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Figure 5. Frequency response of a system showing band-
width and half-power points. 

The damping ratio and the corresponding quality factor of a 
system are given by (Tse, Morse and Hinkle 1978): 
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where, Q is the quality factor of the system, ζ is the damping 
ratio of the system, fn is the resonance frequency of the sys-
tem corresponding to the maximum value in the frequency 
response, and f2 and f1 are the frequencies corresponding to 
the half-power points. 

For the case of the duct-HR system, fn is the frequency corre-
sponding to the maximum acoustic pressure at the top of the 
closed end of the cavity (microphone ‘A’). Frequencies f2 and 
f1 correspond to 1/ 2 of the maximum value of the acoustic 
pressure at microphone ‘A’. Figure 6 shows a plot of the 
experimentally measured damping ratios of the duct-HR 
system as a function of the cavity length, using two different 
measurement methods. All the dimensions of the duct-HR 
system were identical to those mentioned earlier except the 
cavity length, which was varied from 60 mm to 170 mm in 5 
mm increments. 

For each cavity length, the corresponding resonance fre-
quency and 3 dB down frequencies were determined. It is 
evident from figure 6, curve (a) that the measurement of the 
damping of the duct-HR system is strongly affected by the 
wave guide and the variation with frequency of the pressure 
at the entrance of the resonator neck. The maximum differ-
ence of 30% in the damping measures as the cavity length 
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Figure 4. Experimental, numerical and theoretical results for 
the net acoustic power transmission in the duct with and 

without the HR, as a function of frequency. 
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varies from 90 mm to 130 mm is an artefact of the measure-
ment procedure rather than a real phenomenon. It is a result 
of the strong variation as a function of frequency of the 
acoustic pressure standing wave in the duct, resulting in a 
strong variation in the pressure at the entry to the resonator as 
a function of frequency. This results in a distortion of the 
frequency response curve. Thus, it is desirable to normalise 
the cavity pressure measurement with a measure of the 
acoustic pressure at the entrance to the resonator by taking a 
transfer function where the pressure at location A is divided 
by that measured at location B. This gives a much more con-
sistent and accurate measure of the critical damping ratio as 
illustrated in Figure 6, curve (b). 
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Figure 6. Experimental measures of the damping ratio of the 
duct-HR system estimated using the half-power point band-

width method as a function of the cavity length, using: 
(a) acoustic pressure measured at location A (Figure 3) 
(b) pressure at location A divided by that at location B.   

Measuring the damping (or the quality factor) of a system by 
using the half-power points method requires a system to be 
excited by a band limited noise signal so that information at 
the band of frequencies bounding the resonance or maximum 
response is available. Considering the practical case of a 
duct-HR system, where a centrifugal fan or a blower is in-
stalled at one end of the exhaust duct, noise is often generated 
at the fan blade passage frequency (BPF), and is tonal in 
nature. The signals at all the other frequencies can either be 
spurious or meaningless. Hence, estimating the damping (or 
quality factor) of such a system by using the half-power 
points method would involve some kind of provision to in-
troduce a broadband signal in the duct, which seems unrealis-
tic from the practical point of view. Thus, an alternative 
method for estimating the critical damping ratio or quality 
factor is needed 

New Cost Function 

Approximating Damping at a Single Frequency 

Figure 5 shows that the height of the resonance peak is a 
function of damping in a system. This may be quantified by 
reference to a single degree-of-freedom (SDOF), spring-
mass-damper, system. The equation which represents a 
SDOF system is given by: 

)(
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where M, K and C denote the mass, stiffness and damping of 
the system, x is the harmonic displacement of the mass result-
ing from the application of the forcing function, F(t). For 

harmonic excitation of the system, the forcing function F(t) = 
F Sin (ωt), and equation (8) becomes: 
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A solution to equation (9) is given by 

)(Sin  φω −= tXx  (10) 

where X and φ  are the amplitude and phase of the frequency 
response, respectively, and ω  is the driving (or excitation) 
frequency. The value of X can be obtained by substituting 
equation (10) in equation (9) and is given by (Tse, Morse and 
Hinkle 1978) as: 
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Rewriting equation (11) with slight manipulation gives: 
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where nn fπω 2=  and fn is the natural circular frequency of 

the system and ζ  is called the damping ratio and 
KF

X
/

is 

the amplification factor of the system, denoted by R in figure 
5. The amplification factor is a maximum when the excitation 
frequency equals the natural frequency of the system so that: 

QR
KF

X
===

ζ2
1

/ max  (14) 

If the pressure at the input to the resonator neck is considered 
to be the forcing function and the pressure in the cavity is the 
response, then the left side of Equation (14) may be repre-
sented as the ratio of the two or the transfer function. This 
demonstrates that the transfer function between the acoustic 
pressure in the resonator cavity and the pressure at the en-
trance to the neck can be used to estimate the quality factor of 
the resonator duct system. The next step is to find the maxi-
mum value of the frequency response function given that 
only a fixed excitation frequency is available. This is done by 
varying the cavity depth until the maximum transfer function 
value is obtained.  

Figure 4 shows that for a particular geometry of the duct-HR 
system considered here, the maximum reduction of in-duct 
net acoustic power transmission downstream of the resonator 
occurred at 226 Hz. Considering tonal noise propagation at 
226 Hz in a duct which needs to be controlled by using a self-
contained HR, or by measuring the acoustic pressure at mi-
crophones 'A' and 'B', it would be convenient from the practi-
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cal point of view to approximate the damping (or the quality 
factor) of such a duct-HR system at 226 Hz only. 

Figure 7 shows experimental measurements of the amplitude 
of the pressure transfer function between microphone ‘A’ and 
microphone ‘B’ corresponding to 226 Hz as a function of the 
cavity length of the HR. The maximum amplitude of the 
pressure transfer function is 56 and it occurs at a cavity 
length of 84 mm. 
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Figure 7. Experimental measurements of the ratio of pres-

sures at microphone 'A' and microphone 'B' at a frequency of 
226 Hz, as a function of the HR cavity length. The vertical 
line at 70 mm corresponds to the cavity length required for 

the maximum reduction of acoustic power transmission in the 
duct at 226 Hz. 

The vertical line at a cavity length of 70 mm corresponds to 
the minimum acoustic power transmission in the duct and 
indicates that the maximum value of the transfer function is 
in itself not a suitable cost function for an active noise control 
system to minimise the transmitted in-duct acoustic power. 
As will be shown later, this conclusion applies whether or not 
there is damping in the system. 

As a check on the validity of Equation (14) for estimating the 
quality factor, the experimental measure of the ratio of pres-
sures at microphone ‘A’ and microphone ‘B’ corresponding 
to the cavity length of 84 mm is plotted as a function of fre-
quency in figure 8. The maximum value of the pressure ratio 
occurring at 226 Hz equals 56 which approximately corre-
sponds to the quality factor of the HR. For verification pur-
poses, the quality factor for the same duct-HR system was 
also estimated by using the half-power point bandwidth 
scheme, and was found to be equal to 57. 

For further verification, the quality factors of different HRs 
obtained by varying the neck diameter and cavity length were 
measured using the height of the frequency response and 
estimated by using the half-power point bandwidth method, 
with the results shown in figure 9. The excellent agreement 
indicates that estimating the quality factor of a HR by using 
the maximum value of pressure ratio (mic ‘A’/ mic ‘B’) for a 
fixed frequency as the cavity volume is varied is a valid 
method more convenient as compared to the half-power point 
bandwidth method. 

Considering that pressure measurements at locations ‘A’ and 
‘B’ are available at one frequency only at which the noise 
needs to be controlled, and there is provision to change the 
length of the cavity (necessary for the system to be adaptive), 
approximating the quality factor of the duct-HR system using 

the ratio of the two measured pressures as a function of cav-
ity length proved to be a very practical approach. 
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Figure 8. Experimental measure of the ratio of pressures at 

microphone 'A' and microphone 'B' corresponding to a cavity 
length of 84 mm, as a function of frequency. The vertical line 

at 226 Hz corresponds to the maximum pressure ratio. 
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Figure 9. Quality factors of different HRs obtained by using 
2 different methods: (1) by measuring the maximum pressure 
ratio of microphone ‘A’ to microphone ‘B’, and (2) by using 

the half-power point bandwidth method. 

To develop a cost function for minimising tonal noise trans-
mission in the duct by utilising the pressure measurements 
only in the resonator (microphone ‘A’ and ‘B’), experiments 
were conducted with varying dimensions of the HR. The 
cavity diameter and neck length throughout the experiments 
were kept constant and three different neck diameters (0.0405 
m, 0.0525 m and 0.0675 m) were tested. For each different 
neck diameter, the cavity length was varied between 0.050 m 
and 0.170 m corresponding to a volume variation of 
6.74x10−4m3 to 2.29x10−3 m3. 

Step-by-Step Method for Developing the Cost Function 

The steps which were taken to develop the cost function are 
detailed below: 
1. For each configuration of the HR, the in-duct net acoustic 

power transmission downstream of the resonator was 
measured by using microphones ‘1’ and ‘2’. Correspond-
ing to each configuration of the HR, all the frequencies 
which achieved the maximum reduction of in-duct net 
acoustic power transmission were recorded. For the 
tested range of the dimensions of the HRs, these frequen-
cies varied from 120 to 270 Hz. 
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2. For each configuration of the HR, the value of the phase 
difference between microphone ‘A’ and microphone ‘B’ 
corresponding to the frequency at which the maximum 
reduction of in-duct net acoustic power transmission, was 
noted. 

3. For frequencies at approximately 5 Hz increments 
throughout the frequency range stated in step 1 (corre-
sponding to the maximum in-duct net acoustic power re-
duction), the response curve of the ratio of the pressure 
measurements at microphone ‘A’ and microphone ‘B’ 
(microphone ‘A’/microphone ‘B’) was plotted as a func-
tion of the cavity length. The corresponding quality factor 
the HR was then approximated by using the height of the 
response curve, as shown in figure 7. 

4. All the values of experimentally measured quality factors 
of the duct-HR system and the phase differences between 
microphone ‘A’ and microphone ‘B’ were plotted and 
shown in figure 10. 

20 25 30 35 40 45 50 55 60 65
−11

−10

−9

−8

−7

−6

−5

−4

quality factor

ph
as

e 
(d

eg
re

es
)

neck dia. = 0.0405 m
neck dia. = 0.0525 m
neck dia. = 0.0675 m
curve−fit

 
Figure 10. Quality factor vs phase difference corresponding 
to the frequency at which the maximum reduction of in-duct 
acoustic power transmission occurs, for three different HR 

neck sizes. 
5. An empirical curve fitting relation between the phase 

difference and the quality factor was found, using a sec-
ond order polynomial (with a correlation coefficient of 
0.87), and is given by: 

phase difference = -0.0033 (quality factor)2 + 0.4072 
(quality factor) - 17.62 (15) 

Equation (15) is a cost function that can be used by an elec-
tronic controller to optimally tune the HR for minimising the 
acoustic power transmission in the duct downstream of the 
resonator. The controller would adjust the resonator cavity 
length until the phase difference between signals from micro-
phones ‘A’ and ‘B’ matched the phase difference in figure 
10, which corresponds to the measured quality factor. As 
stated previously, the quality factor is determined by adjust-
ing the cavity length until a peak in the A/B transfer function 
is obtained, and then it is equal to that peak value.  

With a view to reduce the scatter in the data in figure 10, 
attempts were made to normalise the data by multiplying the 
quality factor by a combination of the duct-HR system pa-
rameters. The parameters included neck diameter, duct di-
ameter, cavity length and the frequency of maximum reduc-
tion of the in-duct net acoustic power transmission. The pa-
rameters were arranged so as to yield a non-dimensional term 
on the abscissa. The values of the phase difference presented 
in figure 10 were plotted as a function of the modified quality 
factor, which was obtained by multiplying the actual quality 
factor by the non-dimensional term as described above. As 
the results did not show any appreciable reduction in scatter 

over the results presented in figure 10, they are not included 
here. It should be noted that the maximum scatter in figure 10 
is about 1.3 degrees from the curve of best fit. This means 
that in many cases there will be a phase error associated with 
using the curve of best fit as the cost function. For a 1.3 de-
gree error, the approximate compromise in the reduction in 
sound power transmission is 3 dB which is acceptable as the 
total reduction can range from 15 to 25 dB. 

The cost function given by equation (15) is only valid for the 
dimensions of the duct-HRs that were covered in this study. 
Until now, all of the different HRs have been mounted on a 
single duct of diameter 0.1555 m. Although a finite element 
model of the duct-HR system was developed, obtaining a cost 
function for a wide range of dimensions of the duct-HR sys-
tem was not possible. This is because accurate estimation of 
damping in the finite element model is a problem for systems 
for which no measurements are available. 

Practical Implementation of the Cost Function 

The steps involved in utilising the developed cost function to 
minimise the tonal in-duct net acoustic power transmission 
are detailed below: 
1. The length of the cavity is varied until the ratio of pres-

sures at microphone ‘A’ and microphone ‘B’ (micro-
phone ‘A’/microphone ‘B’) reaches its maximum value at 
the frequency of tonal noise that is to be controlled. 

2. The quality factor of the HR is then estimated by using 
the maximum value of the pressure ratio of microphone 
‘A’ and microphone ‘B’. 

3. The measured/estimated quality factor is substituted into 
equation (15) to calculate a value of the optimal phase 
difference between microphone ‘A’ and microphone ‘B’. 
This calculated phase difference will approximately cor-
respond to the optimum length of the cavity required to 
minimise the in-duct net acoustic power transmission. 

4. Finally, the length of the cavity is tuned until the calcu-
lated phase difference is reached. 

Demonstration 

Figure 11 shows the experimentally measured normalised net 
acoustic power transmission in the duct at 226 Hz as a func-
tion of cavity length, for several cost functions. The markers 
indicate the length of the cavity which corresponds to the: 

* maximum value of the acoustic pressure at the top of the 
closed end of the cavity (microphone ‘A’) - (labelled 'maxi-
mum pressure in cavity'), 

* maximum value of the amplitude of the pressure transfer 
function between microphone ‘A’ and microphone ‘B’ - (la-
belled 'maximum transfer function'), 

* value of the phase difference, calculated by using equation 
(8), needed to be achieved by varying the cavity length for 
minimising the net acoustic power transmission in the duct 
downstream of the HR - (labelled 'new cost function'), and 

* minimum acoustic power measured by mounting two mi-
crophones in the duct downstream of the HR - (labelled 'ac-
tual minimum power'). 

Figure 11 shows that in order to achieve the maximum reduc-
tion of the acoustic power transmission in the duct, the ‘new 
cost function’ gives the best possible cavity length when 
compared to the two alternative cost functions. 
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Figure 11. Net acoustic power transmission in the duct 

downstream of the HR at a frequency of 226 Hz, as a func-
tion of cavity length, with markers indicating the acoustic 

power level for various cost functions. 

A similar figure to figure 11 was constructed using an 
ANSYS analysis for the same system with no damping, to 
demonstrate the effect of damping on the cost functions and 
the importance of estimating the damping or quality factor 
accurately. 

The results are shown in figure 12 where it can be seen that 
both the new cost function and the maximum value of the 
pressure transfer function correspond to cavity lengths that 
are very much different to the one corresponding to the 
minimum in-duct acoustic power transmission. 

CONCLUSIONS 

A new cost function for minimising the in-duct net acoustic 
power transmission downstream of the HR has been devel-
oped. The new cost function relates the quality factor of the 
HR to the phase difference between the pressure measure-
ments inside the resonator, which corresponds to the mini-
mum in-duct sound power transmission. The duct-HR system 
quality factor was estimated using pressure measurements in 
the resonator at only a single frequency at which noise needs 
to be attenuated. 
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Figure 12. Net acoustic power in the duct downstream of the 

HR corresponding to 226 Hz estimated by using ANSYS 
modelling with no damping; markers indicating the acoustic 

power level for various cost functions. 
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