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ABSTRACT 

This paper presents the optimization of the location and feedback gains of active bar in a closed loop control system 
for stochastic piezoelectric smart truss structures under stationary random excitation. The mathematical model with 
reliability constraints on the mean square value of the structural random dynamic displacement and stress response is 
developed based on maximization of dissipation energy due to the control action. The randomness of the structural 
physical materials and geometric dimensions are included in the analysis, and the applied forces are considered as 
stationary random excitation. The numerical characteristic of the stationary random responses of stochastic piezoelec-
tric smart structures is developed by the random factor method. Numerical examples of piezoelectric truss structures 
are presented to demonstrate the rationality and validity of the active control model. 

INTRODUCTION 

The field of smart or intelligent structures has raised much 
interest over the past decade (Diwekar and Yedavalli 1996; 
Chopra 2000; Hurlebaus and Gaul 2006). Unlike the conven-
tional engineering structures which are passive, smart struc-
tures has the ability to perform self-diagnosis and adapt to the 
environment change. A piezoelectric (PZT) smart truss struc-
ture is used in spacecraft deployable antenna, large antennas, 
and other important large-scale truss structures, in which the 
PZT active bar can be used as both an actuator for vibration 
excitation, and sensor for vibration measurement. Optimal 
placement of the PZT active bar is an important factor in the 
process of the structural design phase, and its shape and vi-
bration control. The location of active bars in the smart truss 
structure directly affects the validity of active vibration con-
trol. 

Recently, there has been much work published on the optimi-
zation of smart structures. Suk et al. (2001) introduced the 
Lyapunov control law for the slew maneuver of a flexible 
space structure by using a time-domain finite element analy-
sis. To optimize the gain set of the control system, an energy-
based performance index was adopted, and the gradients of 
the performance index with respect to each gain were de-
rived. Quek et al. (2003) proposed a simple optimal place-
ment strategy of piezoelectric sensor/actuator pairs for vibra-
tion control of laminated composite plate, where the active 
damping effect under a classical control framework is maxi-
mized using the finite element approach. Chen and Lin 
(2005) proposed a systematic method based on the imped-
ance technique to determine the optimal locations and shapes 
of multiple induced strain actuators bonded on a host struc-
ture in respect of the smallest power consumption. Peng et al. 
(2005) proposed a performance criterion for the optimization 
of piezoelectric patch actuator locations on flexible plate 
structures based on maximizing the controllability grammian, 
and the Genetic Algorithm was used to implement the opti-
mization. To date, the majority of modelling on optimization 
of active vibration control using piezoelectric smart struc-
tures has used deterministic models to model the dynamic 
response of smart structures, and optimal placement of the 
PZT actuators and sensors. In these cases, the structural pa-
rameters, applied loads and control forces are regarded as 
known parameters. However, deterministic models of the 

dynamic response associated with smart structures cannot 
reflect the influence of the randomness of the structural pa-
rameters. The dynamic response of an engineering structure 
can be sensitive to randomness in its parameters arising from 
variability in its geometric or material parameters, or ran-
domness resulting from the assembly process and manufac-
turing tolerances. In addition, applied loads can be random 
process forces, such as wind, earthquakes and blast shock. 
The problem of stochastic smart structures subject to random 
applied excitation is of great significance in realistic engi-
neering applications. 

The dynamic response analysis of a closed loop control sys-
tem for an intelligent structure is an important segment in the 
process of its design and vibration control. It is only in recent 
years that the dynamic response of stochastic structures under 
random excitation has received research attention. Zhao and 
Chen (2000) studied vibration of structures with random 
parameters to random excitation using Neumann stochastic 
finite element method (SFEM). Li and Liao (2002) investi-
gated the use of the orthogonal expansion method with the 
pseudo excitation method for analysing the dynamic response 
of structures with uncertain parameters under external ran-
dom excitation. Ma et al. (2004) solved the evolutionary 
earthquake response problem of an uncertain structure with 
bounded random parameters by a unified approach. Li and 
Chen (2005) proposed a new method based on probability 
density evolution method to construct the probability density 
evolution equation and obtain the numerical characteristics of 
random structural dynamic response. 

In this paper, optimization of the location of the active bar 
and feedback gain in stochastic piezoelectric truss structures 
are investigated. The randomness of the structural materials 
and geometric dimensions are simultaneously considered. 
The applied force is taken as a stationary random excitation. 
Numerical expressions for the mean values and standard 
deviations of the natural frequencies and modeshapes, and 
displacement and stress responses of a piezoelectric truss 
structure are obtained. The performance function due to the 
control action is based on maximization of the dissipation 
energy. To formulate the optimal control problem, the algo-
rithm for a linear quadratic regulator with output feedback 
has been employed in this paper. An optimal mathematical 
model with reliability constraints on the mean square value of 
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structural dynamic displacement and stress response is devel-
oped. Numerical examples of stochastic piezoelectric truss 
structures are presented to demonstrate the rationality and 
validity of the active control model. 

OPTIMAL MATHEMATICAL MODEL 

Suppose that there are m elements and n degree of freedom 
in the piezoelectric smart structure under consideration, the 
equation of motion of the structure is given by 

[ ]{ } [ ]{ } [ ]{ } }{ [ ] }{ )()()()()( tFBtFtuKtuCtuM C+=++ &&&  (1) 

where [ ]M , [ ]C  and [ ]K  are the mass, damping and stiffness 
matrices respectively. { })(tu , { })(tu&  and { })(tu&&  are dis-
placement, velocity and acceleration vectors respectively. 

}{ )(tF  is the load force vector generating the primary excita-
tion. }{ )(tFC  is the control force vector. The matrix [ ]B  de-
fines the location of the active bar on the smart structure 
under consideration. In the following analysis, the Wilson’s 
damping hypothesis (Bathe 1995) is adopted. Using the mo-
dal expansion { } [ ]{ })()( tztu φ= , the equation of motion takes 
the form 

[ ]{ } [ ]{ } [ ]{ } [ ] }{ [ ] [ ] }{ )()()( )( )( tFBtFtztzDtzI C
TT φφ +=Ω++ &&&  (2) 

where [ ] [ ]jjdiagD ωζ2= , [ ] [ ]2
jdiag ω=Ω  for nj K1= . 

[ ] [ ]nφφφ L1=  is the normal modal matrix of the structure, 
and jω , jζ  are the jth order natural frequency and damping 
ratio respectively.  

For active control of the truss bar, a velocity feedback control 
law is considered. Since each active bar can be considered as 
a collocated actuator/sensor pair, the output matrix is the 
transpose of the input matrix. The output vector )(tY  and 
control force vector }{ )(tFC  can be respectively expressed as 

[ ] [ ] }{ )()( tzBtY T &φ=  (3) 

} [ ] [ ][ ]{ [ ] }{ )()()( tzBGtYGtF T
C &φ−=−=  (4) 

where [ ] { }jgdiagG =  is the gain matrix (Gao et al. 2003). 
Substituting equation (4) into equation (2) yields the equation 
of the closed-loop system 

[ ]{ } [ ] [ ] [ ][ ][ ] [ ] { } [ ]{ } [ ] }{ )()( )()BG B()( T tFtztzDtzI TT φφφ =Ω+++ &&&

 (5) 

In the state-space representation, the equation of motion for 
the closed-loop system becomes 

}{ [ ] }{ )()( tuAtu =&  (6) 

}{ }{ Ttztztu )()()( &=  (7) 
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Both the optimal location of the active bar, and the optimal 
gain of the closed-loop control system are determined such 
that the total energy dissipated in the system is maximized. 
The total energy dissipated in the system is taken as the per-
formance and it can be expressed as 

}{ [ ] [ ] [ ][ ][ ] [ ] }{ dttzBGBDtzJ TTT )()()(
0

&& φφ += ∫
∞  (9) 

The equation (9) can also be expressed as (Abdullah 1998) 

}{ [ ] [ ] [ ] }{ )0()0(
0

udteQeuJ tAtAT T

∫
∞

=  (10) 

where [ ] [ ]
[ ]⎥⎦

⎤
⎢
⎣

⎡ Ω
=

I
Q

0
0

. The performance function can be 

expressed as (Abdullah 1998) 

[ ]WtrJ =   (11) 

where the matrix [ ]W  can be obtained by solving the 
Lyapunov equation 

[ ] [ ] [ ][ ] [ ]QAWWA T =+   (12) 

For the smart truss structure with random parameters, and 
where the load is a stationary random excitation, an optimiza-
tion program is written with reliability constraints that im-
plements the following steps. For a fixed gain ( jgg = ), the 

optimal location of the active bar (that is, the optimal [ ]B  
matrix) is obtained such that the total energy dissipated J is 
maximized. After the optimal placement of the active bar is 
determined, the feedback gain is then optimized. This is 
achieved by calculating the mean square displacement for 
each kth degree of freedom and mean square dynamic stress 
for each eth element. Reliability constraints are placed on the 
mean square displacement and stress respectively as follows 
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[ ]B  and [ ]G  are the design variables. *
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e
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given values of reliability of the mean square stress and dis-
placement responses, respectively. Pr{·} is the reliability 
obtained from the actual calculation. ∗2

eσψ  and ∗2
ukψ  are given 

limit values of the mean square stress and displacement re-
sponses, respectively. In this model, [ ]B , [ ]G , *
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e

R
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Pr{·}, ∗2
eσψ and ∗2

ukψ  can be random variables or deterministic 

values. 2
eσψ  and 2

ukψ  are the mean square dynamic stress of 
the eth element, and displacement of the kth degree of free-
dom, respectively. [ ]*B  and [ ]*G  are the upper bounds of 
[ ]B  and [ ]G  respectively.  

In above model, the dynamic stress and response constraints 
are expressed by the probability form, which make the opti-
mal problem difficult to solve. For this reason, the reliability 
constraints are transformed into normal constraints by means 
of the second order moment theory on the reliability (Chen 
and Duan 1994). Hence, the reliability constraints equation 
(13) and (14) can be respectively expressed as  
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where )( 22
1* ∗−Φ=

ee
R

σσ ψψ
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ukuk

R
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β  are the given 

reliability of the mean square value of the stress and dis-
placement of the kth degree of freedom, respectively. )(1 ⋅Φ −  
denotes the inverse function of the normal distribution of 
random variables. ∗2

eσψ
µ  and 2

2 ∗
eσψ

σ  are the limit values for the 

mean value and variance of the mean square stress of the eth 
element ∗2

eσψ , respectively. ∗2
ukψ

µ  and 2
2 ∗
ukψ

σ  are the limit 

values for the mean value and variance of the mean square 
displacement of the kth degree of freedom ∗2

ukψ , respectively. 

2
eσψ

µ  and 2
2
eσψ

σ  are the mean value and variance of the mean 

square dynamic stress of the eth element, respectively. 2
ukψ

µ  

and 2
2
ukψ

σ  are the mean value and variance of the mean square 

displacement of the kth degree of freedom, respectively.  

STRUCTURAL STATIONARY RANDOM 
RESPONSE 

In the structure, any element can be taken as either a passive 
or active bar, where a piezoelectric bar is used as the active 
bar. The stiffness matrix and the mass matrix of the smart 
truss structures in global coordinates can be expressed as 
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where θ  is a Boolean algebra value defined by the follow-
ing: when θ =0, the mixed element is a piezoelectric active 
element bar; when θ =1, the mixed element is a passive ele-
ment bar. [ ]eK  and [ ]eM  are the stiffness matrix and mass 

matrix of the eth element, respectively. eρ , eA  and el  are 
the density, cross-sectional area and length respectively of 
the eth passive bar element. C

eρ , C
eA  and C

el  are the density, 
cross-sectional area and length respectively of the eth active 
bar element. eE  is the Young’s modulus of the eth passive 
bar element. ec33 , ee33  and e33ε  are the Young’s modulus, 
piezoelectric force/electrical constant and dielectric constant 
respectively of the eth active bar element (Gao et al. 2004). 
[ ]I  is a 6th order identity matrix, and [ ]G  is a 66 ×  matrix. 

[ ]eT  is the transformation matrix and [ ]TeT is its transpose 

(Gao 2006). C
eE  is the generalized elastic modulus of the 

piezoelectric active bar which considers the mechanic-
electronic coupling effect, and is given by 

eee
C
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Substituting the equation (20) into equation (18) yields 
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In the closed loop control system, since the control force 
}{ )(tFC  is determined by the applied force }{ )(tF , the con-

trol force is a random force vector, and these two variables 
have full positive correlation. Let 

}{ }{ [ ] }{ )()()( tFBtFtP C+=  (22) 

Equation (1) can be re-written as 

[ ]{ } [ ]{ } [ ]{ } }{ )()()()( tPtuKtuCtuM =++ &&&  (23) 

Its formal solution can be obtained in terms of the decoupling 
transform and Duhamel integral (Gao et al. 2005), that is 
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where [ ])(th  is the impulse response function matrix of the 
structure, and can be expressed as 
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where 212 )1( jjjd ζωω −= . From equation (24), the correla-
tion function matrix of the displacement response of the 
structure can be obtained 

[ ] }{ }{ ))()(()( T
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where [ ])(τuR  is the correlation function matrix of the dis-
placement response of the structure, [ ])( 21 τττ +−PR  is the 
correlation function matrix of }{ )(tP . By performing a Fou-
rier transformation to [ ])(τuR , the power spectral density 
matrix of the displacement response [ ])(ωuS  can be obtained 
as follows 

[ ] [ ][ ][ ] [ ][ ][ ][ ]T
P

T
u HSHS φωφωφωφω )()()()( ∗=  (28) 

where [ ])(ωPS  is the power spectral density matrix of 

}{ )(tP . [ ])(ω∗H  is the conjugate matrix of [ ])(ωH , where 
[ ])(ωH  is the frequency response function matrix of the 

structure, and can be expressed as 

[ ] [ ])()( ωω jHdiagH =  (29) 
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where 1−=i  is the complex number. Integrating [ ])(ωuS  
within the frequency domain, the mean square value matrix 
of structural displacement response [ ]2

uψ  can be obtained as 

[ ] [ ] [ ][ ][ ] [ ][ ][ ][ ]∫∫
∞

∞−

∗
∞

∞−

== ωφωφωφωφωωψ dHSHdS T
P

T
uu )()()()(2

 (31) 



20-22 November 2006, Christchurch, New Zealand Proceedings of ACOUSTICS 2006 

52 Acoustics 2006 

The mean square displacement of the kth degree of freedom 
becomes 
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where kφ
r

 is the kth line vector of the modal matrix [ ]φ . Using 
the relationship between node displacement and element 
stress, the stress response of the eth element in the truss struc-
ture can be expressed as 

}{ [ ] }{ )()( 1 tuBEt eee =σ  me ...,,2,1=  (33) 

where }{ )(tue  is the displacements of the nodal points of the 
eth element, [ ]1B is the element’s strain matrix. From equation 
(33), the correlation function matrix of the eth element stress 
response [ ])(τσeR  can be obtained by 
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T
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Furthermore, the power spectral density matrix of the stress 
response of the eth element [ ])(ωσeS  can be obtained 

[ ] [ ][ ][ ] e
T

ueee EBSBES 11 )()( ωωσ =  (35) 

Finally, the mean square value matrix of the eth element stress 
response [ ]2

eσψ  becomes 
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T
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2

1
2 ψψσ =  (36) 

NUMERICAL CHARACTERISTICS OF 
STOCHASTIC STRUCTURAL STATIONARY 
RANDOM RESPONSE 

Structural dynamic characteristics analysis using 
random factor method (Gao et al. 2005) 

The following parameters corresponding to eρ , eA , el , eE , 
C
eρ , C

eA , C
el  and ec33  are simultaneously considered as ran-

dom variables. From equation (20), it can be easily observed 
that C

eE  is a random variable. The randomness of physical 
parameters and geometrical dimensions will result in ran-
domness of the matrices [ ]K  and [ ]M , and consequently the 
natural frequencies jω  and natural modal matrix [ ]φ . In this 

paper, symbols Xµ , Xσ  and Xν denote the mean value, stan-
dard deviation and variation coefficient (the ratio of the stan-
dard deviation to the mean value) of the random variable X , 
respectively. In the following, the computing expression of 
the mean value and standard deviation of jth order natural 
frequency can be respectively deduced by means of the alge-
bra synthesis method 
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where jω  can be obtained by the structural conventional 
dynamic characteristic analysis for deterministic structures. 

Likewise, the randomness of each element ( ijφ ) of modal 
matrix can be expressed as  
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The deterministic values of natural modal shape and modal 
matrix can be obtained by means of the conventional dy-
namic analysis method. 

Numerical characteristics of the structural station-
ary random response 

The randomness of the structural natural frequencies, 
modeshapes and excitations will result in randomness in the 
structural dynamic responses of the closed loop control sys-
tem, corresponding to the dynamic displacement and stress.  

From equation (32), by means of the random variable’s func-
tional moment method (Gao et al. 2005), the mean value 

2
ukψ

µ  and standard deviation 2
ukψ

σ  of the mean square dis-

placement for the kth degree of freedom can be obtained as 
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From equation (36), and by means of the algebra synthesis 
method, expressions for the numerical characteristics of the 
mean square stress for the eth element are obtained as  
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Figure 1. 25-bar space piezoelectric truss structure (units: m) 
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where [ ]2
eσψ

µ  and [ ]2
eσψ

σ  are the mean value and standard de-

viation of the mean square stress for the eth element respec-
tively. 

EXAMPLE 

To illustrate the method, a 25-bar space piezoelectric smart 
truss structure shown in Figure 1 is used as an example. The 
material properties of the active and passive bars are given in 
Table 1. A ground level acceleration along with the positive 
direction of Y-axis acts on the structure, is a Gauss stationary 
random process and its mean value is zero. Its self-power 
spectral density can be expressed as (Gao et al. 2005) 

02222

2

)(4)1(
)(41

)( SS
ggg

gg
FF ωωξωω

ωωξ
ω

+−

+
=  (46) 

where 5.16=gω , 7.0=gξ , 2.190 =S  cm2/s3.  

In order to solve the optimal problem, two steps are adopted 
(Gao et al. 2003). In the first step, the reliability constraints 
of dynamic stress and displacement are neglected, and the 
feedback gains are kept constant. Then, each element bar is 
taken as an active bar in turn and the corresponding perform-
ance function value is calculated. Based on the computational 
results for the dissipated energy, the optimal location of the 
active bar can be determined. In the second step, after the 
optimal placement of the active bar is obtained, the reliability 
constraints are imposed, and the optimization of feedback 
gain, that is, minimization of feedback gain will be devel-
oped. 

Optimal placement of the active bar 

For the first step, and letting the closed loop control system 
feedback gains be 100== jgg , each element bar is taken as 
active bar in turn; the corresponding performance function 
value is given in Table 2. 

From Table 2, it can be seen that if the sixteenth or twentieth 
element is used as the active bar, the active control perform-

ance of the smart truss structure is the best. The effect of 
active vibration control of the smart truss structure is the 
worst if the first element is used as the active bar. 

Table 1. Physical parameters of the smart truss structure 
Mean value Active bar 

 (PZT-4) 
Passive bar 

(steel) 
mass density (kg/m3) 7600  7800 

Young’s modulus (N/m2) 8.807 × 1010  2.1 × 1011 

e33 (C/m2) 18.62  — 
33ε  (C/Vm) 5.92 × 10-9  — 

cross section area (m2) 3.0 × 10-4  3.0 × 10-4 

Table 2. Computational results of the performance function 
Element  

(node-node) 
1(1-2) 2(1-3) 3(1-4) 4(1-5) 5(1-6) 

Value of J 96.86 118.70 115.67 135.58 132.12 
Element  

(node-node) 
6(2-3) 7(2-4) 8(2-5) 9(2-6) 10 

(3-4) 
Value of J 137.33 129.88 126.55 122.31 141.26 
Element  

(node-node) 
11 

(4-5) 
12 

(5-6) 
13 

(6-3) 
14 

(7-3) 
15 

(7-4) 
Value of J 147.54 141.26 147.54 169.97 189.31 
Element  

(node-node) 
16 

(7-6) 
17 

(8-3) 
18 

(8-4) 
19 

(8-5) 
20 

(9-4) 
Value of J 196.28 176.49 163.22 182.65 196.28 
Element  

(node-node) 
21 

(9-5) 
22 

(9-6) 
23 

(10-5) 
24 

(10-6) 
25 

(10-3) 
Value of J 169.97 189.31 176.49 163.22 182.65 

Optimization of the feedback gain 

In order to assess the control performance with the reliability 
constraints imposed and optimization of the feedback gain, 
the control results using the 16th and 1st elements as the 
active bar respectively are compared. The structural parame-
ters (material properties and geometric dimensions) and the 
limit values of the mean square stress and displacement, ∗2

eσψ  

and ∗2
ukψ , are all taken to be random variables, where 

2800
2

=∗
eσψ

µ MPa2, 000.4
2

=∗
ukψ

µ mm2 and ∗
2
e

R
σψ

= ∗
2
uk

R
ψ

=0.95. 

Values from both deterministic and random models were 
obtained. In the deterministic model (DM), the mean values 
of the random variables are unity, and their standard devia-
tions are zero. The optimal results for the feedback gains, and 
the mean displacement and stress responses are respectively 
given in Table 3 and Table 4. Results for two random models 
are presented, in which the variation coefficients of all ran-
dom variables is equal to 0.05 in the first random model (1st 
RM), and 0.1 in the second random model (2nd RM). In addi-
tion, in order to verify our method, stationary random re-

Table 3. Computational results of the feedback gains 
(*dynamic analysis by the MCSM) 

 16th element used as the active bar 
Design  

variables 
Original 

value 
DM 1st RM 2nd RM 

G 50 89.26 117.55 136.91 
*G   *117.56 *136.93 

2
eσψ

µ  3744.9 2799.8 2144.4 1802.6 
*

2
eσψ

µ    *2145.2 *1803.7 

2
ukψ

µ  5.3694 3.9982 3.0506 2.4969 
*

2
ukψ

µ    *3.0509 *2.4974 

2
e

R
σψ

  0.50 0.95 0.95 

2
uk

R
ψ

  0.52 0.97 0.97 
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sponses obtained using the Monte-Carlo simulation method 
(MCSM) are also presented in Table 3 and Table 4. 

Table 4. Computational results of the feedback gains 
(*dynamic analysis by the MCSM) 

 1st element used as the active bar 
Design  

variables 
Original 

value 
DM 1st RM 2nd RM 

G 50 97.11 135.79 162.98 
*G   *135.83 *163.09 

2
eσψ

µ  4007.2 2799.9 2144.5 1802.9 
*

2
eσψ

µ    *2145.7 *1804.5 

2
ukψ

µ  5.7455 3.9984 3.0510 2.4971 
*

2
ukψ

µ    *3.0517 *2.4982 

2
e

R
σψ

  0.50 0.95 0.95 

2
uk

R
ψ

  0.52 0.97 0.97 

From Table 3 and Table 4, it can be seen easily that the opti-
mal results of the feedback gains obtained by the method 
proposed in this paper is in good agreement with that of the 
random structural stationary random responses analyzed by 
the Monte Carlo simulation method, by which the validity of 
our method is verified. The optimal results of the determinis-
tic and random models are different, and the optimal value of 
feedback gain increases when the randomness of the struc-
tural parameters increases. The results show that the areas of 
the truss structure where the most energy is stored are the 
optimal location of an active bar in order to maximize its 
damping effect. 

CONCLUSIONS 

Energy dissipation in a piezoelectric smart truss structure has 
been maximized in order to determine the optimal location of 
a single piezoelectric active element. Results show that the 
effectiveness of using the active element is strongly depend-
ent on its location in the truss structure. The effect of ran-
domness of the structural parameters corresponding to the 
material properties and geometric dimensions on the feed-
back gain was also examined. 
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