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ABSTRACT 

A theoretical model is developed to predict the transmission loss of a clamped rectangular plate with an array of 
lumped masses attached, and is compared with experimental measurements. An increase in the transmission loss of 
the plate was observed over approximately two octaves, in excess of that expected due to the effect of the ‘smearing’ 
the added mass over the plate, and these results compared well with a theoretical model. A laser vibrometer was used 
to measure the average velocity of the plate and the measured results compared favourably with theoretical predic-
tions. 

INTRODUCTION 

The typical method of improving the low-frequency trans-
mission loss through a finite plate is achieved by increasing 
the mass of plate. It is shown in this paper through experi-
mental testing and a theoretical model, that it is possible to 
improve the transmission loss of a plate by attaching an array 
of masses to the plate, and the resulting transmission loss is 
greater than that which would be achieved by merely increas-
ing the mass of the plate.  

The placement of a rigid mass on plates has been considered 
by several researchers [Gardonio et al., 2001, Lunden and 
Kamph, 1982, Unruh, 1988, Kari, 2001, Vakakis, 1985, Gar-
donio and Elliott, 2000, Cutchins, 1980, St. Pierre Jr. and 
Koopman, 1995] to alter the vibration response of structures. 
The work presented here differs from many of the previously 
published research literature in that a large number of rigid 
masses attached to a plate has been considered, with the in-
tention to improve the transmission loss of the plate, rather 
than reducing the vibration amplitude of the structure. 

The following sections describe a mathematical model for the 
transmission loss of a finite plate with an array of rigid 
masses attached to the plate. Experiments were conducted to 
measure transmission loss of a rectangular clamped plate 
with and without an array of rigid masses and the results are 
compared with theoretical predictions. 

MATHEMATICAL MODEL 

Introduction 

This section describes a mathematical model to predict the 
transmission loss of a clamped plate with rigid masses at-
tached. The steps in the derivation of the mathematical model 
are divided into several sections, namely:  
1. Calculation of the mode shapes of a clamped plate, 
2. Calculation of the resonance frequencies of the clamped 

plate, 
3. Equations of motion for a clamped plate that is driven by 

a general forcing function, 
4. Couple the effects of rigid masses to the dynamics of the 

clamped plate, 
5. Calculate the modal forcing function for an incident plane 

wave striking a simply supported plate, as shown in 
Figure 1 (a). 

6. Use the modal forcing function in (5) to calculate the 
modal response of a clamped plate, in terms of the modal 
participation factors, as shown in Figure 1 (b). 

7. Use the modal participation factors derived for the re-
sponse of the clamped plate, to calculate the sound inten-
sity radiated from a simply-supported plate of similar di-
mensions, as shown in Figure 1 (c). 

8. Integrate the radiated intensity over an imaginary hemi-
sphere to calculate the radiated sound power 

9. Calculated the transmission coefficient for a plane wave 
striking a plate as the transmitted sound power divided by 
the incident sound power 

10. Calculate the diffuse field transmission loss by integrat-
ing the transmission loss for plane wave transmission 
over all angles. 

In the implementation of this method, steps (3) to (7) can be 
combined into one step. 

(a) (b) (c)
 

Figure 1: Schematic of the acoustic couplings between sim-
ply-supported and clamped plate models. 

Mode Shapes 

The mode shapes of a clamped plate are calculated by the 
multiplication of clamped beam modes (Warburton 1954). 
The procedure for calculating the mode shape functions in-
volves calculating a pseudo- modal index km by calculating 
the roots of the equation 

01)cos()cosh( =−mm kk  (1) 

and has values listed in Table 1. 
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Table 1. Values of km 
m km 
1 4.7300408 
2 7.8532046 
3 10.9956078 
4 14.1371655 
5 17.2787596 
6 20.4203522 

m>6 (2m+1) π/2 

The displacement w of a clamped plate at position (x,y) can 
then be written as 
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where ws are the modal participation factors, and the mode 
shapes are defined as 
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where Lx, Ly are the lengths of the plate along the x and y 
axes, respectively,  
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and a similar equation can be written  for Dn. 

Resonance Frequencies 

The resonance frequencies of a clamped rectangular plate can 
be calculated as (Leissa 1993) 
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where E is the Young’s modulus of the plate, h is the thick-
ness, ρp is the density of the plate, υ is the Poisson’s ratio, 
and the modal indicies ∞= K2,nm  are defined using the 
convention described by Warburton (1954) where the index 
refers to the number of nodal lines, instead of the usual anti-
nodal lines on the plate, and when m=2 or n=2, 506.12 =G , 

248.122 == JH , and for m>2 or n>2, 5.0−= mGm  
5.0−= nGn  and 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−π

−×−==
5.0

215.0 2
m

mJH mm  (8) 

with similar equations for Hn and Jn. After the calculation of 
the resonance frequencies of the clamped plate, the modal 
indicies m,n can be reduced by one to be consistent with the 
‘usual’ definition for modal indicies that refers to the number 
of anti-nodes. The resonance frequencies and their indices 
can be sorted from lowest to highest frequencies, and the 
modal indices replaced by s. 

Equations of Motion of the Plate 

The equations of motion for the clamped plate that includes 
the inertial effects of the rigid blocks can be written as (Soe-
del, 1993) 

sssssss www Γ=ω+ωξ+ 22 &&&  (9) 

where ws is the sth
 modal participation factor, ξs is the viscous 

damping coefficient of the shell at the sth mode, ωs is the 
resonance frequency of the sth mode, and Γs is the sth modal 
force which is applied to the shell for and is defined as 
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where qi and Ti represent the Jth point forces and point mo-
ments applied along each axis, which could be due to point 
forces or the point impedance due a lumped mass, and is 
defined as 
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where Fi and Mi are the forces and moments applied to the 
plate at location σJ in the directions i = x,y,z , δ is the Dirac 
delta function, Uis is the modal response in the ith direction, 
and for the vibrations of the plate considered here where only 
the out-of-plane transverse vibration is considered, the ex-
pressions can be written as 

pzsysxs UUU w][00 ψ===  (13) 
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The force and moment loads on the plate are assumed to be 
point loads, which can be described with Dirac delta func-
tions. Making use of the relationship 
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the integral in Eq. (10) can be evaluated as 
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where the modal mass is defined as ss hNρ=Λ , which for a 
clamped plate is simply the total mass of the plate 

yxp LhLρ=Λ . The rotations of the plate are given by 
(Leissa, 1973, Soedel, 1993) 
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The partial differentials of the mode shapes [ψ] with respect 
to the spatial co-ordinates in Eq. (16) are the mode shapes in 
the rotational directions. Hence Eq. (16) can be written as 
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where [ψJθx] and [ψJθy] are the rotational mode shapes about 
the θx and θy axes, respectively and are 
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The impedance of the Jth mass attached to the plate is in-
cluded as point translational and rotational inertias by using 
Eq (20) where 

JJ mF 2ω−=  (23) 

JxJx JM 2ω−=  (24) 

JyJy JM 2ω−=  (25) 

where mJ is the mass of the block, JJx and JJy are the rota-
tional inertias of the blocks along the x and y axes respec-
tively.  

As an example of the method in which the modal forcing 
function is calculated, consider a constant pressure load P 
applied to the plate the modal forcing function can be written 
as 
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For a clamped plate, Eq. (13) is substituted into Eq. (20) and 
hence the modal forcing function Γk is 
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The result in Eq. (27) is used to validate this model by com-
paring predictions of the displacement of the clamped plate 
subjected to a 1Pa loading with the results from predictions 
using a similar finite element model. The acoustic loading 
from an incident plane wave striking the plate is more com-
plex than the result in Eq. (27) and is discussed in the follow-
ing section. 

Vibro-acoustic coupling of plate 

Roussos (1985) describes a method to calculate the transmis-
sion loss of a simply-supported plate using modal summation 
techniques. This method was used in the vibro-acoustic 

model presented here to calculate the transmission loss of the 
clamped plate with masses attached. In summary, the method 
involves calculating the modal forcing function from an inci-
dent plane wave striking a simply-supported plate using the 
theory from Roussos (1985) (Step 5), using the modal forces 
to calculate the response of a clamped plate (Step 6), then 
using the response of the clamped plate to calculate the radi-
ated sound pressure level from a simply-supported plate (Step 
7), and finally using a Raleigh integral to calculate the sound 
power radiated from the plate (Step 8). Whilst this hybrid 
method is not precisely correct, as one should use the vibro-
acoustic coupling for a clamped plate instead of a simply-
supported plate as used here, it was found that, apart from 
significantly increasing the complexity of the mathematics, 
the TL predictions were reasonable estimates for the experi-
mental measurements. The following paragraphs briefly de-
scribe the method used to calculate the modal forcing func-
tion. Further comments about the increase in complexity of 
the mathematics for the radiation from a clamped plate ap-
pear after the derivation for the radiation of a simply-
supported plate. 

The authors of this paper were unable to find suitable meth-
ods in the research literature for the calculation of the trans-
mission loss of a rectangular plate with attached masses. 
However, some relevant previous studies have been con-
ducted on transmission loss of rectangular plates; Sung and 
Jan (1997) considered the radiation from clamped plates, 
however they did not derive a closed-form solution to the 
problem based on the mode shapes of a clamped plate, and 
instead used an integration technique to calculate the over the 
plate. Similarly, Lomas and Hayek (1977), Berry et al (1990) 
also consider radiation from plates with general boundary 
conditions, but also did not derive the closed form solution.  
It would appear that most researchers utilise numerical inte-
gration techniques to solve this transmission loss problem, as 
closed-form solutions are unweildly. In the work presented 
here, numerical integration is conducted to calculate the 
acoustic power radiated from the plate.  

The remainder of this section describes a mathematical model 
for the calculation of the transmission loss of a clamped rec-
tangular plate, and can include the effects of masses attached 
to the plate. 

a

b

φ
θ

P

x

y

z  
Figure 2: Coordinates for an incoming acoustic plane wave 

striking a rectangular plate. 

Consider a plane wave of pressure Pi incident on a simply 
supported plate at angles θ and φ, as shown in Figure 2. The 
modal forcing vector can be written as (Roussos 1985) 

nmimn YYPp 8=  (28) 

where  
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where c is the speed of sound in air. This modal force can be 
applied to the dynamics of the plate to calculate the modal 
participation factors, by substituting Eq. (28) into Eq. (20). It 
should be noted that similar equations could be derived for a 
clamped plate, however the authors were unable to find ex-
pressions in the research literature. The mode shape of a sim-
ply supported beam is characterised by a sine function, and 
the expression for the modal coupling is shown in Eq (29). 
For a clamped beam, there are four terms for the mode shape 
function, hence the acoustic modal coupling coefficient 
would comprise four terms, and for a clamped plate there 
would be eight terms for the modal coupling coefficient. 
Clearly, this would result in unwieldy equations. Once the 
modal participation factors are calculated, the transmited 
acoustic intensity can be calculated as  
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where ρ0 is the density of air, 
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and )2/( mnpD hC ωρ=ξ . The transmitted power Πt can be 
calculated by integrating the transmitted intensity It over a 
far-field hemisphere such that 
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Equation (35) is evaluated numerically in the work presented 
here. Finally, the transmission loss TL is calculated as 

( )tiTL ΠΠ= /log10 10  (36) 

and the incident acoustic power Πi is given by 

( ) ( )cLLP iyxii 0
2 2/cos ρθ=Π  (37) 

The sound field inside the reverberation chambed used in the 
experimental part of the work conducted here is assumed to 
be a diffuse acoustic field. A diffuse acoustic field is charac-
terised by an infinite number of uncorrelated plane-waves. 
Suppose that one is interested in the diffuse field quadratic 
response of a physical quantity denoted as Q(θ,φ). One can 
show that the quadratic response Z2 is given by (Nelisse et al 
1996) 
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For each orientation (θ,φ) of plane waves striking the plate, 
the transmission loss of the system must be calculated. A 
total of 370 plane-waves (i.e. 10 degree increments) were 
used here to simulate the diffuse field in the analysis pre-
sented here. Nelisse et al (1996) used 324 plane-waves to 
simulate a diffuse field and found that using more plane-
waves does not affect significantly the diffuse field response.  

The calculation of the transmission loss of the plate at 100 
discrete frequencies for a plane wave took approximately 3 
minutes on a 3GHz desktop, using a Matlab program. The 
calculation of the transmission loss for 370 plane waves 
would take approximately 18.5 hours. Instead of using a sin-
gle desktop for the calculations, a distributed computing net-
work was used which is described in Howard et. al. (2005). 
Each of the 370 calculations for the transmission loss of the 
plane waves from a particular angle of incidence was submit-
ted to one computer on a distributed computing network, 
which reduced significantly the calculation time. 

EXPERIMENT 

The transmission loss of a clamped aluminium plate was 
experimentally measured. The plate had the properties de-
scribed in Table 1. 

Table 1. Geometry of the plate 
Width Lx 1.0 m 
Height Ly 1.5 m 

Thickness t 0.0015 m 
Density ρ 2700 kg/m3 

Young’s Modulus E 70 GPa 
Poisson’s ratio ν 0.33 No units 

Loss factor η 0.01 No units 

Figure 3 (a) shows a picture of the aluminium plate with an 
array of 49 rigid masses attached to it. Figure 3 (b) shows a 
close-up of the rigid masses. Figure 4 shows a picture of the 
laser vibrometer that was used to measure the vibration re-
sponse of the plate due to the acoustic excitation.  

Figure 5 shows the measured weights of the rigid masses that 
were attached to the plate. Figure 6 shows the location of 
where each mass was placed on the plate – the top left corner 
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of the plate had the lightest mass (block 1), and the bottom 
right corner had the highest mass (block 49). No attempt was 
made to optimise the location of the rigid masses in this 
work. The optimisation of the locations of the rigid masses is 
the subject of future work. The purpose of the work con-
ducted here is to develop a mathematical model for the 
transmission loss of the plate with the array of masses, which 
could be used with a genetic algorithm to determine optimal 
locations.  

The mathematical model of the vibration response of the 
plate was first compared with a finite element model of the 
plate modelled in ANSYS. Figure 7 shows the displacement 
at centre of plate due to 1Pa pressure applied to the plate. The 
results show that the modal model of the plate compares fa-
vourably with the ANSYS predictions. Another verfication 
was done to ensure the coupled response of the plate and 
rigid masses was correct, however the results are not pre-
sented here. Hence the results provide confidence that the 
dynamics of the clamped plate have been modelled correctly. 

Figure 8 shows the experimentally measured transmission 
loss of the plate with and without the rigid masses attached. 
The solid curve shows the predicted transmission loss for a 
finite plate based on the work by Sewell (1970), and dis-
cussed in Fahy (1994, p162). The dashed line shows the pre-
dicted response for an infinite plate (Beranek and Ver 1992, 
p286). The curve with the crosses (x) shows the experimen-
tally measured transmission loss for the bare plate and com-
pares favourably with the predictions for the finite plate be-
tween 100-8000Hz. The reverberation chambers used for the 
tests only provide valid results above about 100Hz and is a 
function of the largest dimension of the chambers. It can be 
seen that the measured TL above 10kHz does not follow the 
theoretical predictions. The experimental measurements of 
the T60 reverberation times above 10kHz were erroneous, 
and were caused by insufficient sound level in the receiver 
room above the background level for the measurement of the 
60dB change in sound levels and an insufficient number of 
spectral samples during the decay measurements, and hence 
the predicted TL values are inaccurate. Figure 9 presents the 
same results as Figure 8 only the frequency scale has been 
reduced to 100-1000Hz, to highlight the results. The figure 
shows that the plate with the array of masses improved the 
transmission loss of the plate by upto 5dB over the frequency 
range from 150-400Hz. This figure also shows the theoreti-
cally predicted transmission loss for a finite plate based on 
Sewell’s theory, for a plate of equivalent thickness (1.79mm) 
if the mass from the blocks (1.177kg) had been smeared 
across the plate. The TL is about 1.2dB greater than the stan-
dard thickness plate. Hence, the results show that the effect of 
the array of masses significantly improved the transmission 
loss of the plate, greater than the benefit that could be 
achieved by simply ‘smearing’ the mass. 

   
(a) (b) 

Figure 3: (a) pictures of the clamped plate in the transmission 
loss test facility, (b) close-up of the rigid blocks attached to 

the plate. 

 
Figure 4: Picture inside the source room of the transmission 

loss test facility, showing the laser vibrometer. 
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Figure 5: Weights of the 49 rigid blocks. 

 
Figure 6: Locations of the 49 rigid blocks on the plate. 
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Figure 7: ANSYS and theoretical prediction of the displace-
ment at the centre of a clamped plate due to a 1Pa loading. 
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Figure 8: Experimentally measured and theoretically pre-

dicted transmission loss of a clamped plate with and without 
an array of rigid masses. 
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Figure 9: Results from Figure 8 from 100 to 1000Hz. 

The transmission loss of a plate depends on the acoustic field 
that strikes the plate. Figure 10 shows the predicted transmis-
sion loss for an infinite plate of 1.5mm thick, when subjected 
to normal incidence, field incidence and diffuse field acoustic 
conditions, which were calculated using the theories from 
Fahy (1994, p158), and the experimentally measured trans-
mission loss the plate without masses attached. The theoreti-
cal results show that one can expect a variation in the quoted 
TL values, depending on the type of acoustic field that strikes 
the plate. It has been assumed that the experimental testing in 
the reverberation chambers approximates field incidence 
conditions, whereas, the results from the theoretical predic-
tions presented here are for diffuse field conditions. Hence, 
when comparing the experimental and theoretical results, one 
should be mindful that due to the different acoustic loading 
conditions, one should expect differences in the results. 
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Figure 10: Theoretical TL of infinite plates for three types of 

acoustic fields. 
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Figure 11: Comparison of Roussos' simply-supported plate 

model, the clamped plate model, and Sewell. 

Figure 11 shows the comparison of the Roussos model for the 
TL of a simply-supported rectangular plate for a single plane 
wave at incidence normal to the panel, with the dimensions of 
the plate considered here, the predicted TL using the theoreti-
cal model presented here for the clamped-plate, and the theo-
retical model by Sewell for a finite plate. The results show 
that there is good agreement for the predictions of the simply-
supported and the clamped plate models in the frequency 
range from 100 to 5000Hz, which covers the range of inter-
est. Greater accuracy can be achieved at frequencies > 
5000Hz if more plate modes are included in the analysis, but 
is not required for the purposes of the current work. 

Figure 12 shows the experimentally measured TL of the bare 
plate for field incidence acoustic loads, the TL for a finite 
plate using the theory from Sewell, and the TL for a finite 
plate in a diffuse field using the theory described here. The 
results show that the experimental results are very similar to 
the Sewell’s predictions for a finite plate. The predictions for 
the TL of the clamped plate using the theory described here is 
about 8dB lower than the experimentally measured results. 
One would expect a difference in field incidence and diffuse 
field results of around 5dB at 1000Hz, as shown in Figure 10, 
however the difference in the acoustic fields at low frequen-
cies (100Hz) is negligible.  
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Figure 12: TL of bare plate. 
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Figure 13: TL of plate with 49 masses attached. 

Comparison of the predictions for the clamped plate theory in 
Figure 11 for a single plane wave, and Figure 12 for a diffuse 
field, shows that the TL decreases by about 8dB. The TL for 
a diffuse field is calculated using Eq. (38) and it is this inte-
gration of the TL results for the plane wave that causes the 
reduction in the TL. 

Figure 13 shows the experimentally measured TL of the plate 
with 49 masses attached for field incidence acoustic loads, 
the TL for a finite plate that has the equivalent thickness that 
corresponds to  the weight of the masses smeared across the 
plate using the theory from Sewell, and the TL of the plate 
using the clamped plate model presented here. The experi-
mentally measured results show that the improvement in the 
TL due to the masses exceeds the benefit of just increasing 
the thickness of the plate. The theoretical predictions using 
the model presented here are about 10dB lower than the ex-
perimentally measured TL. As described above, some of the 
discrepancy can be attributed to the different acoustic loading 
conditions. 

Figure 14 shows the comparison of the experimentally meas-
ured and theoretically predicted TL of the plate with and 
without the masses attached. The experimental results show 
that there is an improvement in the TL of about 3dB over the 
frequency range from 125-400Hz. The absolute levels of the 
predicted transmission loss using the theory described are 
lower than the experimentally measured results. However, the 
important result is that the theoretical model shows that there 
is an improvement in the TL over a frequency range due to 
the addition of the masses, which is the same qualitative re-
sult that can be seen in the experimental results. 
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Figure 14: TL of plate for theoretical and experimental re-

sults. 
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Figure 15: Improvement in TL due to the addition of rigid 

masses. 

Figure 15 shows that improvement in the TL, which is calcu-
lated as the TL with the masses attached to the plate minus 
the TL without the masses attached to the plate, for the theo-
retical predictions and the experimental results. The results 
show that the predicted benefit due to the addition of the 
masses is similar to the experimentally measured benefit. 

Figure 16 shows the experimentally measured average 
squared velocity of the plate with and without the masses 
attached. The velocity of the plate was measured using the 
laser vibrometer at 191 points. The results show that there is 
a general decrease in the velocity in the frequency range from 
100-200Hz. Note that the velocity measurements were nor-
malised with the voltage that was supplied to the power am-
plifiers in the source chamber, hence the absolute values of 
the average squared velocity are not meaningful. 

Figure 17 shows the corresponding theoretically predicted 
average squared velocity of the plate, which is calculated by 
squaring the modal participation factors of the plate and mul-
tiplying by the square of the frequency (i.e. ω2[ws]H[ws]). The 
velocity results are normalised for a 1Pa incident pressure. 
The results show that the masses alter the vibration response 
of the plate, but the mechanism that caused the improvement 
in the transmission loss due to the addition of the rigid 
masses requires further investigation. It is possible that the 
effect of the rigid masses is to ‘pin’ locations on the plate, 
thereby changing the mode shapes of the plate. 
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Figure 16: Experimentally measured average square velocity 

of the plate. 
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Figure 17: Theoretically predicted average squared velocity 

of the plate. 

The theoretical results do not match the results from the ex-
perimental testing. There are several reasons that might ex-
plain the discrepancies. The damping coefficient used in the 
theoretical models was 1%, which was not verified and it is 
possible that it could be greater. The theoretical model has 
provisions for the inclusion of the effects of the rotational 
inertia of the masses, but was not included in the predictions 
presented here. It is hypothesised from previous work (How-
ard et. al. 2005) that the rotational inertia from masses can be 
important and can lead to greater vibration reduction that if 
rotational inertia had not be included. The most likely cause 
for the discrepancies is the method by which the diffuse field 
was simulated and whether this method is representative of 
the acoustic testing conditions in the reverberation chamber. 
The theoretical model used to predict the TL through a sim-
ply-supported plate for a single plane-wave was based on 
Roussos’ (1985) model. The predictions presented in Rous-
sos’ paper, and those presented here for a simply-supported 
plate are similar to Sewell’s predictions for a diffuse field. 
However, as shown in Figure 10, one would expect that the 
TL predictions for plane-waves (normal incidence) should be 
greater than that for diffuse field conditions. Hence, it is pos-
sible that Roussos’ model might under-predict the TL for a 
plane-wave, and hence the predicted TL for diffuse field con-
ditions is also under-predicted. 

CONCLUSIONS 

A theoretical model was developed to enable the prediction 
of the transmission loss of a clamped plate with rigid masses 

attached and was compared with the results from experimen-
tal testing. In qualitative terms the results showed that the 
masses improved the TL of the plate greater than that which 
would have been achieved if the added mass had been 
‘smeared’ across the plate. The experimental results showed 
improvement in the TL of about 3dB in the frequency range 
from 100 to 400Hz – almost two octaves, and the qualitative 
results from the simulations also indicated improvement in 
the TL over a similar frequency range. The magnitudes of the 
predicted TLs between the theoretical predictions and the 
experimental results differed, which could be attributed to the 
differences in the assume incident acoustic field striking the 
plate, and also the coefficient of damping used in the model. 

The model presented here will be used in the future to deter-
mine the optimum locations the rigid masses that will maxi-
mise the transmission loss of the plate.  
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