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ABSTRACT 

A baffled arc array (BAA) comprises a circular array of sensors surrounding a cylindrical metal baffle, and beam-
forming is carried out by processing sensors on an arc centred on beamsteer.  It is widely used in sonar for passive 
underwater surveillance.  An important factor that limits the performance of the array at high frequencies is the ap-
pearance of grating lobes in the beamformer response.  This occurs when sensor separation is greater than half a 
wavelength, and leads to masking of weak signals by the grating lobes of strong signals.  In the case of the BAA, the 
grating lobes are imperfect as a consequence of the circular geometry; there is a mismatch between array responses to 
signals arriving from the beamsteer and grating lobe directions.  Adaptive beamforming is sensitive to this mismatch, 
and suppress the grating lobes, thus extending the frequency range of the BAA beyond its design frequency.  The pur-
pose of this paper is to demonstrate the effectiveness of adaptive beamforming for suppressing grating lobe effects in 
the BAA. 

INTRODUCTION 

Beamforming of sensor array data is used in radar, sonar and 
communications (Van Trees 2002).  In passive sonar (Barger 
1997) it is used to increase signal-to-noise ratio (SNR) of 
underwater acoustic signals and to indicate signal bearings. 
As a consequence of the discrete sampling of the wavefield 
by the array, grating lobes appear in the beamformer response 
when sensor separation is greater than half a wavelength.  In 
the case of a uniform linear array (Van Trees 2002), the array 
response is identical for signals arriving from beamsteer and 
grating lobe directions. For a curved array, however, the ar-
ray responses are distinguishable.  Grating lobes still appear 
in the beamformer response, but are imperfect in the sense 
that they are not at the same level and shape as the main-lobe.  
An example of a curved array that is widely used in sonar is 
the baffled arc array (BAA).  This is used to provide 360o 
coverage of bearings in passive underwater surveillance.  It is 
similar to a uniform circular array (Van Trees 2002, Davis 
1983) except that the sensors surround a cylindrical metal 
baffle, and only sensors on an arc centred on beamsteer are 
processed.   The primary purpose of this paper is to demon-
strate the effectiveness of adaptive beamformers at suppress-
ing grating lobe effects in BAAs.  Grating lobe suppression is 
a consequence of the sensitivity of the algorithms to mis-
match between the array responses to signals arriving from 
the beamsteer and grating lobe directions, and is closely re-
lated to sidelobe suppression.  It improves the detection of 
weak signals masked by strong interferers, and leads to more 
effective array operation when sensor separation on the arc is 
greater than half a wavelength.    

BAFFLED ARC ARRAY (BAA) 

Let Q sensors be equi-spaced around a cylindrical metal baf-
fle.  In sonar, the sensors are often physically offset (dis-
placed) from the baffle surface, to isolate them from baffle 
vibrations and improve sensor coupling to the water.  Acous-
tic signals are assumed to arrive with zero-elevation; i.e. 
perpendicular to the cylinder axis.  In practice, each sensor 
(or stave) is a linear array of omnidirectional hydrophones, 
aligned with the cylinder axis and having phone outputs 
summed with zero time-delay.  Thus at each stave, the phone 

outputs add coherently for the signal, while ambient noise 
from non-zero elevations is suppressed.  Only M < Q staves 
on a cylindrical arc centred on beamsteer are processed.  As 
the array is steered to provide 360o coverage of azimuths at 
zero-elevation, the arc swings around with it and selects new 
staves for processing.  Figure 1 schematically shows the mth 
stave and the coordinate system for the processing. 
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Figure 1 Coordinate system for the baffled arc array. 

SENSOR RESPONSE MODEL 

Referring to Figure 1, let the M sensors on the processing arc 
have azimuths φm, m = 1 ... M, assumed for convenience to be 
defined relative to beamsteer.  At high frequencies, it is rea-
sonable to approximate baffle scatter using infinite, rigid 
cylinder scattering theory (Skelton and James 1997).  Sup-
pose a plane-wave arrives with zero-elevation from beam-
steer in the absence of noise.  The complex narrowband out-
put of sensor m at frequency f will be proportional to 
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Here r and a are the sensor radius and baffle radius respec-
tively, k = 2πf/c (c is sound speed in water), Hn

(1) is the 
Hankel function of the first kind of order n, and εn is the 
Neumann symbol; εn = 1 for n = 0 and εn = 2 otherwise.  Also 
bn is the scattering coefficient, Jn is the Bessel function of the 
first kind of order n, and primes denote derivatives. 

The sensor response model formulated in (1) and (2) is used 
for the beamforming of the BAA. 

FREQUENCY-DOMAIN BEAMFORMING 

To simplify notation, the beamsteer direction will be viewed 
as fixed so that the beamsteer variable can be dropped from 
all equations.  Let xm( f ) denote the complex narrowband 
output of the mth sensor on the processing arc when signal 
and noise are present, and let R(f) denote the M×M cross-
spectral matrix.  Here R(f) has elements 
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and <> is statistical expectation. A frequency-domain beam-
former has mean output power 
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where v(f) denotes the Mx1 beamformer weight vector, and H 
denotes conjugate transpose.   

If there are no signal distortion effects associated with baffle 
scatter, then conventional beamforming (CBF) can be used.  
In this case the elements of weight vector v(f) are 
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where the am are array shading coefficients. However, if the 
sensors are offset from the baffle, then baffle scatter may 
distort the signal. Some compensation can be achieved by 
using a matched filter beamformer. In this case the weight 
vector is matched to a spatial replica of the signal, ψ(f) = 
[ψ1(f) ψ2(f) … ψM(f)]T (where T denotes transpose), so that 
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Finally, the Minimum Variance Distortionless Response 
(MVDR) beamformer is an optimum beamformer that mini-
mises output power while fixing the response to a signal from 
beamsteer.  In this case the weight vector is given as follows, 
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Although widely referred to as MVDR in sonar, the above is 
also called the Minimum Power Distortionless Response 
(MPDR) beamformer in (Van Trees 2002), the minimum 
variance or maximum likelihood method in (Burdic 1991), 
and the Capon beamformer elsewhere.   

Note that grating lobes appear in the beamformer response 
when f > fo, where fo is the frequency at which the sensor 
spacing on the arc corresponds to half a wavelength, 
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In fact, due to the geometry of the BAA, grating lobes actu-
ally appear at a frequency a little above fo.   

GRATING LOBE SUPPRESSION 

The MVDR beamformer is often implemented in practice by 
replacing the cross-spectral matrix R(f) with the sample esti-
mate computed from snapshots of data collected at different 
times, 
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Here xm
(t)( f ), t = 1 ... T are narrowband outputs of sensor m 

collected at times indexed by t.  When this estimate is recom-
puted for each block of received data, MVDR becomes an 
adaptive algorithm known as MVDR with sample matrix 
inverse, or MVDR SMI.  

Figure 2 shows FRAZ (FRequency-AZimuth) spectra com-
puted from actual sea trials data.  A BAA with Q = 32 sen-
sors in total and M = 8 sensors on the processing arc was 
used, two seconds of data was processed, and T = 62×M 
snapshots utilised.  Noise spectral equalisation was applied to 
each FRAZ.  The FRAZ at top shows CBF with modified 
offset raised cosine (MORC) shading.  This shading is ob-
tained by projecting the widely used offset raised cosine 
shading for linear arrays onto the curved geometry.  A strong 
signal is at bearing 180°.  The grating lobes are the strong 
structures that are at either side of the signal and appear at the 
frequencies above approximately 1.1fo.  They are quite severe 
and can be distinguished from the main-beam sidelobes that 
have lower power and thinner beams. The middle FRAZ 
shows MVDR SMI and demonstrates the significant reduc-
tion in grating lobe effects that is achievable in practice.   

Adaptive beamformers are required to be robust for practical 
implementation (Van Trees 2002).  The bottom image in 
Figure 2 shows a FRAZ computed using a robust adaptive 
algorithm proposed by Li, Stoica and Wang (Li etc 2003).  
This is a robust version of MVDR that improves the signal 
response when knowledge of the steering vector is imprecise 
(due to pointing errors or baffle model errors, for example).  
The algorithm anticipates possible errors in the signal model.  
The actual signal response vector, ψa, is estimated by solving 
the following quadratic problem, 
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where ε is a small positive number proportional to the signal 
mismatch, and is called the steering vector error bound.  
Once ψa is obtained (see (Li etc 2003) for details), the solu-
tion for v can be computed using the formula: 

a
H
a

a

ΨΨ

Ψ
=

−

−

1

1

R
Rv ˆ
ˆ

.  (11) 

Although essentially a diagonal loading approach, better 
results are obtained than by direct loading of the sample 
cross-spectral matrix.  The steering vector error bounds are 
required as an input to the algorithm, and in the case of Fig-
ure 2, the error bounds were chosen so as to roughly optimise 
signal bearing resolution.  Grating lobe suppression is excel-
lent, and was maintained when error bounds were increased 
to accommodate a sensor failure. 
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Figure 2 FRAZ (Frequency-Azimuth) plots for sea trials data 

with a contact at 180°. 

PASSIVE SONAR APPLICATION 

Sonar operation is dramatically improved by the suppression 
of grating lobes.  Figure 3 shows bearing-time (BT) plots of 
real sonar data with a group of strong contacts just at left of 
centre.  CBF with MORC shading is shown at top, and robust 
adaptive beamforming at bottom.  Each scan was obtained by 
computing a FRAZ and summing frequency bins in the band 
fo to 2.5fo.  Time and bearing are denoted by index, and the 
full range of bearings is not shown.  Display processing was 
identical in both cases, and included histogram modification 
to enhance the visibility of weak signals (the 30% lowest 
power pixels were set to the same level, and similarly the 3% 
highest power pixels).  Although the main-beam sidelobes 
are not evident due to the smoothing effect of the frequency 
integration, CBF exhibits a prominent grating lobe band on 
either side of the group of strong contacts.  This masks the 
presence of a weak contact that initially lies to the right of the 
strong contacts and rapidly changes bearing after time index 
100.  Adaptive beamforming suppresses the grating lobes to 
clearly reveal the weak contact.  It also reveals a group of 
weak contacts just to the left of the strong contacts. 

CONCLUSION 

Adaptive beamforming is effective at suppressing grating 
lobe effects in curved arrays, thereby enhancing detection of 
weak signals masked by strong interferers, and significantly 
improving array operation when sensor separation is greater 
than half a wavelength.  The effectiveness of the suppression 
was demonstrated for a BAA by applying adaptive beam-
formers to real sonar data.  If the sensors are offset from the 
baffle surface, then the acoustic wavefield sampled by the 
sensors is spatially distorted at high frequencies due to inter-
ference between incident and scattered fields.  For a conven-
tional beamformer, the grating lobe/sidelobe structures are 
severely distorted, and can have power exceeding that of the 
signal.  In this situation the conventional beamformer essen-
tially fails.  By comparison, the MVDR beamformer contin-
ues to give an appropriate angular response. 
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Figure 3 Bearing-time plots for sea trials data with multiple 

contacts.  
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