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ABSTRACT 

The insulation performances of floor/ceiling systems are yet to be fully understood as the mechanisms responsible for 
the transmission of sound are complex. An analytical model predicting the performances of such systems has been 
developped in order to develop and explain structures with improved insulation. The paper presents briefly the mod-
elling approach and the accuracy of the predictions. The model, by focusing on the low frequencies range, employs a 
modal decomposition method. The solution relies neither on the periodicity of the stiffened ceiling panels or suspen-
sion system nor on the infinite extend of the floor. The quadratic vibration velocity of the ceiling panel is predicted. 
Comparisons are made between measurements and prediction. 

INTRODUCTION 

Suspended ceilings beneath floors are a very common solu-
tion to improve the sound insulation of a floor design even 
though not all phenomena involved are fully understood. In 
this paper, the analytical model used to predict the perform-
ances of such a structure is first presented as a set of equa-
tions governing either a vibration displacement field or a 
sound pressure field of a component of the structure. The 
solution to this problem is then presented before the numeri-
cal predictions are compared with measurement data. 

ANALYTICAL MODEL 

The frequency range considered in this study is 0 to 500Hz. 
The displacements and sound pressure fields are written as 
the sums of trigonometric functions (modeshapes) that de-
scrib the vibroacoustic states of each component. The un-
knowns of the problem are then the associated expansion 
coefficients which are obtained by writing the problem as a 
matrix equation. 

Monolithic Floor 

The monolithic floor considered in the present study is a 
single concrete slab of constant thickness 1h , Young’s 

modulus 1E , density 1ρ  and corrected shear modulus *
1G  

(Figure 1). It is modelled as a thick plate with general elastic 
boundary conditions defined, at each point of the perimeter, 
by a set of transverse and rotational springs.  

 
Figure 1. Elastically supported concrete slab. 

The transverse displacement 1u  of the concrete floor can be 
expanded as 
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where pqP  are the expansion coefficients (unknowns to the 

problem). )x(pψ  and )y(qΘ  are the modeshapes, each is 
defined as the sum of the modeshape associated with a sim-
ply supported plate and a function of the stiffnesses of the 
springs at the boundaries (Timoshenko 1940, Li 2001). Fi-
nally, the transverse displacement field is the solution to the 
following governing equation 
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where )1(
pqD̂  and FN̂  are respectively the operator associated 

with the governing equation for the transverse displacement 
of a thick plate and the associated non-homogeneous term 
(Skudrzyk, 1968). S is the surface area of the concrete floor. 
For a simply supported plate, the right hand side term of 
equation [2] becomes 4/SPD̂ pq
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where xp L/pπ=α , yq L/qπ=β  and where ∆  is the bi-
harmonic operator. 
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Suspension System 

The suspension systems come in a variety of shapes and ma-
terials, connecting the concrete floor to the ceiling. The con-
crete floor to rod connection is typically rigid but can also 
include a damping rubber block. The connection at the other 
hand consists of a steel clip that can offer both resilience and 
damping. Additionaly, the ceiling batten can contribute sig-
nificantly to the resilience of the suspension system depend-
ing on its shape (Figure 2). 

 
Figure 2. The suspension system. 

The suspension rod in subjected to the forces and moments 
applied by the vibrating concrete floor and ceiling at its ex-
tremities and constitutes a main path of vibration transmis-
sion. The length, stiffnesses and density of such rod result in 
natural frequencies well above the 500Hz limit; the suspen-
sion system can therefore be modelled as a lumped system 
comprising of longitudinal and flexural springs and dampers, 
the combination of which is described by the equivalent dy-
namic stiffness eqZ . If the suspension system consists of a 

longitudinal spring CK , a flexural spring MK  and a damp-
ing RC , then 

.KCjKZ MRCeq ∆+ω+=
 [6] 

Let 2u  denotes the transverse displacement field of the ceil-
ing panel, the reaction force exerted by the suspension system 
on the concrete floor and suspended ceiling is a function of 
the transverse displacement difference and angular displace-
ment difference between the two plates: 

[ ] ),yy()xx()y,x(u)y,x(uZF 21eqrod βα −δ−δ−=  [5] 

where )y,x( βα  denotes the positions of the suspension rod.  

Ceiling Panel 

Ceiling panels generally consist of a single or double layer of 
gypsum board, stiffened by an array of ceiling battens and 
are, typically, supported by peripheral “L-shaped” channels 
(Figure 3). The array of battens is, in most cases, periodic. 
The model proposed here does not assume any periodicity in 
the battens’ and rods’ distributions so that the performances 
of a wider range of designs can be predicted. Unpublished 
measurement data has shown that the boundary conditions of 
the ceiling battens and ceiling panel, when screwed to the 
peripheral channel, are best modelled as simply supported, 
allowing for rotation but no transverse displacements. 

 
Figure 3. Boundary conditions for ceiling panel and battens 

Typically, ceiling panels are periodically screwed to the array 
of battens. Unpublished data has shown that these screw con-
nections are best modelled as rigid point connections when 
the bending wavelength in the panel is shorter than five times 
the screw spacing and as a rigid line connection otherwise. 
The reaction force exerted by the battens on the ceiling panel 
can then be written as )yy()xx()y,x(uĤF sb2bat −δ−δ=  
with 
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where yEI  and yGJ  are respectively the complex flexural 

and torsional stiffnesses, bρ  is the density, bS  the cross-
sectional area and pI  the polar moment of inertia of the bat-

tens; )y,x( sb  are the coordinates of the screws. If the dis-
placement field is decomposed in a basis of eigenfunctions 

)y()x( qp ζϕ  satisfying the boundary conditions above, and if 

the expansion coefficients are denoted pqC  so that 
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the equation governing the displacement field of the ribbed 
ceiling panel can be written as 
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Cavity 

Typically, the cavity is partly filled with a fibrous material 
for attenuation of the sound transmission from the floor to the 
ceiling panel via the air in the cavity. The partly filled cavity 
is modelled as two subsequent media of propagation (Figure 
4). The vertical walls of the cavity are assumed impervious. 

 
Figure 4. Cavity with infill, notations. 

The first domain of propagation is defined by dz0 ≤≤  and 
the medium of propagation is air (characteristic impedance 

00cρ , wavenumber 00 c/k ω= ). The second domain of 

propagation is defined by d0d ≤≤  and the medium of 
propagation is modelled as an equivalent dissipative fluid 
with the complex characteristic impedance fibZ  defined in 
(Delany & Bazley, 1970) as a function of the airflow resistiv-
ity σ  of the fibrous material (Voronina 1996). The complex 
impedance results in a complex propagation constant fibk . 
The two Helmholtz equations governing the sound pressure 
field in the sub-domains are respectively written as 
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The conditions of continuity of the acoustic and mechanical 
velocities at the solid-fluid ( 0z = ) and fluid-solid ( dz = ) 
interfaces leads to relationships between the sound pressure 
fields in the cavity and the displacements 1u  and 2u  of the 
plates: 
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Finally, the continuity of the particle velocity at the interface 
between the two media of propagation gives a direct relation-
ship between the sound pressure fields (Bruneau & Scelo 
2006) 

dz

1C

0

fib

dz

2C

z
p

z
p

== ∂
∂

ρ
ρ

=
∂

∂ . [13] 

The sound pressure fields is written as the summation over 
the acoustic modeshapes of the cavity, given as 

]L/yqcos[]L/xpcos[)x()x( yxqp ππ=ΩΦ , so that 

∑ ΩΦξ=
q,p

qppq1C ),y()x()z()z,y,x(p  [14] 

∑ ΩΦλ=
q,p

qppq2C ),y()x()z()z,y,x(p  [15] 

the substitution of equations [14] and [15] into equations [10] 
to [13] leads directly to the expressions for the sound pres-
sure fields as functions of the expansion coefficients pqP  and 

pqC  of the plates’ displacements. 

Solution 

The problem can now be fully defined by writing the equa-
tions governing the displacements of the floor and ceiling 
panel as 
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Multiplying the first equation of the system [16] by the 
modeshape )y()x( lk ΘΨ  and the second equation by 

)y()x( lk ζϕ  and integrating over the surface areas of the 
floor defined by }Ly0,Lx0{S yx ≤≤≤≤= , before apply-
ing the orthogonality relationships between modeshapes leads 
to a new system of equations which, when written in a matrix 
form, becomes 
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where )1(D  and )2(D  denote respectively the sums of the 
stiffness and inertia matrices associated with the free vibra-
tions of the uncoupled floor and ceiling panel; Θ  is the ma-
trix associated with the finite sum of all local forces and mo-
ments applied by the rods, H  denotes the matrix associated 
with the reaction force from the battens to the displacement 
of the ceiling panel, j/CiP  are the matrices of modal coupling 
terms between the ith part of the cavity on the jth plate and 
[ ]B  is the coupling matrix between the driving point force 
and the modal displacement of the floor. { }P  and { }C  are 
vectors, the components of which are respectively the expan-
sion coefficients pqP  and pqC . Finally, condensing the sys-
tem of matrix equations [17] into a single equation 
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leads, after inverstion of equation [18], to the expression of 
the expansion coefficients pqC  for the displacement of the 
ceiling panel. The vibration velocity of the ceiling panel is 
then directly reconstructed using equation [8]. The mean-
square vibration velocity of the ceiling panel is directly avail-
able for a given harmonic point excitation force applied to the 
concrete floor (Cremer et al. 2005). 

NUMERICAL RESULTS 

Experimental Data 

The system considered is shown in Figure 5, consisting of a 
140mm concrete slab to which were rigidly connected an 
array of fifteen 180mm long steel rods. Five parallel battens 
were suspended from the array of rods, 600mm apart, before 
a sheet of 13mm gypsum was screwed to the battens. The 
screws were set at 200mm centres.  

 
Figure 5. Array of battens suspended from a concrete floor 

before the installation of the ceiling panel. 
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Figure 6. Electromagnetic shaker on the concrete floor. 

The characteristics of the materials used for the measurement 
and simulations are given in Table 1. The same values were 
used for the prediction of the mobility. 

Table 1. Characteristics of the materials 
Concrete Ceiling 
)Nm(E 2

1
−  91029  )Nm(E 2

2
−  9108.2  

)mm(h1  140  )mm(h2  13  

)mkg( 3
1

−ρ  2400  )mkg( 3
2

−ρ  700  
Rods Battens 

)Nm(E 2
c

−  910210  )Nm(E 2
y

−  910210  

)mkg( 3
c

−ρ  7500  )m(I 4
y  9109.11 −  

)mm(length  180  )m(J 4
y  12105 −  

)mm(radius  6  )mkg( 3
b

−ρ  7500  

  )m(S 2
b  61066 −  

Cavity Dimensions of system 
)m/Raylsmks(σ  4135  )m(Lx  4.3  

)mm(d  180  )m(Ly  4.3  

)mm(d  105    

The harmonic point force was provided by a B&K4809 elec-
tromagnetic shaker driven with a random signal generated by 
a HP3566A dynamic signal analyser, amplified by a Ling 
TPO25 amplifer and mounted onto a rigid frame above the 
concrete slab. A PCB208C02 force transducer measured the 
excitation signal (Figure 6).  

Two PCB352C68 accelerometers with PCB480E09 power 
supplies were used to measure the vibration acceleration of 
the suspended ceiling from which the transfer mobility of the 
whole system was derived. The acceleration signal was re-
corded over a period of 1 second and the averaged spectrum 
of the signal averaged over 128 repetitions of the measure-
ment at 37 different positions over the surface area of the 
ceiling. 

The space-averaged mobility of the system, equal to the nor-
malised quadratic velocity of the ceiling panel, was estimated 
as 
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where *  is the complex conjugate. The predicted and meas-
ured space-averaged mobilities are shown in Figure 7 for 
comparison. 

 
Figure 7. Measured (―) and predicted (− −) mobilities of the 

suspended ceiling. 

Figure 7 shows that a good agreement has been found be-
tween the trend of the predicted and that of the measured 
mean-square velocity of the ceiling panel when the concrete 
floor is submitted to a harmonic point force excitation. The 
model predicts accurately the dominance of the resonance 
frequencies of the concrete floor at 250Hz, 430Hz and 
560Hz. The overall magnitude of the response is in good 
agreement with that of the measured data. 

CONCLUSION 

In this paper, a model for predicting the dynamic response of 
a suspended ceiling beneath a floor was briefly presented. 
Limiting the analysis to the low frequency range, the modal 
decomposition of the displacement fields and sound pressure 
fields offers the benefit of isolating the different coupling 
terms between the different elements of the system. 

The problem is simplified by combining the equations gov-
erning the displacement fields of the concrete floor and ceil-
ing panel and that governing the sound pressure field in the 
cavity into a single matrix equation that can be numerically 
solved with a single matrix inversion. 

It was shown that such a model can predict the dynamic re-
sponse of a suspended ceiling beneath a floor with reasonable 
accuracy while offering a realistic approach by considering 
the finite size of the system, the elastic boundary conditions 
of the concrete floor, the partial filling of the cavity and the 
non-periodicity of the battens’ and rods’ distributions. 
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