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ABSTRACT 

A method for the design of arbitrary minimum or linear phase FIR filters is developed for audio applications by using 
the Tuneable Approximate Piecewise Linear Regression (TAPLR) method to smooth the required FIR magnitude 
frequency response from a prototype Bode plot model. The TAPLR method incorporates a set of contiguous piece-
wise linear (affine) sections, which are coupled and smoothed by a single tuning parameter associated with a set of 
amplitude weighted Radial Basis Functions (RBFs) assigned to each linear section. The Bode plot also consists of a 
set of contiguous linear asymptotes plotted on a log-log scale, which makes it a perfect candidate for modelling and 
smoothing by the TAPLR method. The TAPLR smoothing turns the artificial asymptotic magnitude plot into a realis-
able magnitude response curve, which can be made to be band-limited with a finite impulse response by the appropri-
ate degree of smoothing. A typical FIR filter design example for audio system equalisation is provided to show the 
value and versatility of the method. Also, two Bode plot filter prototypes are presented to show how well the new 
modelling approach can capture them and adapt them to suitable band-limited FIR filter designs. 

INTRODUCTION 

One approach to arbitrary Finite Impulse Response (FIR) 
filter design is to specify the required magnitude response 
characteristic and then to use it to derive suitable FIR filter 
coefficients that provide a magnitude response sufficiently 
close to the original specification. This can be done by either 
finite length windowing of the corresponding discrete im-
pulse response or by making the magnitude response band-
limited and sufficiently smooth in the first place, in which 
case the discrete impulse response can be taken as the FIR 
filter coefficients directly. Finite length windowing of the 
impulse response achieves the required finite impulse re-
sponse, which also inevitably smooths the required magni-
tude response characteristic. Both of these approaches allow 
for the design of either linear phase or minimum phase FIR 
filters. 

Minimum phase discrete-time filters have the property that 
all their poles and zeros are within the unit circle of the com-
plex z-domain. The phase characteristic of a minimum phase 
filter is fully determined by the magnitude characteristic as 
these two characteristics are Hilbert transform pairs. A linear 
phase filter is one whose phase characteristic is a linear func-
tion of frequency and is determined by a symmetrical im-
pulse response. It is easy enough to ensure that the required 
impulse response is made to be symmetrical during the de-
sign process. Therefore, it is possible to produce a linear 
phase or a minimum phase filter having the same magnitude 
response characteristic.  

It must be accepted that it may not be possible to design a 
FIR filter from any arbitrarily chosen response characteristic 
because a characteristic with sharp transition sections may 
strictly require an infinite impulse response to represent accu-
rately. The required or desired magnitude response character-
istic therefore needs to not only be band-limited to at least 
half the Nyquist sampling frequency but it must also be 
smooth enough to ensure that the filter is realisable as a FIR 

filter. A sufficiently smooth band-limited response curve can 
then be used to determine the required discrete finite impulse 
response (FIR filter coefficients) directly, by taking a sam-
pled inverse Fourier transform of it.  

It is proposed that suitable FIR filter designs may be achieved 
starting from a traditional Bode plot response characteristic, 
which is a set of contiguous straight lines on a log-log scale. 
The sharp transitions due to these connecting straight lines 
would make the actual Bode response plot unrealisable as a 
FIR filter, so it needs to be smoothed out sufficiently at these 
sharp joins. This may be very conveniently achieved by using 
the Radial Basis Function (RBF) based smoothing and inter-
polation mechanism associated with the Tuneable Approxi-
mate Piecewise Linear Regression (TAPLR) model (Zaknich 
and Attikiouzel 2000). The TAPLR model is actually made 
up of a set of contiguous straight lines that are coupled and 
smoothed by a single tuning parameter, making it a perfect 
model for Bode plot smoothing.       

The TAPLR model is an interpolation model and the precur-
sor to the Integrated Sensory Intelligent System (ISIS) 
(Zaknich 2003a) and the Sub-Space Adaptive Filter (SSAF) 
(Zaknich 2003b) models. All these models were originally 
derived from the Modified Probabilistic Neural Network 
(MPNN) (Zaknich 1998). The MPNN uses RBFs to interpo-
late over the data space for the solution of multivariable 
nonlinear regression problems. It is based on Specht’s Prob-
abilistic Neural Network (Specht 1990) and it can be de-
scribed as a generalization of Specht's General Regression 
Neural Network (GRNN) (Specht 1991). Both the MPNN 
and GRNN are similar to the Nadaraya-Watson regression 
estimator (Naydaraya 1964, Watson 1964).  

A review of the generic TAPLR model is presented in the 
second (next) section of this paper. Section three introduces 
the details of the frequency domain TAPLR model used for 
Bode plot modelling, whilst Section four shows how this 
model is used to achieve FIR filter designs. Some typical 
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design examples are provided in Section five and Section six 
provides an analysis of results and draws some conclusions 
about the new design method. 

REVIEW OF THE GENERAL TAPLR MODEL 

The general MPNN and TAPLR models were both designed 
to provide a scalar regression output given a set of in-
put(vector)/output(scalar) data pairs. The TAPLR model 
equation is defined by (1). 
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where: 
 ),( σiif cx −  ; a suitable RBF, typically Gaussian. 
 x ; an arbitrary p-dimensional input vector. 

ci    ; the RBF centre-vector i in the input space. 
σ     ; the single smoothing parameter for model tuning. 

   M   ; the number of unique centre-vectors ci. 
 li(x) ; local linear (affine) function output associated 
           with RBF i and its corresponding centre-vector ci. 
 Zi     ; a scalar weight associated with RBF i. 

If all the local linear models li(x) are equally likely, or the a 
priori likelihood is unknown, and the centres of the RBFs are 
uniformly distributed in the data space (as will be the case for 
the work in this paper), then all the Zi may be ignored (all Zi 
= 1). Otherwise, the relative values of Zi might represent the 
a priori likelihood or any required relative weighting of each 
li(x) as appropriate. The functional values provided by each 
RBF weighted by Zi, i.e. Zi ),( σiif cx − , are used as a 
measure of closeness of x to each of the li(x) models, and 
thus provide the required relative local linear model weight-
ings for suitable interpolation between them. The TAPLR 
model (1) is essentially a mixture model and, as such, further 
piecewise linear models can be added to the structure to ac-
commodate required design specifications. The degree of 
local model coupling or decoupling can be controlled by the 
adjustment of the single RBF bandwidth or smoothing pa-
rameter σ . 

A Gaussian radial (spherical) basis function, defined by (2), 
is often used for the RBF ),( σiif cx − . Adjustment of σ 
controls the degree of weighting of each linear local model 
associated with each centre-vector. Input vectors x closest to 
a centre-vector activate the associated local linear model 
more than for those further away. For very small σ  the local 
linear model associated with the centre-vector closest to the 
current input vector dominates, resulting in a linear response 
in the local space of that centre-vector. For very large σ  the 
model output approaches a fixed weighted average of all the 
local linear models. Somewhere in between a best overall 
model results, which provides linear operation close to each 
centre-vector while deviating from linearity close to centre-
vector region boundaries. At the boundaries between centre-
vectors a smooth and continuous merging of neighbouring 
local linear models occurs. 
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Overall model tuning simply involves finding the single op-
timal tuning parameter σ giving the minimum Mean Squared 
Error (MSE) of the output  )(ˆ ky x minus the corresponding 

desired output yk for a representative testing set of known 
sample vector pairs {(xk,yk)| k=1,...,NUM}. In typical applica-
tions there is a unique σ  that produces the minimum MSE 
between the model (1) output and the desired output for the 
testing set, and it can be found quite easily by trial and error. 
The relation between σ and MSE is usually smooth with a 
fairly broad minimal MSE section. Consequently, tuning is 
not critical to achieve an adequate regression model ( ) ˆ xy . 

The TAPLR model (1) can be usefully seen as a method of 
MPNN network size reduction. The local linear models li(x) 
in (1) simply replace fixed training values yi in the MPNN. 
Another benefit of having the li(x) is that it allows for a more 
sensible extrapolation of the model into the data space for 
which there is no training data. Although it may be incorrect 
in specific cases, a linear extrapolation may be the best guess 
when nothing else is known, especially for short excursions. 
Finally, the model (1) structure controlled by the weighted 
RBFs provides a way of decoupling the local linear models 
li(x) from each other while smoothly merging them at their 
adjoining boundaries.  

THE FREQUENCY DOMAIN TAPLR MODEL 

The TAPLR model (1) is a general multivariate regression 
equation that can be used for arbitrary applications in either 
the time or frequency domains. In the context of FIR filter or 
system design from Bode plots (1) can be easily modified for 
log-log continuous-frequency domain scalar function model-
ling, as defined by (3), by adopting the following parameter 
set equivalents: 

ωlog=x  ; the log of arbitrary frequency variable ω . 

ii ωlog=c ; ith log of local frequency centre variable .iω  
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the frequency variables iωlog  uniformly spaced, therefore 

iZ  can be ignored since it is a constant, i.e., 

025.0loglogloglog 11 =−=−= −++− ikikiiiZ ωωωω  
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where: 

( ) |ˆ| ωH ; the magnitude filter response model estimate.  

iω ; the ith thm
1 octave centre frequency, where i = 0 is 

predefined for 0 Hz and 0ω is the first non-zero 

(starting) frequency .1ω  

|)(| iiH ω ; ith linear function response magnitude at .iω  
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in ; order of ith linear fn (Bode plot section), is (nega-
tive) for positive(negative) slope. 

)||,loglog(|| ωσωω iif − ; a suitable RBF centred at 

iωlog , typically Gaussian, i.e., (2). 

ωσ ; the single smoothing parameter for the vari-

able ωlog . 

Mω; the total number of non-zero reference centre fre-

quencies iω & local linear functions )(logωil .  

The dB magnitude frequency response model estimate (3) is 
based on an exponential nonuniform frequency spacing for 
the iω frequencies. In audio applications this is typically a 
fractional octave spacing. For example, starting with a stan-
dard frequency of 0ω =15.84893192 Hz (Davis and Davis 

1977) and a th121 octave spacing the 128th non-zero fre-

quency would be 128ω =23714 Hz. These are the frequencies 

adopted for this paper and when expressed as logarithms 
( iωlog ) as is done for (3), these frequency points are uni-
formly spaced. This is seen on typical audio frequency re-
sponse and Bode plots, where the magnitude is also repre-
sented in a logarithmic dB scale.  

The frequency response model estimate when defined ac-
cording to (3) using a logarithmic frequency variable will be 
seen as a  set of contiguous line segments, representing a 
Bode plot, for 0→ωσ  . However, as ωσ  is increased the 
estimate becomes more heavily smoothed and thus ap-
proaches a real response curve, where the Bode plot line 
segments will appear like asymptotic sections with respect to 
it. 

The exponential fractional octave frequency spacing used 
here is justified by the fact that many real systems, such as 
loudspeakers, are typically composed of multiple resonators 
all of which have approximately the same Q, or energy decay 
characteristics per cycle of decay (Keele 2004, Keele 1994). 
Consequently, relatively more frequency resolution is re-
quired at lower frequencies than at higher frequencies to fully 
capture the response characteristic without any loss of infor-
mation. This means that (3) is an efficient response model 
structure provided that the appropriate fractional octave spac-
ing is chosen, for a given system under test, according to its 
highest Q section. 

All design data and test data in this paper have been time 
collected at a sample rate of 48,000 Hz, on the assumption 
that this new system model will be used for problems related 
to typical audio systems. A th121 octave frequency spacing 

with 128 non-zero frequency references iω as described 
above, have been chosen to provide useful practical exam-
ples. During the design process the reference samples 

|)(| iiH ω  are either directly sampled from a real system or 

specified as required. The local linear functions )(logωil  

each pass through the values |)(| iiH ω  and are assigned a 
suitable slope by choosing the sign and magnitude of the 
local linear function order variables in  (order ≡ poles), 

where in  need not be restricted to integer values. 

THE NEW TAPLR FIR FILTER DESIGN 
METHOD  

The new FIR filter design method is based on the idea that 
the desired magnitude response can be made sufficiently 
smooth by an appropriate choice of ωσ  in (3) such that the 
resulting impulse response decays fast enough allowing it to 
be truncated without explicit windowing. This is effectively a 
band-limited interpolation of the frequency response func-
tion. 

Given a TAPLR (3) model with an appropriate choice of ωσ  
it can be used to provide, say, 2048 uniformly frequency 
sampled magnitude values. These are placed in order in a real 
buffer 2048 points long with zero values placed in the corre-
sponding 2048 point imaginary buffer. The buffer is then 
extended by another 2048 points and the complex values 
from the first 2048 points transferred to these in reverse order 
such that the two halves of the full 4096 buffer are symmetri-
cal about the centre. Next, a 4096 point discrete inverse Fast 
Fourier Transform (FFT) is applied to the full buffer to pro-
duce the corresponding 4096 point impulse response of the 
required magnitude response function. There are two prob-
lems with this impulse response. Firstly, it is acausal, being 
symmetrical about the first buffer point (zero time) because 
the FFT is cyclic or periodic. Secondly, it is too long to pro-
vide an efficient FIR filter design (the impulse response val-
ues are the required FIR filter coefficients). To design an odd 
length N (N<<4096) causal and efficient linear phase FIR 
filter all that needs to be done is to circularly shift (N-1)/2 
points forward in the time buffer.  

The TAPLR (3) FIR design method only requires taking the 
N unwindowed points uniformly sampled in a normal fre-
quency scale ω  from a sufficiently smoothed model (3), i.e., 

using a ωσ  that provides a band-limited smooth frequency 
response curve. If the frequency response samples have al-
ready been collected from a band-limited system then ωσ  
can be optimised by monitoring for the minimum MSE of 
some other measured samples between training or reference 
samples |)(| iiH ω  used to construct the TAPLR (3) model. 

For classical filter design ωσ  can often be chosen by trial 
and error according to the required or some acceptable 
smoothing. Otherwise, for arbitrary filter design a way to do 
it is to oversample during the design phase by, say, a factor of 
two times the required sampling rate frequency and progres-
sively increasing ωσ  until the out of band energy (above half 
the require system sampling rate frequency) drops to zero or 
to a sufficiently small level. 

SOME TYPICAL DESIGN EXAMPLES 

Three typical design examples are sufficient to show the 
main features and benefits of the new design approach; a 
loudspeaker frequency response equalisation, a classical low-
pass and an arbitrary Bode construction FIR filter design. 

Loudspeaker Frequency Response Equaliser Ex-
ample  

Figure 1 shows a typical loudspeaker frequency response 
curve and the appropriate equaliser design curve required to 
flatten the speaker’s response from 1000 Hz to about 20,000 
Hz. The desired equaliser response was determined by taking 
a 0 dB flat response from 0 Hz to 1000 Hz, then from 1000 
Hz to 20,000 Hz taking the negated speaker’s dB response 
exactly, and from 20,000 Hz up taking the speaker’s dB re-
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sponse exactly. When the equaliser is cascaded with the 
speaker it  leaves the speaker’s response as is up to 1000 Hz, 
gives a flat 0 dB response between 1000 Hz and 20,000 Hz, 
and then rolls off after that. In this example, the speaker’s 
anechoic response below 1000 Hz is already as required be-
cause when it is set in a listening room about 0.8 m from a 
back wall the wall reflection of frequencies below 1000 Hz 
will add to the direct response to provide an approximately 
flat combined response from about 100 Hz to 1000 Hz. 

Figure 2 shows a N = 81 point FIR equaliser design (TAPLR 
(3) with ωσ = 0.01) compared against the original desired 
equaliser response (offset by -5dB for clarity). The TAPLR 
design curve is almost indistinguishable (less than a fraction 
of a dB difference) from the original design specification and 
FIR filter design for N = 81. The TAPLR design approach is 
able to provide the correct degree of relative smoothing 
across the whole frequency range because it uses the same 
bandwidth RBFs, when implemented on a log scale, that are 
actually proportional to the exponential frequency spacings in 
a constant Q sense. Also, in this design much of the desired 
equaliser response was taken directly from loudspeaker re-
sponse measurements |)(| iiH ω  that were already band-

limited, therefore the choice of ωσ = 0.01 was easily found 
to be a suitable value to preserve the required band-limiting 
property. Figure 3 shows the impulse response of the FIR 
filter having the equaliser’s magnitude response and linear 
phase characteristics.  

 
Figure 1. Loudspeaker and Corresponding Required Equal-

iser Responses 

 
Figure 2. Loudspeaker Equaliser FIR Filter Design, N = 81 

 
Figure 3. Loudspeaker Equaliser FIR Filter Impulse Re-

sponse, N = 81 

Classical Lowpass FIR Filter Design Example 

A desired lowpass Bode response is shown in Figure 4, with 
a cut-off frequency at 2000 Hz and a four pole roll-off. This 
response has been constructed using the 128 stan-
dard th121 octave frequency spacings  starting at 

0ω =15.84893192 Hz and modelled using the TAPLR (3) 

equation. The N = 251 FIR filter frequency response resulting 
from the TAPLR (3) design prototype for ωσ = 0.05 is shown 

under the Bode plot in Figure 4. This value of ωσ  was se-
lected to produce a -3dB cut-off at 2000 Hz, approximating a 
Butterworth magnitude response. The designed FIR filter and 
TAPLR (3) model responses were nearly indistinguishable 
showing that the method produces a very good design that is 
faithful to the design prototype provided that a sufficiently 
large FIR filter size N is chosen. In this example a four pole 
lowpass filter has been developed but any degree of pole 
order, including fractional values such as 4.3, can be applied 
with equal effectiveness.   

 
Figure 4. Lowpass FIR Filter Design, N = 251 

Arbitrary FIR Filter Design Example 

The desired Bode response of an arbitrary filter shape is 
shown in Figure 5, having cut-off frequencies at 1000 Hz and 
2000Hz with four pole roll-offs from these. This response has 
also been constructed using the 128 standard th121 octave 
frequency spacings as before and modelled using the TAPLR 
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(3) equation. The N = 251 FIR filter frequency response re-
sulting from the TAPLR (3) design prototype for ωσ = 0.05 is 
shown under the Bode plot in Figure 5. Once again the de-
signed FIR filter and TAPLR (3) model responses were 
nearly indistinguishable. 

ANALYSIS OF RESULTS AND CONCLUSIONS 

The TAPLR (3) design approach allows for the control of the 
precise magnitude response from a desired Bode plot con-
struction by the adjustment of a single smoothing parameter. 
TAPLR model (3) has been adapted from (1) to provide an 
excellent basis for Bode plot representation and subsequent 
smoothing by using an exponential frequency scale. The 
chosen exponential fractional octave frequency spacing is 
justified for audio applications because it is not only consis-
tent with human perceptual characteristics but it also allows 
the frequency response to be specified in terms of constant Q 
bandwidth sections, which are then smoothed automatically 
in proportion to each other whilst still using the same single 
smoothing parameter.  

This paper has not only shown how the TAPLR (3) model 
can be used to design very good arbitrary linear phase FIR 
filters for audio applications from prototype Bode plots but it 
has also introduced a straight forward method of designing an 
agreeable loudspeaker equaliser directly from the loud-
speaker’s own response measurements. 

In this paper the Bode plot line segments have been allocated 
from either direct noiseless experimental measurements or by 

required design specification at standard th121 octave fre-
quency spacings. However, it is also possible to automati-
cally find an optimal set of line and sigma parameters for the 
TAPLR model, given noisy data, to produce an efficient 
overall frequency response model. This is the subject of on-
going research not only in the context of frequency response 
modelling but also for more general multi-dimensional sys-
tem modelling, approximation, regression, and data compres-
sion application. So far the work indicates that it is possible 
to produce both very accurate and efficient models based on 
the TAPLR structure. Furthermore, it may be possible to 
construct very accurate linear system transfer functions by 
simply noting the pole and zero positions after an automated 
optimal TAPLR regression is performed on the experimen-
tally sampled data set. 
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Figure 5. FIR Filter Design, N = 451  


