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ABSTRACT 

The aim of the work is to develop a practical active control strategy in which vibration of an arbitrary structure can be 
spatially-weighted for achieving a vibration reduction at the structural region of interest. Multiple sensors are used to 
sense the vibration of the entire arbitrary structure and a filtered-reference Least Mean Square (FX-LMS)-based adap-
tive control strategy is used to minimise the instantaneous error energy representing the spatially weighted vibration 
energy of the structure. A numerical study for spatial vibration control of a plate structure is discussed to demonstrate 
the control effectiveness of the adaptive spatial controller for tonal and broadband cases. 

INTRODUCTION 

For structural vibration control applications, it may not be 
efficient to rely on active control methods that heavily de-
pend on an accurate a-priori structural model, since obtaining 
such a model of a complex actual structure may not be prac-
tical. Furthermore, during the control operation, the dynamics 
of the structure may also change which means that a model-
based control may not perform effectively, and in the worst 
case may cause the system to be unstable.  Therefore, it is 
desirable to develop an active vibration control method that 
does not rely on the accurate a-priori model, which is usually 
being implemented with the use of some forms of adaptive 
algorithms (Haykin 2002; Elliot 2001)  

The work in this paper thus considers the use of an adaptive 
control method for regulating structural vibration when vibra-
tion at only certain structural regions needs to be minimised. 
The control method considers a spatially weighted vibration 
objective function that utilises multiple structural sensors for 
estimating the instantaneous spatial vibration profile. Other 
vibration control research that utilises multiple structural 
sensors  has also been common, such as in (Meirovitch and 
Baruh 1982; Meirovitch 1987; Pajunen et al. 1994), but the 
research generally has the objective for controlling the over-
all structural vibration.  

Recent work in (Halim and Cazzolato 2005; 2006) considers 
the case of employing a continuous spatial weighting func-
tion for emphasising the structural regions that need to be 
controlled. The control method utilises the estimation of the 
spatial vibration profile via spatial interpolations which does 
not require a-priori dynamic model of a structure. The work 
in this paper considers the use of this method by incorporat-
ing an adaptive control strategy which can be useful for prac-
tical vibration control purposes.  

ADAPTIVE SPATIAL CONTROL OF AN 
ARBITRARY STRUCTURE 

Here, the approach used to estimate the vibration profile is  
briefly described. Consider a panel structure of an arbitrary 
shape in Figure 1, where there are multiple structural sensors 
distributed over the panel. Let the vibration signal measured 
at each sensor at location (xi,yi) to be vi. An element/region 
(whose local coordinates are ),( )()( mm yx  for the m-th ele-
ment shown in Figure 1) can be constructed from several 

adjacent sensors or nodes at structural boundaries as illus-
trated in Figure 1. The vibration profile within each ele-
ment/region can be obtained via spatial interpolation func-
tions, whose implementation is similar to the one used in 
numerical finite element analysis (Bathe and Wilson. 1976; 
Cheung and Leung 1991). The vibration profile of the struc-
ture can be estimated by considering the contributions of all 
elements/regions over the structure (Halim and Cazzolato 
2006): 

)(),(),,( tvyxMtyxv ≈   (1) 

where v(t) is the vector containing all the measurements at 
the structural sensors, and M(x,y) contains a spatial interpola-
tion matrix that relates the sensor measurements to the vibra-
tion output at any point over the structure, as well as the lin-
ear matrix for transforming the local elemental coordinates 

),( )()( mm yx  to the structural coordinates (x,y). 

 
Figure 1. A structure with multiple structural sensors used 

for vibration profile estimation. 

Consider a spatial vibration signal as a function of structural 
locations at the n-th sample time: 

),,(),,(),,( nyxvnyxvnyxv ud +=   (2) 

where ud vvv ,, are respectively the total structural vibration, 
vibration due to disturbance and vibration due to control at 
various locations (x,y) over the structure. The spatial vibra-
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tion signal over the structure can then be estimated as fol-
lows: 
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The instantaneous spatial vibration is of interest here with the 
aim of reducing the spatially-weighted vibration energy 
across the entire structural region. In this case, a spatial 
weighting matrix, continuous in (x,y), can be introduced so 
that certain structural regions can be emphasised for control. 
The regions which are more important for control are given 
relatively high weightings. Introducing a continuous spatial 
weighting matrix Q(x,y)>0, the instantaneous spatial function 
that needs to be minimised is integrated over the region of the 
structure S: 
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and I,α are a small positive scalar and an identity matrix 
respectively with the purpose of ensuring a positive definite 
matrix R, since the numerical computation on R may produce 
small negative eigenvalues. Note that in practice, matrix 
Q(x,y) can be chosen to be a diagonal matrix whose elements 
consist of continuous spatial weighting functions, which can 
be obtained by using polynomial functions in x and y. 

The instantaneous spatial error signal e(n) now can be ex-
pressed as: 

)()()()()( nuzSndzPne Ω+Ω=  (7) 

where P(z) and S(z) are the discrete primary and secondary 
transfer matrices respectively. 

Employing the filtered-reference Least Mean Square adaptive 
(FX-LMS) algorithm, the filtered-reference signal r(n) is 
expressed by:  

)()()( nxzSnr Ω=   (8) 

where x(n) is the reference signal and S(z) is represented as a 
J-th order FIR (Finite Impulse Response) filter. For simplic-
ity in the formulation, scalar reference and control input sig-
nals, x(n) and u(n) are considered in this paper. 

The FIR controller, whose coefficients are contained in vec-
tor w(n), generates a control input signal u(n): 

).()()( nxnwnu T=   (9) 

The controller’s coefficients are obtained from an LMS adap-
tive optimisation of the instantaneous spatial cost function 
J(n): 
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Thus, by employing the gradient previously obtained, the 
LMS adaptation becomes: 

µβγ
µγ
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    (11) 

where a leaky adaptation algorithm has been used to increase 
the stability of the adaptation (Elliot 2001). Here, βµ,  are 
the convergence coefficient and the leakage factor respec-
tively. 

The implementation diagram of FX-LMS adaptive feed for-
wad spatial control is illustrated in Figure 2. For a feedback 
control option, the reference signal can be modified so that 
the disturbance signal can be estimated  (Elliot 2001). 

 
Figure 2. FX-LMS adaptive spatial control diagram. 

NUMERICAL STUDIES: ADAPTIVE SPATIAL 
CONTROL OF A PANEL STRUCTURE 

The developed FX-LMS adaptive spatial control is now im-
plemented on a simply-supported rectangular steel panel with 
4 x 4 structural velocity sensors distributed over the panel as 
shown in Figure 4. The dimensions of the panel are 400mm x 
350mm x 2.8mm and point sources are used as disturbance 
and control sources as illustrated in Figure 3. Matlab and 
Simulink are used for this numerical simulation using a 15-
taps FIR filter for the controller. The partial differential equa-
tion that governs the dynamics of the panel is: 
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where ,E,fρ,h,ν denote the panel density, thickness, Pois-
son ratio, Young’s modulus, and the applied external forces 
respectively.  

The model of the panel is obtained using the modal analysis 
(de Silva, 2000) by including the first 12 vibration modes for 
frequencies up to 940 Hz. The natural frequencies of the first 
7 vibration modes are shown in Table 1. The interpolation 
function used is a linear function as described by Halim and 
Cazzolato (2006). For these numerical studies, only the two 
largest eigenvalues of matrix R in Eq. (5) are used, which 
means that the error signals are reduced from potentially 16 
to just 2 signals. The less number of error signals would ob-
viously simplify the adaptive control process which is impor-
tant for practical active control applications. 

 
Figure 3. A rectangular plate with locations of sensors, dis-

turbance and control sources. 

Table 1. The first 7 natural frequencies of the panel 
Mode Frequency [Hz] 
(1,1) 99.3 
(2,1) 228.4 
(1,2) 268.0 
(2,2) 397.1 
(3,1) 443.7 
(1,3) 549.1 
(3,2) 612.4 

Adaptive spatial control results for spatial weight-
ing I 

The first numerical study considers a particular spatial 
weighting function Q(x,y) shown in Figure 4. The height of 
the weighting reflects the importance of the region for vibra-
tion minimisation objective.  In this case, the region of inter-
est for vibration control is located close to the top right-hand 
corner of the panel. Figure 5 shows the typical eigenvalues 
for matrix R, in which only a few eigenvalues dominate. In 
this study, as mentioned previously, the first 2 largest eigen-
values are used and the rest of eigenvalues are ignored. 

 
Figure 4. Spatial weighting function I. 

 
Figure 5. Eigenvalue plots of R. 

 
Figure 6. RMS vibration level over the entire panel without 

control: tonal case for mode (1,2). 

 
Figure 7. RMS vibration level over the panel with adaptive 
control for the first spatial weighting : tonal case for mode 

(1,2). 
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The results for tonal control for mode (1,2) at 268.0 Hz are 
shown in Figures 6 and 7. The results show the Root Mean 
Squared (RMS) vibration velocities across the panel when a 
tonal excitation disturbance is injected into the system. It can 
be seen that by comparing the results for un-controlled and 
controlled cases, the vibration at the structural region with the 
highest weighting at the top right-hand corner of the panel 
has been reduced more than that at other regions although the 
overall vibration has also been minimised.   

The overall vibration can also be minimised because the 
adaptive controller attempts to control vibration modes that 
have a significant contribution to the region of interest, which 
means that vibration at other regions may also be reduced. 
However, it is also possible that the vibration level at other 
regions is increased, particularly if large control gain is al-
lowed since the controller will force the vibration at the re-
gion of interest to be lower, even at the expense of vibration 
at other regions.  

 
Figure 8. RMS vibration level over the entire panel without 

control: tonal case for mode (3,2). 

 
Figure 9. RMS vibration level over the panel with adaptive 
control for the first spatial weighting : tonal case for mode 

(3,2). 

Figures 8 and 9 depict the results for the tonal control of 
mode (3,2) at 612.4 Hz. The region at the top right-hand cor-
ner of the panel has again been minimised as expected.  

The results for broadband excitation are considered in the 
followings. A white noise disturbance input, low-pass filtered 
with the cut-off frequency of 800 Hz, is injected into the 
system, where the first 8 vibration modes are inside this fre-
quency bandwidth. The RMS of the vibration velocities over 
the panel is shown in Figures 10 and 11 for the un-controlled 
case and controlled case respectively. The overall RMS 
across the panel has been reduced by the action of the adap-
tive spatial control, with a particular reduction occurred in the 
region around the centre of the plot (i.e. observe the concave 

shape of the RMS plot). The result can be expected based on 
the spatial weighting used for this study. Note that this 
broadband result implies that the adaptive controller attempts 
to control the first 8 vibration modes simultaneously to 
achieve minimum vibration energy at the region of interest. 

 
Figure 10. RMS vibration level over the entire panel without 

control: broadband case. 

 
Figure 11. RMS vibration level over the panel with adaptive 

control for the first spatial weighting: broadband case. 

Adaptive spatial control results for spatial weight-
ing II 

 
Figure 12. Spatial weighting function II. 

The second spatial weighting function is shown in Figure 12 
where the region of interest has been moved to the left-hand 
side of the panel, with a different geometrical shape. The 
region of the highest weighting is shifted closer to the top end 
of the panel. The tonal control results for mode (2,2) at 397.1 
Hz are shown in Figures 13 and 14 where the region of 
minimal vibration occurs at the left hand side of the panel 
that corresponds to the region with the high weighting. The 
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region at the top end of the panel also experiences a signifi-
cant vibration minimisation.  

 
Figure 13. RMS vibration level over the panel without con-

trol : tonal case for mode (2,2). 

 
Figure 14. RMS vibration level over the panel with adaptive 
control for the second spatial weighting: tonal case for mode 

(2,2). 

 
Figure 15. RMS vibration level over the panel with adaptive 

control for the second spatial weighting: broadband case. 

Figure 15 shows the broadband control result where the adap-
tive spatial controller attempts to minimise the vibration level 

at the region of interest. Note that the symmetry in the results 
occurs because of the symmetry in the mode shapes for this 
simply-supported panel. The simulation results have demon-
strated the control performance in controlling the spatially-
weighted vibration. The performance depends on the con-
tinuous spatial weighting used which can be varied depend-
ing on the desired structural regions that need to be con-
trolled.   

CONCLUSIONS 

The implementation of an adaptive control strategy for spa-
tially controlling structural vibration has been presented. It is 
shown that by utilising the developed spatial filter, the instan-
taneous spatially-weighted vibration energy can be achieved 
and an FX-LMS adaptive control algorithm can be used ef-
fectively for tonal and broadband control cases. Since the 
control method does not rely on the dynamic model of the 
structure, it can be used for practical applications in conjunc-
tion with the adaptive control strategy presented here.  
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