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ABSTRACT 

A feedback model for wear-type rail corrugation has been modified to account for vehicle speed variations over suc-
cessive passages, so that the effect on corrugation amplitude growth can be investigated. The feedback model encap-
sulates the most critical interactions occurring between the wheel/rail structural dynamics, rolling contact mechanics 
and rail wear. Using this model, numerical and analytical investigations are performed to quantitatively identify the 
effect of deliberately changing the speed of successive vehicle passages in a statistically controlled manner. The ef-
fect of different initial track profiles on the results is also investigated. The results provide insight into a possible al-
ternative means of retarding wear-type corrugation growth. 

INTRODUCTION 

Rail corrugation is a significant problem for the railway in-
dustry worldwide. The type of corrugation on which this 
paper focuses is known as wear-type rail corrugation and is a 
particular concern to industry. It is characterised by long 
(100-400mm) and short (25-80mm) wavelengths. Rail corru-
gation is a periodic irregularity that is observed to develop on 
the running surface of the rail with use. This irregularity 
grows in amplitude as a function of the number of passes, 
until removal by grinding is required to ameliorate the exces-
sive noise, vibration and associated problems caused by the 
corrugated rail. This grinding is expensive and represents a 
substantial cost to the railway industry (Sato et al. 2002). 
There have been some techniques suggested to delay the 
onset of corrugations, such as rail hardfacing, but a reliable 
remedy, other than grinding, remains elusive. 

The high cost associated with removing corrugations has 
motivated much research into the prediction and prevention 
of corrugation. Research in Germany (Hemplemann and 
Knothe, 1996), Sweden (Igeland and Ilias, 1997), Japan (Ma-
tsumoto et al., 1996) and elsewhere has resulted in the devel-
opment of simulation methods which make use of complex 
finite element simulations of the track dynamics along with 
numerical models of the rolling contact mechanics. These 
models are useful in that they have successfully modeled the 
development of corrugations and also led to the identification 
of behavior that is characteristic of corrugation formation. 
One shortcoming of such models is the excessive computa-
tional expense of performing parametric investigations into 
trends that may reduce corrugation formation. It is thought 
that this limitation may be overcome by simpler analytic 
models of corrugation formation. 

Progress on analytical modelling of the growth of wear-type 
rail corrugation has been achieved by a number of authors 
over the past fifty years (see Sato et al. 2002 for a compre-
hensive review). Modern examples of such models can be 
found in the work of Bhaskar et al. (1997), Muller (2001) and 
Nielson (1999). Potential shortcomings of these models are 
described in Meehan et al. (2005) and include the lack of 
consideration of the effect of variable speed over successive 
vehicle passages.  

The model described in this paper is a modification of the 
simple finite pass time delay model described in Meehan et 
al. (2005), and is similar to the infinite pass delay model used 
in Song and Meehan (2004). It has been altered in this paper 
so as to account for different train speeds on consecutive 
passes. This should not be confused with varying speed, i.e. 
accelerating or decelerating during each pass, which is not 
considered here. This model uses a multiple degree of free-
dom modal description of the wheel and rail dynamics, a 
linear contact mechanics model and a feedback mechanism 
where the rail profile exiting a wheel passage is fed into the 
next wheel-set passage. It allows for an investigation into any 
reduction in growth rate that may be achieved by using dif-
ferent pass speed distributions, for a range of initial track 
profiles. These results provide insight into a possible method 
for reducing corrugation growth. 

CORRUGATION MODEL 

Time Domain Model 

The variable speed model used in this paper is an extension 
of the model used in Song and Meehan (2004). The system 
diagram for this feedback model can be seen in figure (1). 

This model can generally be described in four stages, as seen 
in figure 1. The first stage (I) is where the initial rail profile 
excites the dynamic components of the wheel-rail system. 
This leads to a variation in contact forces, which in turn af-
fects the contact mechanics (II). The variable contact me-
chanics leads to a variation in the wear process (III) and this 
worn rail profile is fed back into this system over successive 
passages (IV).  

This general model was used in Meehan et al. (2005) to de-
rive a model by considering a modal description of the dy-
namics (I), a linear contact mechanics model (II), the fric-
tional work hypothesis to derive a wear relationship (III) and 
a finite passage delay for the feedback process (IV). A modal 
description of the wheel/rail dynamics was chosen because 
experimental and theoretical evidence has shown that the 
approximately constant corrugation pitch can be associated 
with a dominant mode of system vibration. This model con-
siders only a vertical vibration mode, but could be extended 
to account for other modes. The contact mechanics model is 
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based on quasistatic microslip and considers small linear 
variations about nominal non-linear operating conditions (see 
Johnson, 1987). The dominant contributions for corrugation 
growth are assumed to come from the longitudinal compo-
nents of traction, slip and wear. The wear model is based on 
assuming that the rate of wear is proportional to the frictional 
power dissipated. 

In Song and Meehan (2004) this model was altered by con-
sidering an infinite time delay between passages (as is de-
scribed in part IV of figure 1) to develop an analytic solution 
for multiple wheel-sets traversing a bump at the same speed. 
The present analysis follows a more general derivation, in 
that the speed may be different on successive passages. This 
allows insights to be gained into the effect of varying pass 
speeds for a wide range of initial track profiles. Note that 
finite time delay, as investigated in Meehan and Daniel 
(2004), has not been included in this paper to simplify the 
analysis and still provide insight into any possible growth 
rate reductions. 

The equations that govern the modal wheel and rail dynamics 
(representing part I in figure 1) are given by, 
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for i =1 to M, where M is the number of modes and each yi is 
a component of the modal displacement of the wheel/rail 
system. These relate to the actual wheel and rail displacement 
by, 
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In these equations t represents time, ξi is the modal damping 
ratio, ωi is the natural frequency, mi is the modal mass, kc is 
the contact stiffness, pi is the modal contribution factor, zout is 
the nth pass rail profile and an is the ratio of the nth pass speed 
to the average pass speed.   

The equation that describes the wear and contact mechanics 
(parts II and III in figure 1) is given by, 
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where Cξ is the creep coefficient, ∆z0 is the steady state wear 
per pass and P0 is the steady state contact pressure. 

Transfer Function 

If the Laplace transforms of (1) and (4) are taken then, after 
some manipulation, the relationship between the (n+1)th rail 
profile and nth profile in Laplace Space can be shown to be 
given by, 
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Here s represents the usual Laplace Space complex variable, 
and Z(s) is the Laplace Transform of the rail profile z(t). 

A transfer function between the initial rail profile and the nth 
rail profile in Laplace Space can be derived by solving (7) for 
an initial profile Z0 to give, 
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Note that equations (1) to (10) are similar to those developed 
in Song and Meehan (2004), except that the variable pass 
speeds result in a product over the number of passes in equa-
tion (10), the speed scaling factor ak has been introduced and 
the sum over modes has been retained. 

Frequency Response 

To develop a method for quantifying the growth rate, the 
peak of the frequency response’s amplitude ratio as a func-
tion of pass number (n) shall be investigated (the “H∞ norm” 
encountered in modern control theory). This measure of cor-
rugation growth is useful because it is relatively simple to 
derive the frequency response (using the transfer function 
(10)) and also that the H∞ norm has useful properties relating 
to the magnitude of the corrugated profile when compared 
against the input profile (for example, it will be equal to the 
ratio of the induced (worst-case) 2-norms of the output and 
input profiles in the time domain (Skogestad and Pos-
tlethwaite, 1996), making it a useful, general measure of  the 
expected corrugation amplitude).  

Figure 1. Feedback model for wear-type rail corrugation. 
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This frequency response peak can also be interpreted in a 
more simple way as being related to the height of the highest 
peak of the Fourier Transform of the corrugated output pro-
file (however caution should be taken with this assumption, 
as the transients generated from different initial profiles can 
have a large effect for a small number of passes, as is de-
scribed in Song and Meehan (2004). These effects become 
less evident as the number of passes becomes large). 

If the assumption is made that the modes in the transfer func-
tion (10) are independent, then the following expression for 
the amplitude ratio of the frequency response can be derived, 
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Probabilistic Speed Distribution  

It is of interest to examine the behavior of this frequency 
response as the number of passes becomes large and when 
the speeds are distributed randomly. If the ratio of speeds, x, 
are distributed according to some probability distribution, 
p(x), then the expected value of the frequency response can 
be evaluated. The expected value of a general function, f(x), 
of a random variable, x, with a probability distribution, p(x), 
is defined by, 
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(See for example Galambos and Simonelli, 2004). The ex-
pected frequency response can now be derived by consider-
ing the ratio of successive passes, which, after some manipu-
lation of equation (11), can be shown to be given by, 
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The expected frequency response for a large number of 
passes can now be evaluated by performing the integral in 
equation (13), provided the modes are sufficiently independ-
ent. 

ANALYTIC SOLUTIONS 

The transfer function (10) allows the analytic solution to be 
formed for different initial profiles and for any chosen se-
quence of pass speeds. In this paper three different profiles 
are chosen that represent idealisations of what is found in 
practice; these profiles are a sinusoid, a step and an impulse. 

Solution to Sine Initial Profile 

A sinusoidal rail profile can be thought of as an approxima-
tion to a train traversing a previously corrugated rail. In the 
time domain a sinusoidal profile with arbitrary amplitude (A) 
and angular frequency (b) is given by, 

0
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In Laplace Space it can be shown that this becomes, 
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Now by multiplying transfer function (10) by initial profile 
(15), the solution to the nth pass profile can be found by per-
forming a Heaviside expansion (assuming no two passes have 
exactly the same speed) and then performing an Inverse 
Laplace Transform. The solution can then be shown to be 
given by 
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Equation (16) defines the time domain solution (which can be 
converted to the space domain solution through the mean 
velocity) for the whole rail profile for the nth pass. Note that 
the equations for the coefficients (17) to (20) may appear to 
go to zero, but the term in brackets will cancel with a term in 
the denominator of (21). 

Solution to Step Initial Profile 

A step initial profile can be thought of as an idealisation of a 
wheel-set traversing a finite step of a long duration, such as 
going from one rail section and then onto another that is at a 
slightly different height (perhaps due to a different rail mate-
rial hardness). It can also be thought of as an initial displace-
ment perturbation to the wheel-set on a flat section of track. 

Mathematically this step profile in Laplace Space will be 
given by, 

0
AZ
s

= ,  (22) 

where the step occurs at the time origin and A is the step 
height. Again by multiplying (10) by (22) the nth pass profile 
in Laplace Space can be found, and by performing a Heavis-
ide expansion and taking the Inverse Laplace transform, the 
time domain solution can also be found, giving, 
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Solution to Impulse Initial Profile 

The last profile to be considered is an impulse profile. This is 
an idealisation of a wheel-set traversing a small bump or dip 
of finite duration, such as going over a small weld. Mathe-
matically this will be represented as a delta function, which 
for convenience will be set at the time origin.  

It can be shown that the impulse profile solution will be equal 
to the time derivative of the time-domain step solution, the 
only difference being that in this case the coefficient A in 
equation (23) will be given by, 
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Thus the solution will be given by, 
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where the coefficients are the same as those given in equa-
tions (24) to (27). 

RESULTS 

The first part of the results section will detail the correlation 
between these analytic solutions and the outputs given by a 
numerical straight track simulation, which is described in 
Meehan et al. (2003), where both models use two modes. The 
second part will show the growth rate reduction predicted by 
(13) for three sample probability distributions.  

Comparisons with Numerical Simulations 

To compare the analytic solutions with numerical simula-
tions, the same sequence of randomly generated pass speeds 
were used in both the numerical model and the analytic 

model. The coefficients used were generated from realistic 
physical data, as shown in table 1. The Fourier Transforms of 
these profiles were then taken, so that the frequency content 
of the signals could be compared. Some sample plots can be 
seen in figures (2), and (3). These plots show the results ob-
tained for the rail profile in space and frequency domains by 
using an impulse initial profile. The plots also show speed 
distributions with different standard deviations in speed, to 
highlight the effect that speed distribution has on growth rate. 
Plots of the numerical and analytic solutions are shown over-
laid; note that the high degree of correlation makes it difficult 
to discern the difference between the analytic and numerical 
solutions. 

 

 

 
Figure 2. Rail Profile Numerical and Analytic Solutions for 

Impulse Profile after 50,000 passes. (a)  2.5%, (b) 5% and (c) 
10% standard deviation in speed distribution. 
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Figure 3. Frequency Spectra of Rail profile after 50,000 

passes. (a), (b) and (c) are as in figure 2. 

These plots give a good indication of typical results obtained 
when comparing these analytical solutions to results from the 
numerical simulator for the sinusoidal and step profiles, 
which have been omitted for the sake of brevity. The high 
correlation between these results gives confidence in the 

validity of both the numerical method used and of the ap-
proximations used to derive the analytic solution. 

To show more detail of the frequency spectra plots and also 
to highlight the interesting effect that speed distribution has 
on the growth rate of corrugations, figures (4), (5) and (6) 
show the low frequency peak (at approximately 300Hz) of 
the Fourier Transform of the output profile for a sequence of 
normally distributed speeds but with each having a different 
standard deviation. This peak was chosen as it is the largest 
peak due to the dynamic wear. It can be seen that for all the 
initial profiles considered the same trend is observed that the 
larger the standard deviation the lower the growth rate. This 
is investigated further in the next section. 

 
Figure 4. Peak of Frequency Spectra for a sinusoidal initial 

profile, for three different speed distributions.  

 
Figure 5. Peak of Frequency Spectra for a step initial profile 

for, three different speed distributions.  

 
Figure 6. Peak of Frequency Spectra for an impulse initial 

profile, for three different speed distributions.  

Table 1. Railway Parameters for Simulation 
Mean speed (m/s) 22.22 Track length (m) 6 
Wheel mass (kg) 350 Rail density (kg/m) 7700 
Wheel radius (m) 0.46 Rail Radius (m) 0.3 
Wheel load (kN) 66 Coef. of friction 0.4 
Young’s Modulus  
(Steel) (N/m2) 

2.1 × 1011 Primary rail damp-
ing ratio 

0.01 

Poisson’s Ratio 0.3 Contact damping 
ratio 

0.0021 

Shear Modulus (Pa) 7.7 × 1010 Sleeper spacing (m) 0.6 
Sine amplitude (m) 1 × 10-9 Sine wavelength (m) 0.025 
Bump length (m) 0.001 Bump height (m) 1 × 10-6 

Step height (m) 1 × 10-7 Wear coef. (kg/Nm) 1 × 10-6 
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In figures (4), (5) and (6) there is some difference between 
the analytic and numerical peak height (particularly for the 
step profile for a 2.5% standard deviation speed distribution), 
most likely due to the resolution of the Fast Fourier Trans-
form. Overall the numerical and analytic results show good 
agreement for the growth of the highest amplitude peak of the 
Fourier Transform. 

Growth Rate Reduction 

To find out the expected frequency response for a distribution 
of pass speeds, the integral in equation (13) can be evaluated 
either numerically or analytically. To investigate the growth 
rate reduction for different distribution properties, three dif-
ferent probability distributions have been examined. They are 
a uniform distribution, a triangular distribution and a normal 
distribution. 

A uniform distribution gives an equal probability to all pass 
speeds within a certain range and is defined by, 
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A triangular distribution is defined by, 
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and zero outside a and b. In (31) coefficient a represents the 
lower bound, coefficient b is the upper bound and coefficient 
c is the mode. In this paper triangular distributions that are 
symmetrical about the mode have been used.  

A normal distribution is given by, 
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where σ is the standard deviation and µ is the mean.  

To calculate the expected frequency response, equations (30), 
(31) and (32) can be used in equation (13) and the integral 
evaluated numerically. The peak of the frequency response, 
which shall be denoted by, 
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can then be found and plotted against a distribution property. 
The growth rate Gr is then defined by, 
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as in Meehan et. al. (2005), and as stated previously we can 
relate this to the worst case ratio of the 2-norms of the output 
and input profile, which will grow like, 
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As mentioned previously, for some initial profiles (in particu-
lar an impulse profile or a corrugated profile with a frequency 
close to the expected resonant frequency of the system), this 
will also describe the growth of the peak of the frequency 
spectrum of the output profile. 

To show the validity of this analysis, figure (7) shows the 
theoretically expected growth rate for a normal distribution 
versus the distribution’s standard deviation (the solid line). 
Also plotted is the average growth rate obtained from nu-
merical simulations, where an impulse initial profile has been 
used with the same parameters that are shown in table 1. 

 
Figure 7. Growth Rate vs. Standard Deviation. 

This growth rate was obtained by evaluating multiple runs of 
100 accelerated wear passes (equivalent to 100,000 real 
passes), all generated with normally distributed pass se-
quences of a fixed standard deviation, and then averaging 
these growth rates. The mean growth rate from the numerical 
simulation is represented by the star and the triangle is the 
one standard deviation error bar. Similar plots have been 
obtained for triangular and uniform distributions. It can be 
seen that there is a good relationship between the theoretical 
growth rate and the growth rate obtained by the numerical 
simulations. Accelerated wear passes have been used (by 
artificially increasing the wear coefficient) because it signifi-
cantly reduces computation times and introduces negligible 
error. Using equation (35) it can be shown that the error in 
this assumption can be approximated by, 

( ) 2% error 100 1
2 r
n F G⎛ ⎞≈ −⎜ ⎟

⎝ ⎠
,  (36) 

where F is the wear acceleration factor. In these examples the 
maximum error induced by this assumption will be roughly 
0.5%. 

To show comparisons between these different distributions a 
common property of all the distributions is required. The two 
methods of comparison that have been examined in this paper 
are matching the variance of the three distributions and 
matching the width in which 95% of all passes will occur.  

The variance is defined by, 

2 2( ) ( )x P x dxσ µ= −∫ ,  (37) 

where σ2 is the variance and µ is the mean of the distribution. 
The variance can be thought of as the standard deviation 
squared. 
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Figure (8) shows the distributions when the variances are 
matched. Figure (9) shows the expected growth rate reduc-
tion for all three of these distributions when considering the 
variance. 

 

Figure 8. Probability Distributions with Matched Variance 

 
Figure 9. Growth rate vs. variance 

All three distributions share the property that a wider vari-
ance results in a lower growth rate, with the greatest reduc-
tion being achieved by a triangular distribution and the low-
est reduction given by the uniform distribution. 

To serve as another basis for comparison of the growth rate 
reduction, the distributions were compared by matching the 
width in which 95% of passes will occur. This is intended to 
give a relative size comparison between the distributions. 
Figure (10) shows the three distributions with matched 95% 
width. 

 
Figure 10. Probability Distributions with matched 95% 

width. 

In figure (11), the growth rate reduction for the three distribu-
tions of equivalent width is shown, which follows the same 
trend as the matched variance case. 

 
Figure 11. Growth rate vs. 95% width. 

Figures (9) and (11) show that, for all the distributions con-
sidered, the theoretical growth rate can be reduced by a sig-
nificant amount by increasing the “width” of the speed distri-
butions. As an example of this, consider two sequences of 
normally distributed pass speeds, with the same mean, but 
2% and 4% standard deviations. Using equation (35) and the 
data shown in figure (7), it can be shown that it will take 
approximately two times the number of passes for the corru-
gation amplitude to reach the same height. The same is ap-
proximately true for 4% and 8% standard deviations, etc. 
Thus a substantial reduction in the theoretical growth rate 
appears achievable.  

It is observed that the broadness of the frequency response 
peak may reduce the effect of speed variation. This can be 
seen in figure (12) where the growth rate reduction for a 
normal distribution is plotted for various damping values. In 
this figure the damping used in table (1) has been increased 
by two and five times, broadening the frequency response. 

 
Figure 12. Growth rate vs. standard deviation for a range of 

damping values. 

From this figure it can be seen that speed variation becomes 
less effective as the damping is increased. This effect can be 
more clearly seen if the predicted increase in grind interval is 
considered, that is the factor by which the theoretical time 
between grind intervals will be increased when compared 
against no speed variation. For example, if at a certain site 
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there is no speed variation and corrugations reach an ampli-
tude that requires regrinding every year and then speed varia-
tion is introduced with a factor of increase f, it will now take f 
years for corrugations to reach the same amplitude. This fac-
tor of increase in grind interval is shown in figure 13. 

 
Figure 13. Factor of Increase in Grind interval (relative to no 
speed variation) vs. Standard Deviation for a range of damp-

ing values. 

This shows that speed variation will increase the predicted 
grind interval by a considerable amount, even for the highly 
damped condition. As an example of the effectiveness of 
speed variation, the five times nominal damping example will 
still have a factor of increase in grind interval of approxi-
mately three for a 5% standard deviation in speed, which is 
considerably raised, which would result in grinding costs per 
annum being reduced to a third. It should also be noted that 
increasing the damping also reduces the growth rate when 
there is no speed variation, as discussed in Meehan et al. 
(2005) 

CONCLUSIONS 

An analytical solution for variable speed passes for three 
different initial rail profiles has been developed. These solu-
tions show very good agreement with numerical simulations. 
The frequency spectra of these solutions, obtained by using a 
Fast Fourier Transform, are also in agreement. These solu-
tions show that, for all the initial profiles considered, the 
properties of the probability distribution of speeds has a large 
effect on the growth rate of the corrugations. A frequency 
domain expression, derived from the analytic model using 
probability theory, shows good agreement with the numerical 
and analytical models and also allows for quantitative analy-
sis of the growth rate reduction. Results of this analysis for 
realistic parameters indicate that substantial reductions in 
growth rate may be achieved by increasing the “width” of the 
speed distribution, such as by increasing the standard devia-
tion. It has also been shown that increasing the breadth of the 
frequency response appears to make speed distribution less 
effective at reducing the growth rate, but large reductions in 
growth rate still occur. 

A possible limitation of the approximate frequency response 
analysis is that it assumes that the modes are independent. 
Future work will include relaxing this assumption to examine 
what effect more complex linear response dynamics will have 
on the expected growth rate reduction. Another limitation of 

the variable speed model as a whole is that it does not take 
account of non-linear behaviour, and is thus limited to small 
amplitude corrugation growth.  

While these results show that there is a good correlation be-
tween analytical and numerical models, the validity when 
compared to real systems still needs to be evaluated. This 
will be tested in studies currently being planned, using both 
field data and an experimental test rig. Extensions of this 
work that are under consideration are the investigation of 3D 
cornering conditions and the effect on growth rate, the inclu-
sion of a contact filter for short wavelengths and the inclusion 
of short, finite time delay effects.  
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