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ABSTRACT 

The propagation of longitudinal magnetoelastic waves in a rod is under our consideration. Magnetoelasticity is a scientific 

branch which arose on the junction of mechanics of deformable bodies, electrodynamics and acoustics. It studies dynamic 

processes arising during interaction between electromagnetic and deformational fields. The nonlinear Bernoulli's model of 

a rod has been used for describing longitudinal oscillations. The rod assumed an ideal conductor. For the research we've 

got the evolutionary equation from the system of equations of magneto-elasticity. For that we entered a small parameter 

into the system. The obtained evolutionary equation represents Riemann equation with regard to axial deformation. Profile 

of the Riemann wave is corrupting along with propagation because different wave's pieces have different velocity. That is 

why at a certain moment of time the wave turns over. Under this model the time when the wave turns over depends on the 

value of the external magnetic field. The profile of the wave has been taken as a sine at initial moment of time. The 

moment of the wave's inversion grows with increasing of the value of the external magnetic field. Thereby external 

magnetic field stabilizes the Riemann wave increasing the time of its inversion.  

The effect of magnetoelasticity was discovered by the Italian 

physicist E. Villari in 1865. However magnetoelasticity as a 

scientific branch began to develop at the end of the 50-ies of the 

XX century. It arose on the junction of mechanics of 

deformable bodies, electrodynamics and acoustics. The first 

works were initiated by problems in geophysics. It was 

necessary to describe wave dynamics of deep layers of Earth 

taking into account its conductivity and interaction with the 

geomagnetic field. Since that time dynamic processes arising 

during interaction between electromagnetic and deformational 

fields have been intensively studied.  It is connected with 

different physical, technical and technological applications. 

Among them is the problem of durability of constructions 

operating in strong electromagnetic fields when Ampere forces 

have significant influence on strength properties. Noncontact 

actuation of oscillations and waves helps to solve different 

problems in crack detection and vibratory processing of stiffing 

fusions. 

Including fields of different physical nature into mechanical 

systems opens new opportunities for technical and 

technological development. Effects of magnetoelasticity appear 

in strong magnetic fields when produced strains have major 

influence on wave and dissipative characteristics of medium or 

thin bodies: rods, planes, membranes. Anisotropy of properties 

is typical of boundless magnetoelastic medium in a magnetic 

field. In medium with finite conductivity a magnetic field leads 

to additional dissipation mechanism. Such features of 

magnetoelastic systems open new possibilities of practical 

application. 

In magnetoelasticity, the influence of a magnetic field on a 

deformational field is described employing the Lorentz forces 
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which enter equations of motion of an elastic body  
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Here 


E  is the intensity of the magnetic field ; 


j  is the vector 

of the electric  current density, 


B  is the magnetic induction 

vector; 
e

ρ  is the volumetric density of the electric charges; 



u is displacements vector ; λ,μ  are the Lame constants ; ρ is 

the density of material; τ is the time. 

The force nonlinearF


 includes elements which result from the 

consideration of elastic nonlinearity. If only the quadratic 

nonlinearity is taken into account, then components of the 

vector can be represented through the gradients of 

displacements as follows [7]:  
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Here CBA ,,  are the Landau constants; (index after comma 

means differentiation with respect to the corresponding 

coordinate; repeating indices mean summation. 

From Maxwell equations, one can obtain equations for electric 

and magnetic inductions










D  and 









B , respectively: 

 

 ,jHrot
D 







                                          (4) 

,




























BΔ

πσ

c
B

τ

u
rot

B

4

2

                (5) 

 

which along with electromagnetic equations of state  
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need to be added to equations (1), (2). Here 


H  is intensity of 

the magnetic field, σ  is the conductivity, e
ε  is the 

permittivity and 
e

μ  is the magnetic conductivity, c is the 

electromagnetic constant. 

In magnetoelasticity, are neglected both biasing current and 

electric field. Due to this, equations of magnetoelasticity can be 

written as follows: 
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Along with classic models there are the so-called “précised” or 

non-classic models in rod dynamics. Those models consider 

additional factors that affect the dynamic processes or are free 

from certain hypotheses used in engineering theories and 

limiting their application areas. Bishop’s model generalizes the 

classic theory of Bernoulli that’s used to describe longitudinal 

oscillations of the rod. It additionally considers the kinetic 

energy of transverse deformations. 

We consider propagation of the longitudinal waves in a 

homogeneous nonlinear elastic rod placed in an external 

magnetic field. Let us suppose that external constant magnetic 

field with intensity 
0

H  is transverse to the direction of the 

waves’ propagation (see Figure. 1).  

 

 

Figure 1. Rod in an external magnetic field 

 

Generally, magnetic field which results from the interaction 

between external constant magnetic field and the deformation 

field can be represented as follows: 
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where  



h  is  a small disturbance of the magnetic field, 



n  is 

the normal vector. 

For longitudinal elastic waves in the rod and for the magnetic 

field, we obtain the following expressions:  
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The system of equations of magnetoelasticity, according to the 

Bernoulli’s model of the ideal conductive rod, can be written as 

follows: 
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Here 
ρ

Ec
0
  is the velocity of longitudinal waves. 

According to the model under the consideration, only a 

transverse component of the magnetic field  
3

h  is taken into 

the account. Other items in the system (10), which include 

components    
21

h,h  have smaller order than others and 

therefore can be neglected. Thus expressions (9) can be 

presented as follows: 
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For the further research, we need to obtain the evolutionary 

equation. To achieve that, we make the change of the variables 

and introduce a small parameter. Let us rewrite system (10) in 

the form 
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Here 
x

u
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  is the deformation, 
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G , ν  is the 

Poisson coefficient , 
F

J
R 0  is the polar radius of 

gyration,  dFxxJ
F
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F  is the area of cross-section of the rod,        
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nonlinearity coefficient. 

We introduce dimensionless variables 

 

τ
νR

c
τ,x

νR

1
x

,
H

h
W,

c

G
VQ,U

0
~

11

~

0

3

0




   (13) 

 

as well as a moving reference system: 
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where 
p

V  is characteristic wave velocity, not known in 

advance,  is a small parameter. 

Substituting (13) and (14) into (12) and omitting items one of 

the second order and higher, we obtain the following systems of 

equations: 
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which represent zero and first dimensionless approximations of 

the system (12), respectively. Using the 2nd and 3rd equations 

in (15), we obtain the connection between the functions: 
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and from the 1st equation we determine the velocity: 
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Here 
πρ4

H
c

2

0
A
  is the Alfven wave velocity. 

Substituting (17) and (18) into (16) and summing the obtained 

equations, we transform it to the equation of the form 
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Equation (19) represents Riemann equation and it is 

equivalently to the following characteristic system: 
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which has the following complete integral: 
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where  Uψ  – arbitrary function. 

The general solution of (19) can be written as follows: 
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where F – is the inverse function with respect to ψ  and can be 

found from initial and boundary conditions. 

Expression (22) is known as a simple wave or the Riemann 

wave. Profile of the Riemann wave is corrupting along with 

propagation because different wave’s pieces have different 

velocity. The set of the profile’s points where   0tx,U   will be 

stationary. 

Let’s consider in more detail a nonlinear evolution of a wave 

which initially was assigned as a sinusoidal wave 
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here tUkαt
01

  – dimensionless time. 

The graphical analysis of nonlinear corruptions of the simple 

wave (23) is shown in Figure. 2: 

 

 

Figure 2. Simple wave’s profile corruption: 1 – 0t
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From the Figure.2 one can see that at a certain moment of time 
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  the wave has infinite tangent and then (when 
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1
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it becomes multivalued. Such phenomenon sometimes calls 

wave capsizing. It begins when on the wave’s profile a point 

with vertical tangent appears. Parameters of upset point 
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 can be found from the following system: 
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Solving the system (24) we get the capsizing happens when 
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 Returning to “real” dimensional time 

we obtain that capsizing happens at the following moment: 
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which depends on external magnetic field intensity Figure.3: 

 

 
Figure 3. Capsizing time dependency on magnetic field 

 

For condensed media in magnetic fields under 10 tesla, Alfven 

wave velocity is smaller than a longitudinal wave velocity. That 

is why, changing of all parameters is shown on 1
c

c
0

0
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interval. 

From Figure.3 one can see that the increase of magnetic field 

leads to the increasing of capsizing time.  

In this paper, we have obtained the evolutionary equation for 

the system of magnetoelasticity equations according to the 

Bernoulli’s model of the ideal conductive rod; studied the 

influence of an external magnetic field on longitudinal Riemann 

wave propagation. The analysis performed proves that the 

magnetic field affects the time of wave capsizing. 
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