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ABSTRACT 

This work investigates the use of inertial actuators to actively reduce the sound radiated by a submarine hull under harmonic 

excitation from the propeller. The axial fluctuating forces from the propeller are tonal at the blade passing frequency. The 

hull is modelled as a fluid loaded cylindrical shell with ring stiffeners and two equally spaced bulkheads. The cylinder is 

closed by end plates and conical end caps. The forces from the propeller are transmitted to the hull by a rigid foundation con-

nected to the shaft with a thrust bearing. The actuators are arranged in circumferential arrays and attached to the internal end 

plates of the hull. Two active control techniques corresponding to active vibration control and active structural acoustic con-

trol are implemented to attenuate the structural and acoustic responses of the submarine. An acoustic transfer function is de-

fined to estimate the far field sound pressure from a single point measurement on the hull. The inertial actuators are shown to 

provide control forces with a magnitude large enough to reduce the structure-borne sound due to hull vibration. 

INTRODUCTION 

Low frequency radiated noise is an important issue in ships 

and submarines due to the fluctuating forces from the propel-

ler at the blade passing frequency (rotational speed of the 

shaft multiplied by the number of blades on the propeller). 

The harmonic forces result from the rotation of the propeller 

in a spatially non-uniform wake [1]. Due to the size of marine 

vessels and the magnitude of the forces involved, noise re-

duction efforts have mainly concentrated on using passive 

control techniques applied to the propeller-shafting system 

[2, 3] or modification to the propeller shaft and thrust bearing 

[4, 5]. A range of passive and active control means have been 

applied to control the vibration of cylindrical shells, includ-

ing the use of passive damping layers [6], discrete piezoelec-

tric actuators [7] and an active constrained layer damping 

treatment [8]. Active control techniques to reduce both the 

vibration and sound radiated by flexible structures have re-

ceived much attention in the past three decades. Two main 

strategies are active vibration control (AVC), which focuses 

on reducing the vibration level of a structure and active struc-

tural acoustic control (ASAC), which aims to reduce struc-

ture-borne radiated sound by application of control inputs to 

the structure [9]. Pan and Hansen [10] present a theoretical 

analysis of active control of the power transmission in a 

semi-infinite cylinder using circumferential arrays of control 

force and error sensors. Maillard and Fuller [11] investigated 

the use of piezoelectric actuators to reduce the sound radiated 

by a cylinder using discrete structural acoustic sensing 

(DSAS), where point sensors on the structure were used to 

estimate the radiated pressure. Recent work by Pan et al. [12, 

13] presents active vibration control of the low frequency 

hull vibration and radiated noise for a submarine hull, in 

which the control moment actuation was generated on the 

radiating hull surface using a stiffener. 

In this work, active control techniques are used to reduce the 

low frequency sound radiated by a submarine hull under axial 

excitation from the propeller. Inertial actuators are arranged 

in circumferential arrays and are located on the internal end 

plates of the hull, in order to produce sufficient secondary 

forces to reduce the primary effect of the propeller force. The 

performances of both AVC and DSAS are examined. In the 

first control strategy, active vibration control is implemented 

to minimise a cost function based on the structural response. 

As the use of microphones located in the surrounding fluid 

medium to directly measure the sound field is not practical 

for a submarine during operating conditions, discrete struc-

tural acoustic sensing (DSAS) has been implemented. Using 

this control strategy, the far field sound pressure has been 

estimated using an error sensor located on the structure. The 

sound radiated by the submarine hull in the far field is de-

scribed in the frequency domain in terms of the hull axial 

displacement, in order to define an acoustic transfer function. 

The transfer function is then used to filter a single measure-

ment point of the axial displacement and estimate the radi-

ated sound pressure at various far field locations. The uncon-

trolled and controlled structural and acoustic responses of the 

submarine hull for various arrangements of the two control 

strategies are presented. 

DYNAMIC MODELLING 

Submarine hull 

The submarine hull is modelled as ring stiffened cylindrical 

shell with two equally spaced bulkheads and closed at each 

end by a truncated conical shell. The entire structure is sub-

merged in a heavy fluid medium. A dynamic model of the 

propeller-shafting system is included in the hull model and 

consists of the propeller, propeller shaft, thrust bearing and 

foundation, as shown in Figure 1. 
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Figure 1. Schematic diagram of a submarine hull 

A dynamic model to describe the structural and acoustic re-

sponses of the submarine hull shown in Figure 1 under 

asymmetric excitation has been previously presented by the 

authors [14]. For completeness of the present study, the 

model is briefly reviewed here for axisymmetric motion only. 

A schematic diagram showing the displacements and coordi-

nate system of the coupled cylindrical-conical shell is shown 

in Figure 2. The cylindrical shell is modelled using the 

Flügge thin shell theory [15] and the dynamic effect of the 

ring stiffeners is taken into account by averaging the stiffener 

properties on the shell [16]. The equations of motion to de-

scribe the axisymmetric vibrations of the cylindrical shell are 

given in terms of u and w, which correspond to the axial and 

radial components of the shell displacement as a function of 

the axial coordinate x. 

Figure 2. Coupled conical-cylindrical shell 

The time harmonic dependence j te ω−  is omitted in the pro-

ceeding analysis. The equations of motion for axisymmetric 

vibrations of  the stiffened fluid loaded shell are given by 

[14] 
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ω  is the angular frequency. / 12h aβ =  is the thickness 

parameter, where a and h are the mean radius and thickness 

of the shell. The ring stiffeners have cross sectional areal A, b 

is the stiffener spacing, 
e

z  is the distance between the shell 

mid-surface and the centroid of a ring, and I is the area mo-

ment of inertia of the stiffener about its centroid. 
3 2

/ (12 )D Eh υ= −  is the flexural rigidity and 
2 1/2[ / (1 )]

L
c E ρ υ= −  is the longitudinal wave speed, where 

E, ρ  and υ  are respectively the Young’s modulus, density 

and Poisson’s ratio of the cylinder. 
eq

m  is an equivalent dis-

tributed mass on the cylindrical shell to take into account the 

ballast tanks and onboard equipment, which are considered 

rigidly attached to the shell. The external pressure p  can be 

written in terms of an acoustic impedance Z  by  [17] 
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f
ρ  is the density of the fluid and j is the imaginary unit. k  

and 
f

k  are respectively the axial and acoustic wave numbers. 

0
H  is the zero order Hankel function of the first kind and 

0
H ′  is its derivative with respect to the argument. The valid-

ity of the approximation for the fluid loading in the low fre-

quency range was demonstrated in Ref. [14], in which the 

structural and acoustic responses of a large submerged vessel 

were compared with results from a fully coupled finite ele-

ment/boundary element model. The axial and radial dis-

placements for the cylindrical shell can be written in terms of 

a wave solution and are respectively given by  
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where 
i

U , 
i

W  are respectively the wave amplitude coeffi-

cients of the axial and radial displacements. 

The equations of motion for a truncated cone of semi-vertex 

angle α  are given in terms of 
c

u  and 
c

w , which are respec-

tively the orthogonal components of the displacement in the 

c
x  and radial directions, as shown in Figure 2. The equations 

of motion to describe the axisymmetric dynamic responses of 

a fluid loaded conical shell are given by [18] 
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. R is the cone radius at loca-

tion 
c

x  and 
c

h  is the shell thickness. The external pressure 

c
p  can be written in terms of an acoustic impedance similar 

to the one used for the cylindrical shell [18]. Expanding the 

conical shell displacements using a power series and substi-

tuting them into the equations of motion results in the follow-

ing solutions of the form 
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( )
ci c

u x  and ( )
ci c

w x  are base functions and 
c

x  is the un-

known coefficients vector. More details on the derivation of 

the fluid loaded conical shell displacements can be found in 

Ref. [18]. The cylindrical and conical shell motions are then 

coupled together by applying the continuity conditions at the 

junction, as described later in the section Steady State Re-

sponse.  

Propeller-shafting system 

The axial thrust force from the propeller is transmitted to the 

hull by means of the propeller-shafting system that consists 

of the propeller, shaft, thrust bearing and the foundation. The 

shaft is idealised as a rod in longitudinal vibration separated 

in two parts at the connection with the thrust bearing. The 

thrust bearing is modelled as a single degree of freedom sys-

tem of mass 
b

M , stiffness 
b

K  and damping coefficient 
b

C . 

The axial force is transmitted to the hull by means of a rigid 

foundation of conical shape. The propeller is modelled as a 

lumped mass 
pr

M  at the end of the shaft, as shown in Figure 

3. The shaft dynamics is described by the displacements 
1s

u  

and 
2s

u along the 
1s

x  and 
2s

x  coordinates, respectively. The 

equation of motion for the free longitudinal vibrations of the 

shaft and the corresponding steady state solution are given by 
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Figure 3. Propeller-shafting system 

/
s sL

k cω=  is the axial wavenumber of the shaft, where 

1/2( / )
sL s s

c E ρ=  is the longitudinal wave speed. 
s

E  and 
s

ρ  

are the Young’s modulus and density of the shaft. The coeffi-

cients 
si

A  and 
si

B  are determined from the boundary condi-

tions, as described in section 4.  

Bulkheads 

Circular plates are used to model the bulkheads of the cylin-

drical hull and plates that close each end of the truncated 

cones. Both in-plane and bending motion of the circular 

plates is considered. The equations of motion for the axial 

p
w  and radial 

p
u  displacements are given in terms of the 

radial coordinate r by [19] 
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p
h  is the plate thickness. 3 2(12 )
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rigidity and 2 1/2[ / (1 )]
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c E ρ υ= −  is the longitudinal wave 

speed, where 
p

E , 
p

ρ  and 
p

υ  are respectively the Young’s 

modulus, density and Poisson’s ratio of the circular plate. 

The solutions for the axial and radial displacements of the 

circular plate can be expressed in terms of 
0

J  and 
0

I  that are 

respectively the Bessel function and the modified Bessel 

function of the first kind [19, 20] 
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k Eω ρ υ= −  is the wavenumber for longitudi-

nal in-plane waves. The coefficients
1p

A , 
2p

A  and 
1p

B  are 

determined from the boundary conditions, as described in 

section 4.  

ACTIVE CONTROL 

The harmonic excitation from the propeller is at the blade 

passing frequency (bpf). Due to the tonal nature of the pri-

mary force, a feedforward active control strategy is appropri-

ate [9]. Two active control strategies are implemented for the 

reduction of the noise radiated by the submarine, correspond-

ing to active vibration control (AVC) and active structural 

acoustic control (ASAC), in which discrete structural acous-

tic sensing (DSAS) is implemented to estimate the radiated 

pressure using a discrete structural sensor. Using AVC, an 

error sensor e  at one or more locations on the structure is 

defined as the sum of the axial displacement 
P

u  resulting by 

the primary excitation plus the secondary response 
S

u  due to 

the contribution from the secondary forces 
S

f . 

P S
= +e u u , 

P P P
=u H f , 

S S S
=u H f            (17) 

P
H  and 

S
H  are respectively the transfer functions between 

the primary and secondary forces and the axial displacement. 

When the number of error sensors exceeds or equates the 

number of control forces, a cost function to be minimised is 

defined as [9] 

H H
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The superscript H denotes the Hermitian of the vector. R  is 

a Hermitian positive definite weighting matrix to reduce the 

values of the control forces to their physical limit and evenly 

distribute the effort of the actuators. The optimum control 

force vector is given by [21] 
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The quadratic optimisation theory described for AVC can 

also be applied for ASAC, where the goal is to attenuate the 

structure-borne radiated sound at several locations. An alter-

native sensing technique to estimate acoustic radiation from 

structural measurements is implemented here. This technique, 

known as discrete structural acoustic sensing (DSAS), con-

sists of using arrays of structural sensors whose outputs are 

filtered to estimate the far field sound pressure with the 

Helmholtz integral formulation [11, 22, 23]. DSAS provides 

a practical approach for active control of acoustic signature 

of maritime vessels. The radiated pressure is calculated by 
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numerically defining an acoustic transfer function 
, iu p

H  in 

the frequency domain, that maps the far field sound pressure 

( )
i

p θ  at location 
i

θ  to the displacement 
0

( )u x , as shown in 

Figure 4, by 

, 0
( ) ( )

ii u p
p H u xθ =                                (20) 

In this case, the error signal can be written as 

P S
= +e p p                 (21) 

, ,P u p P P P
=p H H f                 (22) 

, ,S u p S S S
=p H H f                                               (23) 

, ,u p P
H  and 

, ,u p S
H  are the matrices containing the acoustic 

transfer functions due to the primary and secondary forces, 

respectively.  

Figure 4. Acoustic transfer function by measurement of the 

hull structural vibration and radiated sound pressure 

Inertial actuators 

The secondary forces of the active control application are 

generated by a circumferential array of inertial actuators at-

tached to the end plates of the cylindrical shell. The inertial 

actuators have mass 
ac

m  and are suspended by a spring of 

stiffness 
ac

k  and damping factor 
ac

c . The electromagneti-

cally generated force 
ac

f  acts between the mass and the end 

plate, as shown in Figure 5.  

 

 

 

 

 

 

 

Figure 5. Inertial actuator 

The equation of motion for the mass of the inertial actuator is 

given by 
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Hence the secondary force
S

f  transmitted to the plate corre-

sponds to the right hand side of Eq. (24). It is useful to ex-

press the transmitted secondary force as a function of the 

actuator force and plate axial velocity, by rearranging Eq. 

(24) as 
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ac
T  is the blocked response of the actuator and 

ac
Z  is its 

mechanical impedance. At frequencies higher than the actua-

tor resonance frequency given by /
ac ac ac

k mω = , the 

blocked response tends to unity and the mass provides a sta-

ble inertial platform to react the force [24]. The inertial actua-

tors are positioned on the hull end plate at 
ac

r R=  in order to 

form a circumferential array, as shown in Figure 6. The 

transmitted force is modelled as a distributed load given by 

2
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,

1

N

S S i

i

f f
=

=∑ . 
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f  is a single actuator force and 

N is the number of actuators. 

 

 

 

 

 

 

 

 

 

Figure 6. Circumferential actuator array on hull end plate 

To dynamically take into account the distributed load due to 

the circumferential array of inertial actuators, the end plate is 

modelled as an annular plate enclosing an inner circular plate. 

The equations of motion for an annular plate in terms of its 

axial 
a

w  and radial 
a

u  displacements are the same as those 

for the bulkhead circular plates. However, the solutions for 

the displacements are now given by [19] 
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case of two concentric circumferential force arrays applied to 

the end plate, the plate is modelled as a junction of two annu-

lar plates and an inner circular plate. 

STEADY STATE RESPONSE  

The steady state response of the hull under harmonic force 

excitation from the propeller and inertial actuators is calcu-

lated using a direct method in which the external forces are 

considered as part of the boundary conditions. The dynamic 

response of the submarine is expressed in terms of 
i

W  

( 1: 6i = ) for each section of the hull, 
pi

A  ( 1: 2i = ) and 
1p

B  

for each full circular plate, 
ai

A  ( 1: 4i = ) and 
ai

B  ( 1: 2i = ) 

for each annular plate, 
c

x  for the cone and 
si

A , 
si

B  

( 1: 2i = ) for the shaft. The dynamic response is calculated 

by assembling the force, moment, displacement and slope 

continuity conditions at each junction on the hull. The mem-

brane force 
x

N , bending moment 
x

M , transverse shearing 

force 
x

Q  and the Kelvin-Kirchhoff shear force 
x

V  for the 

shells and plates are given in Ref. [15] per unit length. The 

slopes are given by /w xφ = ∂ ∂  for the cylindrical shell, 

/
c c c

w xφ = ∂ ∂  for the conical shell, and /
p p

w rφ = ∂ ∂ , 

/
a a

w rφ = ∂ ∂  for the circular and annular plates, respectively. 

To take into account the change of curvature between the 

cylinder and the cone, the following notation was introduced 
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Similar continuity conditions can be written at the junction 

between the cylinder and the bulkheads, as well as between 

the cone and the small end plates. At the junction between the 

circular and annular plates (
ac

r R= ), the continuity of dis-

placement, slope, force and bending moment are given by 
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In Eq. (37), 
S

f  is the harmonic force from the inertial actua-

tors, as given by Eq. (25). The boundary and continuity con-

ditions for the propeller shaft of cross sectional area 
s

A  are 

given by 
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In Eq. (38), the mass of water 
w

M  displaced by the propeller 

is added to the propeller mass 
pr

M , resulting in 

pr pr w
M M M= +ɶ . The mass load on a propeller of radius 

pr
a  

is given by 38 / 3
w pr f

M a ρ=  [25]. 
P

f  is the amplitude of the 

harmonic force from the propeller. The attachment of the 

shaft to the power system is considered flexible resulting in 

the free end boundary condition given by Eq. (39). Equation 

(40) corresponds to the continuity of axial force at the junc-

tion of the propeller shaft with the thrust bearing.  

The boundary and continuity equations can be arranged in 

matrix form =Au f , where f  is the force vector containing 

the force 
P

f  from the propeller and 
S

f  from the control 

actuators. From −= 1u A f , the unknown coefficients of the 

various plate and shell displacements can be obtained. 

RADIATED SOUND PRESSURE 

The sound pressure is given by [26] 

0

1

0

0 0 0

1
( , ) ( , )

2 cos

mf r

r

zjk R

j z

r r

r f f rz

e r
p R Y r z e dz

R c

αθ
ωρ β

−= ∫         (41) 

0 0 0 0 0 0 0 0

2

0 0 0 0

( , ) ( , )[ cos ( ) sin ( )]

( , ) ( )

r r r r r r

f r

Y r z p r z J r j J r

W r z J r

γ β γ α β γ

ρ ω γ

′= +

−
 (42) 

The surface of the hull is represented by Cartesian coordi-

nates ( , )
r

r z , where 
r

z  is in the axial direction with its ori-

gin set at the geometric centre of the hull. ar is the radius of 

the structure at location zr. The surface S0 extends from 
1

z  to 

m
z . 

0 0
( , )r z  is the node location on the hull surface S0. 

cos
r f r

kα θ= , sin
r f r

kγ θ=  and atan( ( ) /  )
r r r r

a z zβ = ∂ ∂ . 

Once the radial displacement 
0 0

( , )W r z  at each node 
0 0

( , )r z  

on the boundary of the structure has been evaluated, the shell 

surface pressure 
0 0

( , )p r z  at each node on the shell surface 

can then be calculated by 
0 0

=p Dw , where D  is the fluid 

matrix and 
0

p , 
0

w  are the vectors of the surface pressure 

and radial displacement, respectively [14].  

NUMERICAL RESULTS 

Numerical results are presented for a submarine hull with a 

cylindrical shell of radius 3.25a = m, thickness 0.04h = m, 

length 45L = m and with T-ring stiffeners evenly spaced by 

0.5b = m. A distributed mass on the shell of 1500
eq

m = kgm-

2 was used. The hull has two equally spaced bulkheads of 

thickness 0.04
p

h = . The cylindrical hull is closed by trun-

cated conical end caps with semi-vertex angle of 18α = � , 

thickness 0.014
c

h = m and smaller radius of 
1

0.50R = m. 

The thickness of the end plates is the same as for the bulk-

heads. The propeller has a mass of 410 kg
pr

M =  and radius 

/ 2
pr

a a= . The thrust bearing mass, stiffness and damping 

coefficient are given by 200 kg
b

M = , 10 12 10 Nm
b

K −= ×  
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and 7 13 10  kgs
b

C −= × . The two sections of the shaft are of 

length 
1

9.0 m
s

L =  and 
2

1.5 m
s

L = . All the structures are 

made of steel with density 37800 kgmρ −= , Young’s 

modulus 112.1 10E = × Nm-2 and Poisson’s ratio 0.3υ = . 

Structural damping was introduced using a complex Young 

modulus (1 )E jη− , where 0.02η =  is the structural loss 

factor. 

Results are presented using a harmonic force from the propel-

ler with a unity amplitude and frequency range up to 80 Hz. 

At maximum speed, a typical bpf for a submarine is around 

25Hz. Higher values of frequency contain the super harmon-

ics which have a much smaller amplitude [27]. The results 

can be scaled in the case real data of the excitation is avail-

able. Two arrays of actuators are used, in which one actuator 

array is located on the stern end plate at a circumferential 

radius of 0.5
ac

R = m and the other is located on the bow end 

plate, also at circumferential radius 0.5
ac

R = m. In each ar-

ray, 30 inertial actuators are used and are driven in phase. 

Actuator data from a commercially available model has been 

used and corresponds to a diameter of φ = 90 mm, suspended 

mass of 
ac

m = 2.2 kg, spring stiffness 
ac

k = 6130 Nm-1, damp-

ing factor 
ac

c =34.8 kgs-1 and a peak force of 
S

f =45 N. Sev-

eral control arrangements are examined using the two control 

strategies, AVC and DSAS. The number and location of the 

error sensors for each control arrangement is presented in 

Table 1. For DSAS, the pressure at the far field error loca-

tions is estimated by a transfer function with a point meas-

urement on the cylindrical shell at 2x = m. The axial loca-

tion was chosen away from the bulkhead and end plate junc-

tions to avoid near field vibration. 

Table 1. Error sensor locations for various control arrange-

ments 

Control Ar-

rangement 
Error Sensor Locations 

AVC 2f, 2e [2, 43]x = m 

DSAS  2f, 2e [0,180]θ = �  

DSAS 2f, 8e [0,  15, 30, 75, 105, 150, 165, 180]θ = �

 

 

Figure 8 shows the frequency response function (FRF) at the 

error sensor location of x=2 m along the length of the cylin-

drical hull. The main hull axial resonances occur at around 

22.5 Hz, 43.5 Hz and 70.5 Hz. The small peaks visible at 9.5 

Hz and 36 Hz are due to the out-of-plane vibration of the 

bulkheads and end plates. The resonance of the propeller-

shafting system occurs at 48 Hz and is very close to the sec-

ond axial resonance of the hull. The propeller-shafting sys-

tem resonance falls in the low frequency range due to the 

large mass of the propeller which, when summed to the mass 

of the water displaced by the propeller, becomes around 20 

ton (
pr

Mɶ =20 ton). Also shown in Figure 8 is the controlled 

response of the axial displacement using the third control 

arrangement, corresponding to DSAS with two control actua-

tor arrays and eight error sensors. The controlled response 

using AVC results in complete cancellation of the axial dis-

placement and hence is not shown in Figure 8. Using DSAS, 

significant attenuation of the hull axial resonances occurs. As 

expected, less attenuation is achieved compared to AVC 

since the objective of DSAS is to minimise the far field radi-

ated sound pressure. 
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Figure 8. Uncontrolled and controlled responses of the cy-

lindrical hull axial displacement at x=2m. 

The uncontrolled and controlled sound pressure levels at 

0θ =  are shown in Figure 9 using the third control arrange-

ment. A reduction of around 30 dB is observed over almost 

the entire frequency range. Less attenuation is achieved as the 

frequency increases and at the propeller-shafting system 

resonance. 

10 20 30 40 50 60 70 80

−40

−20

0

20

40

60

Frequency [Hz]

S
o

u
n

d
 p

re
ss

u
re

 l
ev

el
 [

d
B

 r
e 

1µ
 P

a]

 

 

No control

DSAS 2f, 8e

 

Figure 9. Sound pressure level at 0θ =  

Figure 10 presents the uncontrolled and controlled sound 

power levels using the two DSAS strategies. The controlled 

responses are similar, although a slight improvement is 

achieved using eight error sensors compared with a fully 

determined case (two force arrays and two error sensors). The 

latter strategy is more attractive due to the reduced complex-

ity in its application. A lack of performance can be observed 

in the range of 40 to 50 Hz, where two physical system reso-

nances occur in close proximity. Since the actuators are lo-

cated on the end plates of the hull, the control application can 

effectively target the hull axial resonances but not the reso-

nance of the propeller-shafting system. 
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Figure 10 Sound power level.  

The uncontrolled and controlled sound power levels using 

AVC with two control force arrays and two error sensors are 

shown in Figure 11. Results show that using AVC, a reduc-

tion of radiated sound power over the entire frequency range 

except at the first bulkhead resonance of around 10 Hz, and at 
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around 45 Hz where the propeller-shafting system and second 

hull axial resonances occur in close proximity. 
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Figure 11 Sound power level.  

Figure 12 shows the optimum control forces for AVC (2f, 

2e), the use of a weighting matrix R is usefull to distribute 

the effort of the actuators more equally. 
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Figure 12 Optimal control force amplitudes of a single actua-

tor in the two control arrays using AVC (2f, 2e).  

Figure 13 presents the ratio of the optimal control force am-

plitudes to the propeller force for a single inertial actuator in 

the two control force arrays, using the third control arrange-

ment of DSAS with eight error sensors. To estimate the per-

formances in a real vessel, the propeller force and physical 

limits of the inertial actuators should be taken into account. A 

typical blade passing frequency (bpf) for a submarine at its 

maximum speed is around 25 Hz and the amplitude of the 

fluctuating force is around 2000 N. Using this data, the con-

trol force amplitudes for a single actuator in the two control 

force arrays using DSAS with eight error sensors are 
1s

f = 34 

N and 
2s

f = 10.5 N. These force amplitudes are easily 

achieved using commercially available inertial actuators. In 

the frequency range of 40 to 55 Hz, the amplitude of the con-

trol forces is significantly higher than at lower frequencies 

around the fundamental bpf of 25 Hz. However, the range 

above the fundamental bpf belongs to the super-harmonics 

and their amplitudes decrease as the frequency increases. 
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Figure 13 Optimal control force amplitudes of a single actua-

tor in the two control arrays using DSAS (2f, 8e). 

 

The bpf at 25 Hz is very close to the first hull axial resonance 

at around 22 Hz. The related hull mode has a strong axial 

component with its ends vibrating out-of-phase to each other. 

Hence at this frequency, the submarine acts as a woofer and 

radiates noise with a directivity characteristic associated with 

an acoustic dipole in the axial direction.  

The directivity pattern at the fundamental bpf of 25 Hz is 

shown in Figure 14. Global attenuation of the radiated sound 

pressure is also observed using AVC or DSAS. The similar 

levels of attenuation achieved using either control strategy is 

attributed to the similar levels in attenuation at this frequency 

in Figs. 11 and 12. 
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Figure 14 Directivity pattern at the fundamental bpf of 25 

Hz. 

 

CONCLUSIONS 

Two active control strategies corresponding to AVC and 

DSAS have been used to reduce the sound radiated by a 

submarine hull under axisymmetric excitation from the pro-

peller. A model of submarine was presented and involved 

coupling the dynamic responses of cylindrical shells, conical 

shells and circular plates. A simplified physical model of the 

propeller-shafting system was also included. An acoustic 

transfer function was defined in order to estimate the radiated 

sound by a single point measurement on the hull. The sub-

merged vessel was excited by an axial harmonic force from 

the propeller. Inertial actuators were located on the end plates 

of the cylindrical hull and were arranged in circumferential 

arrays to deliver axisymmetric control forces. It was shown 

that inertial actuators can deliver sufficient forces to reduce 

the radiated sound pressure, with very good attenuation over 

the majority of the frequency range. Future work is required 

in order to experimentally verify the performance of the ac-

tive control strategies on a real submerged vessel. 
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