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ABSTRACT

In this talk the numerical simulation of the sound spectrum and the propagation of the acoustic noise inside and around
a three-dimensional recorder model is presented. The fluid inside and close to the recorder is meshed by Lagrangian
tetrahedral finite elements. Complex conjugated Astley-Leis infinite elements are used to obtain results in the far field of
the recorder.

When playing a recorder, the air column inside the instrument starts to oscillate due to the inserted air flow. The musician
is able to influence the frequency of a note by varying the blowing pressure and therewith a fine-tuning of the sound is
possible. The sound propagation in fluids with a non-uniform flow can be described by the Galbrun equation. We present
the influence of the flow on the eigenfrequencies.

Furthermore, it is possible to represent the excitation mechanism for a sound propagation inside and around the recorder
with quadrupole sources, which occur in the surroundings of the labium. The numerical results are compared to
measurements on the recorder.

INTRODUCTION

In acoustics, the general approach for a modal analysis of a time-
harmonic fluid is to solve Helmholtz equation. But when think-
ing of a recorder, we have a moving fluid inside the recorder
due to the air flow that is inserted in the instrument by the musi-
cian. This flow profile has to be taken into consideration for the
modal analysis. Galbrun equation can be used to describe the
sound propagation in fluids with non-uniform flow. We present
the influence of the flow on the eigenfrequencies.

In experiments, we use microphones to measure the pressure as
time-dependent variable in different positions inside and around
the recorder. We want to describe the excitation mechanism of
the sound propagation with quadrupole sources and use the
results of the measurement to verify the numeric computations.

The fluid inside and close to the recorder is described by finite
elements, while infinite elements describe the far field. The
Sommerfeld radiation condition ensures that only outward prop-
agating components exist at large distance from the radiating
body. As finite elements second order Lagrange tetrahedral el-
ements are used and as infinite elements complex conjugated
Astley-Leis elements [1] are implemented.

SOURCE PROBLEM

The considered boundary value problem consists of Helmholtz
equation, Neumann boundary condition for the recorder bound-
ary and Sommerfeld radiation condition. The matrix formula-
tion of this boundary value problem is

(KKK− ikDDD− k2MMM)ppp = bbb . (1)

The pressure ppp consists of the complementary pressure and the
particular pressure

ppp = pppc + pppp . (2)

The complementary pressure is also known as homogeneous
solution, the solution of a source free domain. The particular

pressure presents the incident pressure field. The right-hand-
side vector is computed by

bbb =−skFFFvvvp
a +(KKK− ikDDD− k2MMM)pppp , (3)

with s = iρ0c and FFF as the boundary mass matrix [5].

According to Lighthill’s analogy, quadrupole sources are used
to present the excitation mechanisms. The particular pressure
for a quadrupole source is computed with [3]

pp =
ikρ0c

8π
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(4)
with Q being the strength of the quadrupole, and the particular
velocity is

vp
a =

1
sk

∂ p
∂n

. (5)

Experiments are used to verify the numeric results of the source
problem. In these experiments, four microphones are placed
close around the recorder and a fifth microphone is placed in-
side the recorder close to the labium. With these microphones
the pressure depending on the time is measured. With a Fourier
transformation of this pressure the pressure in the frequency do-
main is obtained. In an optimization process position, strength,
orientation and phase of the quadrupoles are determined to
match the results of the experiments in the positions of the
microphones.

Table 1 shows the deviation between measured and numerically
computed pressure, with

error =
|pM− pC|
|pM |

. (6)

It can be seen that especially for the first microphone good
results are obtained, while for the fifth microphone, which is
the one inside the recorder, the results do not match at all. One
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Table 1: Comparison of measured and computed pressure.

measurement computation error
[Pa] [Pa] [%]

1 −4.213+1.911i −3.966+2.218i 8.532
2 −1.394+0.814i −1.177+0.406i 28.603
3 −1.956+1.249i −1.958+0.764i 19.610
4 −8.859+3.136i −8.518+5.805i 28.633
5 −66.11−79.83i −248.13+180.91i �

problem there might be that the pressure measured with the
fifth microphone was not obtained in the same experiments as
the results for microphones one through four, but measured
separately. Another negative effect on the result could be the
fact that the microphone is placed inside the recorder, close to
labium and wind channel, in an area where reflections from
the walls and turbulences occur. Possibly, the effect of the
eigenfrequency disturbes the measurement inside the recoder
and positioning a microphone there is not useful.

MODAL ANALYSIS WITHOUT VOLUME FLOW

For the modal analysis of the stationary fluid inside and around
a recorder, the boundary value problem as described in eq. (1) is
used. The recorder itself is condisered as sound hard. Therefore,
the right-hand-side vector bbb is zero.

The resulting state space formulation of the eigenvalue problem
is [6]([
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=
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000
000

]
, (7)

with ΦΦΦ = λΨΨΨ and λ =−ik.

The three-dimensional finite element model of the recorder
fluid is build in Ansys 11.0 and read into a noncommercial
code that was developed at our institute. In this Fortran 90
code the infinite elements are added before starting with the
computations.

The modal analysis is accomplished for all playable notes, ex-
cept the ones with half-open tone holes. Figure 1 shows first
eigenfrequency and first harmonic of note b′′.

Figure 1: First eigenfrequency (above) and first harmonic (be-
low) of b′′.

The recorder that is used for these computations is a soprano
recorder with german fingering and tuning to 442 Hz. The com-
puted eigenfrequencies are compared to the according values
from the MIDI-table. After converting the values of the MIDI-
table to 442 Hz, the frequency of note b′′ can be obtained with
936.565 Hz. In Figure 2 the convergence behaviour of this note
is shown.

Figure 2: Convergence of b′′.

At first sight, the numeric results show a good convergence
behaviour, but even for the finest mesh the deviation between
computed frequency and the one from the MIDI-table is still
about 8 Hz. For a music instrument, this deviation is too high.
We assume that one reason for this high deviation is that we
didn’t consider the volume flow inside the recorder for those
computations. Therefore we will discuss the relation between
frequency and volume flow in the following section.

MODAL ANALYSIS WITH VOLUME FLOW

In this section we consider the sound propagation of moving
fluids. For now, the computations are made for interior domains.

Fluids with a non-uniform flow can be described by the Galbrun
equation [4, 7]
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This equation is a mixed formulation of pressure p and displace-
ment www, vvv0 represents the velocity of the fluid.

The computations are carried out for two different finite ele-
ments. In the first case we use tetrahedral MINI elements and
in the second case tetrahedral Taylor-Hood elements.

The effect of the flow on the eigenfrequencies is analysed on
a three-dimensional duct with l = 3.4m, b = h = 0.2m. We
assume a constant flow over the cross-section. For this example
an one-dimensional solution can be found with

fn =
c0n
2l

(1−Ma2) with Ma =
v0

c0
. (9)

Figure 3 shows the first three eigenfrequencies of the duct
over the Mach number (Ma). The numeric computations, using
Galbrun equation, verify the assumption that the frequencies de-
crease by increasing Mach number. Table 2 presents the results
of the computations obtained with MINI elements compared to
the Helmholtz solution.

CONCLUSION

This paper showed that it is possible to describe the excita-
tion mechanism inside and around a recorder with quadrupole
sources.
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Figure 3: 1., 2. and 3. eigenfrequency over Mach number.

Table 2: Eigenfrequencies depending on Mach number, ob-
tained with MINI elements.

Helmholtz v0z = 0 m
s v0z = 10 m

s v0z = 100 m
s

Ma=0 Ma=0.02941 Ma=0.29412

50.00003 50.02247 49.96569 45.66757
100.00093 100.16144 100.02416 91.28340
150.00674 150.56087 150.34645 136.78154

Furthermore, a modal analysis was accomplished for a static
fluid as well as for a moving fluid. It was shown that a volume
flow decreases the values of the eigenfrequencies.

In a next step, we want to include the characteristic volume flow
profile inside the recorder to examine the influence of the flow
on the sound.
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